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To establish the computer assisted system of the visual acuity test, we pro-
pose a statistical modelling of the visual acuity measurement and its multiple
test procedure. The psychometric functions for individual patients are pro-
duced by the logistic regression combined with the guessing rate. We adopt
test statistics based on (i) psychometric functions (the Cochran-Mantel-
Haenszel method) and (ii) psychophysical thresholds (the delta method).
The multiple comparisons are performed by the step-down procedure with
Ryan-Einot-Gabriel-Welsch (REGW) significance levels. To show the practi-
cal effectiveness of our system, we present a numerical example of four patient
groups.

keywords: Cochran-Mantel-Haenszel test statistic, delta test statistic, psy-
chometric functions, psychophysical thresholds, step-down procedure.

1 Introduction

The methodology of statistics is versatile and powerful to find a regularity or an irregular-
ity from observed data, and many statistical modellings are applied to various problems.
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To prove the effectiveness of new medical measurement and treatment, we need to ob-
tain precise statistical characteristics. In the field of visual acuity measurement, we have
some problems to be solved: obtaining precise statistical data for individual patients,
and testing multiple groups of various type patients.

On the conventional visual acuity measurement, a trained inspector shows the Snellen
chart to an individual patient and checks whether the patient can recognize letters or
symbols (Landolt C, Tumbling E) correctly. In conventional methods, we often eval-
uate the overall trend of visual acuity values (pre-operative and post-operative values
etc.) for several patients. We can also define “improvement” as two-line or three-line
improvement of visual acuity. However, the former method does not enable observation
of individual changes, and the latter method has no statistical basis (Tokutake et al.,
2014) .

It is known that the cumulative probability distribution of the normal distribution can
estimate the probability of visual acuity for an individual patient (Watson, 1979; Simp-
son, 1995; Tokutake et al., 2014). By developing the system on the personal computer,
the automated measurements of the visual acuity are proposed (Bach, 1996; Beck et al.,
2003; Schulze-Bonsel et al., 2006). The testing of significance difference between multiple
thresholds is developed by Nagai et al. (2006). Some visual acuity testings for individual
patients by using psychometric functions have been proposed (Mita et al., 2010, 2014;
Tokutake et al., 2014). In the new method based on logistic regression, we can obtain
a psychometric function to measure visual acuity more precisely than with conventional
methods. The most important property of new method is that we can calculate both
visual acuity and its variance in one measurement, which cannot be achieved by use of
conventional methods.

For multiple comparison problems, several statistical approaches were proposed. Ryan,
Einot-Gabriel and Welsch proposed some stepwise procedures for multiple comparison
problems (Ryan, 1960; Einot and Gabriel, 1975; Welsch, 1977). Félix and Menezes (2018)
reported comparisons of ten corrections methods for t-test in multiple comparisons via
Monte Carlo study. By adopting the bootstrap logistic regression, Mita et al. (2014)
developed an algorithm of multiple comparisons with a control, and Mita et al. (2017)
proposed an algorithm of multiple test based on the step-down procedure.

In epidemiological study, the Mantel-Haenszel test statistic is developed by Mantel
and Haenszel (1959), and it is applied to the problem of differential item functioning by
Holland and Thayer (1988). The generalized Cochran-Mantel-Haenszel (CMH) statis-
tics, which allows many strata, expands the applicable fields (Landis et al., 1978; Somes,
1986; Zhang and Boos, 1996; Penfield, 2001).

In the present article, we propose a statistical modelling of the visual acuity measure-
ment and its multiple test procedure.
Step 1 Modelling of the visual acuity for individual patient: We present the logistic re-
gression combined with a constant guessing rate, and define the psychometric function,
the psychophysical threshold and its variance in section 2.
Step 2 Computing test statistics: We show the CMH test statistic based on psychometric
functions in section 3, and the delta test statistic based on psychophysical thresholds
and their variances in section 4.
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Step 3 Multiple comparisons of groups: We show the multiple test by the step-down
procedure with Ryan-Einot-Gabriel-Welsch (REGW) significance levels in section 5.
Finally, in section 6 we present an application of our algorithm to the visual acuity
measurement of four groups.

