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Length of stay in hospitals are mostly characterized as asymmetric, right
skewed and leptokurtic in nature. Earlier studies have considered parametric
distributions like gamma, Pareto, lognormal for studying length of stay of
patients in hospitals. However, in this study we have proposed transformed
distributions to be the best choice for characterizing the length of stay. For
this study, we have considered paediatric asthma dataset and identified that
transformed Weibull-Pareto as the best fit. For a comparative purpose we
have also provided the results of gamma, lognormal, and Pareto distribu-
tions. Maximum likelihood approach is considered to estimate the unknown
parameters of the Transformed distribution followed by goodness of fit tests
to examine the suitability of the fitted distributions. The results provide a
direction for modelling the length of stay in hospitals due to different medical
problems which require hospitalization.

keywords: Tranformed Ditribution, Weibull-Pareto, Length of Stay, Heavy-
Tailed, Light-Tailed

1 Introduction

Length of Stay (LOS) in hospital is important for healthcare management due to ever
increasing population. The stay of patients in hospital are not normally distributed
as the stay varies from individual to individual. The LOS are found to be asymmetric
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which is confirmed empirically and stay of patients in hospitals are right skewed in nature
(Marazzi et al., 1998, Faddy and McClean, 1999, Papi et al., 2016). The information
regarding the LOS takes a high priority by practitioners and healthcare management for
strategic planning. The goal of every hospital management is to meet the demand of
patients by providing an effective treatment. Hence, every hospital management is keen
on studying the duration of stay of patients in hospital.
For modelling the LOS, there is a need to fit an appropriate distribution, which might
help and assist in capacity planning. Faddy and McClean (1999) and Gül and Güneri
(2015) have stressed the importance of identifying the best fitted distribution for LOS
since they are the backbone for modelling stay in hospital. The consequence of errors
which incur while an inappropriate distribution is fitted is discussed by Qualls et al.
(2010). Therefore, fitting an appropriate distribution and identifying the best fitted for
LOS is the primary objective of the paper.
Parametric distributions such as gamma, log normal, logistic, Pareto are widely con-
sidered for studying skewed data sets in the field of finance, hydrology, and insurance
(Cooke et al., 2014, Gomes and Guillou, 2015, Thomas et al., 2016). However, dis-
tribution like gamma can be considered as heavy or light tailed depending upon the
shape parameter (Asmussen and Lehtomaa, 2017). The Mean Excess (ME) plot are
widely used for distinguishing the tails which might be helpful in understanding the tail
behaviour for right skewed datasets (Coles and Powell, 1996, Drees et al., 2003,Cooke
et al., 2014) . Therefore, since LOS is right skewed in nature, we have considered ME
plot to model the LOS datasets to understand the nature of the tail.
McClean and Millard (1993) have considered log normal and exponential distribution to
study the length of stay. Marazzi et al. (1998) and Faddy and McClean (1999) have con-
sidered the lognormal, gamma distributions for analysing the LOS datasets. Gardiner
et al. (2014) considered lognormal, gamma, Weibull, and Pareto for studying the stay of
patients. Singh and Ladusingh (2010) have considered the finite mixture modelling for
the inpatient stay in hospital as the dataset was multimodal and convolutive mixture
distribution is considered by Ickowicz and Sparks (2017) to study the short and long
stay of patients.
Lin et al. (2013) and Sawilowsky (2016) discussed that large samples tend to reject the
null hypothesis and the usual univariate distributions might not perform well. Recently,
Harini et al. (2018) suggested that Transformed Gamma-Pareto distribution to be the
best fit for diabetes LOS dataset. Therefore, we have considered transformed distribu-
tion to study paediatric medical speciality. We also highlighted that these distributions
are superior for studying skewed LOS datasets when compared to the usual univariate
distributions. In this study, transformed distribution such as Beta-Cauchy (Alshawarbeh
et al., 2013), Gamma-Pareto (Alzaatreh et al., 2012), Weibull-Pareto (Alzaatreh et al.,
2013, Al-Omari et al., 2016) and Gamma-Exponential-Cauchy (Alzaatreh et al., 2016))
are considered for studying paediatric LOS dataset. For the purpose of comparison and
to show that transformed distribution is superior, the results of gamma, Pareto and
lognormal distributions are also provided.
In case of fitting a distribution, estimation of the parameters play a vital role and most
importantly, it is challenging when the data is asymmetric in nature. Gardiner et al.
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(2014) considered Bayesian methods for modelling the stay of patients and maximiza-
tion goodness of fit estimation is considered for fitting generalized Pareto distribution
by Luceño (2006). However, the most widely used method is Maximum Likelihood
Estimation (MLE) which has been quite often considered for fitting the usual univari-
ate distributions (Faddy et al., 2009, Verburg et al., 2014, Ickowicz and Sparks, 2017).
Therefore, for this study, we consider MLE method of estimation for fitting the trans-
formed distributions.
Further, this paper discusses the computational aspect of using the best numerical opti-
mization to estimate the unknown parameters of transformed distributions by comparing
the most commonly used methods like Nelder-Mead (NM), Broyden-Fletcher-Goldfarb
and Shanno (BFGS) and Limited memory BFGS (L-BFGS) method.We have considered
three different goodness of fit measures such as Kolmogorov-Smirnov (KS), Anderson-
Darling (AD) and Cramer-von-Mises (CVM) test. The goodness of fit tests are compared
to find which suits better and Akaike Information Criteria (AIC) is considered to identify
the best distribution for studying paediatric LOS datasets.
The paper is assigned as follows, Section 2 deals with the details of datasets and Section
3 discusses the tail properties. Section 4 details about transformed distributions, MLE
method of estimation and numerical optimization procedures. The analysis and results
are discussed in Section 5 and Section 6 concludes with the general recommendations.