2 Modelling of the visual acuity for individual patient

We use the Landolt C as the optotype, and the size of the optotype is determined on
the basis of a logarithmic scale. The patient is directed to choose one of four directions
(left, right, bottom and top) of optotypes. Since the criterion for an “unreadable” mea-
surement is subjective, the accuracy of the measurement is compromised if the patient
answers “unreadable”. Therefore “unreadable” answer is not allowed in our measure-
ment. Thus we fix the guessing rate as 1/4 = 0.25.

Let P (xi; aj , bj) be the probability that the patient j (j = 1, · · · , N) answers the
visual acuity test i (i = 1, · · · ,M) correctly:

P (xi; aj , bj) = p(xi; aj , bj) + c0 (1− p(xi; aj , bj)) (i = 1, · · · ,M ; j = 1, · · · , N),

where

p(xi; aj , bj) = (1 + exp(−(aj + bjxi)))
−1 ,

xi is the visual target of test i, aj and bj are intercept and slope parameters, respectively,
which depend on the patient j, and c0 (0 ≤ c0 < 1) is a prescribed constant which defines
the guessing rate.

Let Dj (j = 1, · · · , N) be the set of patient data such that

Dj = {(xi, µij , νij) (i = 1, · · · ,M)} (j = 1, · · · , N),

where µij and νij (0 ≤ µij ≤ νij ; i = 1, · · · ,M ; j = 1, · · · , N) are responses of patient
j to the test i such that µij is the number of correct outcomes among νij trials. The
binomial likelihood L(aj , bj) is given by

L(aj , bj) =

M∏
i=1

P
µij
ij (1− Pij)νij−µij (j = 1, · · · , N),

where Pij = P (xi; aj , bj) (i = 1, · · · ,M ; j = 1, · · · , N). Then we can obtain optimum

values âj and b̂j for aj and bj , respectively, by adopting the Fisher score method. We
define the psychometric function ϕj(x) (j = 1, · · · , N) for individual patient j such that

ϕj(x) = P (x; âj , b̂j) (−∞ < x < +∞; j = 1, · · · , N).

Then we define the psychophysical threshold ξj (j = 1, · · · , N) of patient j with guessing
rate c0:

ξj = ϕ−1
j

(
1 + c0

2

)
(j = 1, · · · , N).
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The threshold ξj and its variance var(ξj) are obtained by

ξj = − âj

b̂j
, var(ξj) = ξ2

j

(
var(âj)

â2
j

− 2
cov(âj , b̂j)

âj b̂j
+

var(b̂j)

b̂2j

)
,

where var(âj) and var(b̂j) are variances of âj and b̂j , respectively, and cov(âj , b̂j) is the

covariance of âj and b̂j .

3 Test statistic based on psychometric functions

Let r (r = 1, · · · , ρ) be the stratum of observations and let urk` (r = 1, · · · , ρ; k =
1, · · · , κ; ` = 1, · · · , λ) be the number of observations at r-th stratum of the κ × λ
contingency table. For applying the Cochran-Mantel-Haenszel (CMH) test statistic to
the visual acuity results, we choose indices r, k, ` in the contingency table such that

(i) strata r (r = 1, · · · , ρ): visual acuity strata (x1, · · · , xρ),
(ii) rows k (k = 1, · · · , κ): patient groups (Γ1, · · · ,Γκ),
(iii) columns ` (` = 1, · · · , λ): responses of visual tests (` = 1 for “correct” and ` = 2 for
“incorrect”).

Then we fix the number of columns at λ = 2 and choose the number of observations
urk` (r = 1, · · · , ρ; k = 1, · · · , κ; ` = 1, 2) such that

urk1 =
∑
j∈Γk

ϕj(x
r), urk2 = nrk − urk1 (r = 1, · · · , ρ; k = 1, · · · , κ),

where nrk is the number of patients in group Γk, and ϕj(x
r) is the value of psychometric

function of patient j at the visual acuity stratum xr.

The null hypothesis is described such that there is no association between the row
(patient group) and the column (response of visual test).

We define the total and partial summations of urk`:

tr =
κ∑
k=1

2∑
`=1

urk` (r = 1, · · · , ρ),

mr
` =

κ∑
k=1

urk` (r = 1, · · · , ρ; ` = 1, 2), nrk =
2∑
`=1

urk` (r = 1, · · · , ρ; k = 1, · · · , κ).

Let

ur =
(
ur11, u

r
21, · · · , ur(κ−1)1

)′
(r = 1, · · · , ρ)

be the vector of the number of observations, where the symbol ′ means the transpose of
vector or matrix. We define the vector of partial summation:

nr = (nr1, · · · , nrκ−1)′ (r = 1, · · · , ρ).



Electronic Journal of Applied Statistical Analysis 5

Then the expected value vector er and the variance-covariance matrix V r are expressed
as

er =
mr

1

tr
nr, V r =

mr
1m

r
2

(tr)2(tr − 1)
N r (r = 1, · · · , ρ),

where
N r = tr diag(nr)− nr(nr)′,

diag(nr) is the (κ − 1) × (κ − 1) diagonal matrix with diagonal elements of nr. The
Cochran-Mantel-Haenszel (CMH) test statistic ΨK for the set of groupsK = {Γ1, · · · ,Γκ}
is given by

ΨK = u′ V −1u,

where

u =

ρ∑
r=1

ur −
ρ∑
r=1

er, V =

ρ∑
r=1

V r.

This CMH test statistic ΨK has an asymptotic χ2-distribution with (κ − 1) degrees of
freedom under the null hypothesis (Agresti, 2002).

For the special case κ = 2, we adopt the Mantel-Haenszel test statistic with Yates
correction Ψy (Mantel and Haenszel, 1959).

4 Test statistic based on psychophysical thresholds

For applying the delta test statistic to the problem of comparisons of visual acuity, we
compute mean values of the psychophysical threshold ξk and its variance var(ξk) (k =
1, · · · , κ) of group Γk such that

ξk =
1

Nk

∑
j∈Γk

ξj , var(ξk) =
1

Nk

∑
j∈Γk

var(ξj) (k = 1, · · · , κ),

where Nk is the number of patients in the group Γk, and ξj and var(ξj) (j = 1, · · · , Nk)
are psychophysical threshold and its variance of individual patient j in Γk, respectively.
Let ξ be the total mean of ξk (k = 1, · · · , κ) defined by

ξ =
1

κ

κ∑
k=1

ξk.

Let Ak (k = 1, · · · , κ) be the main effect defined by

Ak = ξk − ξ (k = 1, · · · , κ).

We shall test the null hypothesis for κ groups (κ ≥ 2): ξ1 = · · · = ξκ. If we define the
following notations:

uk = A1 −Ak+1 = ξ1 − ξk+1 (k = 1, · · · , κ− 1),

then the null hyposesis can be rewritten such that u1 = · · · = uκ−1 = 0.
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We introduce the following partial derivatives (Nagai et al., 2006):

Ukt =
∂uk

∂ξt
= δt1 − δt,k+1 (k = 1, · · · , κ− 1; t = 1, · · · , k),

where δpp = 1 and δpq = 0 (p 6= q). By using uk, Ukt, var(ξt), we denote the vector u
and matrices U ,V such that

u = (uk)
′, U = (Ukt), V = diag(var(ξt)) (k = 1, · · · , κ− 1; t = 1, · · · , κ),

where u is the column vector of the order of (κ − 1), U is the (κ − 1) × κ matrix, and
V is the κ × κ diagonal matrix with diagonal elements of var(ξt). Then we have the
asymptotic variance-covariance matrix V :

V = U V U ′.

It is known that the likelihood estimated parameters of psychometric function have
the normal distribution in multiple variables (Pas and Koenderink, 2004; Kingdom and
Prins, 2010; Tokutake et al., 2014). Since u has the normal distribution in multiple
variables in our visual acuity testing, the delta test statistic ∆K for the set of groups
K = {Γ1, · · · ,Γκ} defined by

∆K = u′ V −1u

has an asymptotic χ2-distribution with (κ − 1) degrees of freedom under the null hy-
pothesis.

5 Step-down procedure for multiple comparisons

Let G be the set of patient groups, and g be the number of groups in G. Let K be
the subset of G, and κ be the number of groups in K. We shall test the following null
hyposesis on the visual acuity problem of multiple comparisons for patient groups.

null hyposesis H0
K : responses of visual tests are independent of groups in K.

Let F be the hierarchical family of null hypotheses for G. Let FK be the subset of F
such that

FK = {H0
K′ | H0

K′ ⊆ H0
K for H0

K′ ∈ F} (K,K ′ : subsets of G),

where H0
K′ ⊆ H0

K means that H0
K′ implies H0

K .
Let WK be the test statistic of K, where we choose WK such that WK = ΨK for the

CMH test and WK = ∆K for the delta test.
We adopt Ryan-Einot-Gabriel-Welsch (REGW) significance levels ακ (2 ≤ κ ≤ g) for

the test of null hypothesis H0
K such that

ακ =

1− (1− α)κ/g (2 ≤ κ ≤ g − 2),

α (g − 1 ≤ κ ≤ g),
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where α is the type I familywise error rate (Ryan, 1960; Einot and Gabriel, 1975; Welsch,
1977).

Let χ2
κ−1 be the critical value for ακ and let pK be the p-value for K such that

P (X2 > χ2
κ−1) = ακ (2 ≤ κ ≤ g), pK = P (X2 > WK),

where P (X2 > χ2
κ−1) etc. are the upper probabilities of the chi-squared distribution X2

with (κ− 1) degrees of freedom. Then the null hypothesis H0
K can be rejected with α if

all hypotheses H0
K′ in FK are rejected with ακ′ (2 ≤ κ′ ≤ g) such that

WK′ > χ2
κ′−1 for all H0

K′ ∈ FK (K,K ′ : subsets of G),

where κ′ is the number of groups in K ′.
The statistical power qK and the error of the second kind βK on K are the probabilities

given by
qK = 1− βK = P (X̃2(λK) > χ2

κ−1) (2 ≤ κ ≤ g),

where P (X̃2(λK) > χ2
κ−1) is the upper probability of the non-central chi-squared dis-

tribution X̃2 with (κ − 1) degrees of freedom, and the non-centrality parameter λK is
chosen as λK = WK . Then we can obtain the cumulative statistical power cum(qK) on
the hypothesis H0

K such that

cum(qK) =
∏
K′⊆K

qK′ (K,K ′ : subsets of G),

where
∏
K′⊆K means the product for all K ′ satisfying H0

K′ ∈ FK .

6 Application to the visual acuity testing

For checking the reliability of our algorithm, we took the data from one individual with
no visual abnormalities in complete refractive correction and also took the data from
the same individual in +0.5D incomplete refractive correction. Then by modifyng these
data, we made replicas to have some samples in four groups. Althogh the data chosen
here are not fully real, they provide evidence enough to know the effectiveness of our
algorithm in multiple comparisons.

The explanatory variable x in our measurement is the logarithmic visual acuity (LogVA).
We shall test differences of visual acuities for patients in 4 groups Γk (k = 1, · · · , 4).
The number of Landolt-C targets Mk and the number of patients Nk in groups Γk are
chosen such that

Mk = 7 (k = 1, · · · , 4); N1 = 22, N2 = 14, N3 = 11, N4 = 13.

For obtaining precise data by the constant stimuli method, we choose the number of
trials νij for patient j to the test i satisfying such that

νij = 0 or 20 (i = 1, · · · ,Mk; j = 1, · · · , Nk),

Mk∑
i=1

νij = 120 (j = 1 · · · , Nk).
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For each patient j (j = 1, · · · , Nk) in group Γk (k = 1, · · · , 4), we obtain optimum
values of parameters âj , b̂j , and psychophysical threshold ξj by adopting the Fisher
score method. The psychometric functions ϕj(x) (j = 1, · · · , Nk) for indivisual patients
in groups Γk (k = 1, · · · , 4) are shown in Figs. 1 (Γ1), 2 (Γ2), 3 (Γ3), 4 (Γ4).

The hierarchical family of null hypotheses for 4 groups is

F =
{
H0

12, H
0
13, H

0
14, H

0
23, H

0
24, H

0
34, H

0
123, H

0
124, H

0
134, H

0
234, H

0
1234

}
.

The subsets Fi1i2 (1 ≤ i1 < i2 ≤ 4) of F are

F12 =
{
H0

12, H
0
123, H

0
124, H

0
1234

}
, F13 =

{
H0

13, H
0
123, H

0
134, H

0
1234

}
,

F14 =
{
H0

14, H
0
124, H

0
134, H

0
1234

}
, F23 =

{
H0

23, H
0
123, H

0
234, H

0
1234

}
,

F24 =
{
H0

24, H
0
124, H

0
234, H

0
1234

}
, F34 =

{
H0

34, H
0
134, H

0
234, H

0
1234

}
.

The contingency table for computation of Cochran-Mantel-Haenszel (CMH) test is
constructed by choosing strata xr = −0.2 + 0.05(r− 1); (r = 1, · · · , 9). The contingency
table is shown in Table 1, where data are presented only for strata r = 1, 5, 9 in the case of
the null hypothesis H0

1234. We adopt Ryan-Einot-Gabriel-Welsch (REGW) significance
levels for the multiple test of null hypotheses H0

K . We test hypotheses with the type
I familywise error rate α = 0.05. Then REGW significance levels are α2 = 0.0253
and α3 = α4 = 0.05. The results of multiple tests are shown in Table 2, where “s”
and “n” indicate significant (H0

K is rejected) and not significant (H0
K is not rejected),

respectively, and pK and cum(qK) are p-values and cumulative powers, respectively, for
the null hypotheses H0

K . We have that null hypotheses H0
12 and H0

34 are not significant,
and the cumulative powers are very small (0.065, 0.112) for H0

12 and H0
34. On the other

hand, H0
23 is significant, but the cumulative power is not enough large (0.493).

We also compute the delta test statistic based on psychophysical thresholds and their
variances of groups Γk (k = 1, · · · , 4). The mean values of logistic regression results for
each group Γk (k = 1, · · · , 4) are shown Tables 3 (intercepts ak and slopes bk) and 4
(psychophysical thresholds ξk). In Table 3, p(bk) and q(bk) are p-values and powers for
type I error rate α = 0.05, respectively, where the null hypotheses are bk = 0. In Table
4, min(ξk) and max(ξk) are lower and upper bounds of 95% confidence intervals of ξk,
respectively. The representative psychometric functions ϕk(x) (k = 1, · · · , 4) for groups
Γk (k = 1, · · · , 4) are shown in Fig. 5, where paremeters ak and bk are adopted in the
values of Table 3. The results of multiple test by delta test statistic are shown in Table
5. We can say that results of CMH and delta test statistics are nearly equivalent.

7 Conclusion

We proposed a statistical modelling of the visual acuity measurement and its multiple
test procedure. The main properties of our algorithm are summarized:

Step 1: modelling of visual acuity for individual patient by logistic regression including
the guessing rate,
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Figure 1: Psychometric functions ϕj (j = 1, · · · , 22) in group 1
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Figure 2: Psychometric functions ϕj (j = 1, · · · , 14) in group 2

Step 2a: computing the Cochran-Mantel-Haenszel (CMH) test statistic based on psy-
chometric functions,
Step 2b: computing the delta test statistic based on psychophysical thresholds and their
variances,
Step 3: multiple test based on the step-down procedure with Ryan-Einot-Gabriel-Welsch
(REGW) significance levels.

We applied our algorithm to the visual acuity measurement of four group problem. We
find that test results of Step 2a and Step 2b are nearly equivalent in this example. For
real optometric application, more studies shall be implemented to know with certainty
about the merit/demerit of proposed approaches: Step 2a (psychometric functions) and
Step 2b (psychophysical thresholds).

Acknowledgement

The authors are grateful to the editor and anonymous reviewers for their valuable com-
ments and suggestions.



10 Mita et al.

0.00

0.25

0.50

0.75

1.00

-0.5 -0.4 -0.3 -0.2 -0.1  0.0  0.1  0.2  0.3  0.4  0.5

 x

in group 3j

Figure 3: Psychometric functions ϕj (j = 1, · · · , 11) in group 3
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Figure 4: Psychometric functions ϕj (j = 1, · · · , 13) in group 4
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Figure 5: Representative psychometric functions ϕk (left to right: k=1, 2, 3, 4)
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Table 1: The 4× 2 contingency table based on psychometric functions

` = 1 (correct) ` = 2 (incorrect)

strata groups urk1 urk2 total

x1 = −0.2 k = 1 (Γ1) 20.569 1.431 n1
1 = 22.000

k = 2 (Γ2) 13.182 0.818 n1
2 = 14.000

k = 3 (Γ3) 10.918 0.082 n1
3 = 11.000

k = 4 (Γ4) 12.991 0.009 n1
4 = 13.000

total m1
1 = 57.660 m1

2 = 2.340 t1 = 60.000

......

x5 = 0.0 k = 1 (Γ1) 10.283 11.717 n5
1 = 22.000

k = 2 (Γ2) 7.711 6.289 n5
2 = 14.000

k = 3 (Γ3) 8.748 2.252 n5
3 = 11.000

k = 4 (Γ4) 12.030 0.970 n5
4 = 13.000

total m5
1 = 38.772 m5

2 = 21.228 t5 = 60.000

......

x9 = 0.2 k = 1 (Γ1) 5.670 16.330 n9
1 = 22.000

k = 2 (Γ2) 3.800 10.200 n9
2 = 14.000

k = 3 (Γ3) 3.616 7.384 n9
3 = 11.000

k = 4 (Γ4) 4.144 8.856 n9
4 = 13.000

total m9
1 = 17.230 m9

2 = 42.770 t9 = 60.000
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Table 2: Multiple test based on psychometric functions

groups REGW critical values CMH p-values powers

H0
K κ ακ χ2

κ−1 ΨK pK test cum(qK)

H0
1234 4 0.05 7.814 32.673 3.778× 10−7 s 0.999

H0
234 3 0.05 5.991 16.943 2.094× 10−4 s 0.965

H0
134 3 0.05 5.991 30.529 2.348× 10−7 s 0.999

H0
124 3 0.05 5.991 26.243 2.002× 10−6 s 0.997

H0
123 3 0.05 5.991 12.924 1.562× 10−3 s 0.905

H0
34 2 0.0253 5.002 1.082 2.982× 10−1 n 0.112

H0
24 2 0.0253 5.002 14.080 1.752× 10−4 s 0.900

H0
23 2 0.0253 5.002 5.743 1.655× 10−2 s 0.493

H0
14 2 0.0253 5.002 23.918 1.006× 10−6 s 0.992

H0
13 2 0.0253 5.002 11.709 6.220× 10−4 s 0.798

H0
12 2 0.0253 5.002 0.592 4.416× 10−1 n 0.065

Table 3: Mean values of logistic regression results (intercepts and slopes)

patients intercepts slopes variances p-values powers

groups Nk ak bk var(bk) p(bk) q(bk)

Γ1 22 −1.052 −19.823 38.951 1.454× 10−3 0.888

Γ2 14 −0.510 −20.568 41.657 1.401× 10−3 0.890

Γ3 11 1.089 −18.478 23.451 1.212× 10−4 0.968

Γ4 13 2.641 −27.370 60.263 3.964× 10−4 0.941

q(bk): powers of bk for α = 0.05, where the null hypotheses are bk = 0.

Table 4: Mean values of logistic regression results (psychophysical thresholds)

patients thresholds variances SD

groups Nk ξk var(ξk) σξk min(ξk) max(ξk)

Γ1 22 −0.0570 3.342× 10−4 0.0183 −0.0928 −0.0212

Γ2 14 −0.0301 3.817× 10−4 0.0195 −0.0684 0.0082

Γ3 11 0.0642 3.915× 10−4 0.0198 0.0254 0.1030

Γ4 13 0.0981 2.474× 10−4 0.0157 0.0672 0.1289

min(ξk) and max(ξk) are lower and upper bounds of 95% confidence intervals
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Table 5: Multiple test based on psychophysical thresholds

groups REGW critical values delta p-values powers

H0
K κ ακ χ2

κ−1 ∆K pK test cum(qK)

H0
1234 4 0.05 7.814 53.358 1.086× 10−3 s 1.000

H0
234 3 0.05 5.991 26.620 1.658× 10−6 s 0.998

H0
134 3 0.05 5.991 43.270 4.017× 10−10 s 1.000

H0
124 3 0.05 5.991 48.729 2.622× 10−11 s 1.000

H0
123 3 0.05 5.991 21.737 1.905× 10−5 s 0.991

H0
34 2 0.0253 5.002 1.793 1.806× 10−1 n 0.184

H0
24 2 0.0253 5.002 26.114 3.221× 10−7 s 0.996

H0
23 2 0.0253 5.002 11.509 6.928× 10−4 s 0.866

H0
14 2 0.0253 5.002 41.339 4.695× 10−7 s 1.000

H0
13 2 0.0253 5.002 20.246 6.809× 10−6 s 0.979

H0
12 2 0.0253 5.002 1.009 3.151× 10−1 n 0.109
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