2 Length of Stay Dataset

In this study dataset represents patients admitted in to paediatric department comprising
of asthma complications (n = 132) whose stay ranges from 1 to 9 days ((Houchens and
Schoeps, 1998)). The spread and frequency of stay for the dataset is presented in Figure
1.

It can be observed from Figure 1 that LOS dataset is asymmetric and right skewed in
nature. This is also confirmed from Table 1 since the Moors excess kurtosis exceeds zero
and Galton skewness is non-zero. Galton skewness and Moors kurtosis are considered
because they are not influenced by the extreme observations.

3 Tail Properties

The knowledge about the tail characteristics are obtained from the ME plot which helps
in identifying whether the dataset is heavy-tailed or not (Embrechts and Schmidli, 1994;
Coles and Powell, 1996). The mean excess is the tool which can be used to determine
the exceedance above a particular level which is commonly referred as a threshold. The
sample ME function can be defined as

en(u) =

∑n
i=1(X − µ)∑n
i=1 I((Xi>u))

where I = 1 if Xi > µ and 0 otherwise. When the plot show an upward trend then,
they are heavy-tailed and, it is a light-tailed when they show a downward trend. The
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Figure 1: Histogram of Length of Stay in Hospital is asymmetric and skewed.

distribution F is called as heavy-tailed if∫ ∞
−∞

eλxF (dx) <∞ for all λ > 0

if F fails to be heavy-tailed, then they are considered to be light-tailed. Clearly, for
any F on R+ = [0, ), all moments are finite.

Then composition scheme of T-X family is as follows FX(x): R→ [0, 1], W : [0, 1]→ R,
FT (t): R→ [0, 1], Now, H is the transformed variable FH(x) = FT ◦W ; < → [0, 1] where
?◦? denotes composition of two functions. The range of the function W is the domain
of FT (t) which is actually the support of random variable T and PDF of transformed
variable is obtained by integrating FH(h). Similarly, T-Y-X family of random variable
can be achieved using composition of the CDF of T and X with a quantile of new random
variable Y. FX(x) : R → [0, 1], FY (y) : R → [0, 1], QY : [0, 1] → R, FT (t) : R → [0, 1],
FH(x) = FT ◦QY ◦ FX ;Rx→ [0, 1] The role of W is significant in these transformation
and its shape influences the choice of T from a family of distributions and vice-versa in
some cases. Few choices of W and its relation with T are discussed in Table 2.

The role of W is suitably modified as quantile function of Y to construct T − Y −
X family of distribution (Table 2 of Alzaatreh et al., 2016). In this paper, we have
considered three members of T −X family (Beta-Cauchy, Gamma-Pareto, and Weibull-
Pareto) and one member of T − Y −X family (Gamma-Exponential-Cauchy) to fit the
LOS datasets. The details of the transformed distributions are discussed in Table 2 and
additional details pertaining to these four distributions are provided in Appendix.

Parameters of the BC, GP, WP, and GEC are estimated using MLE procedure in
R. The numerical optimization techniques are adopted for estimating the parameters
of transformed distributions which are detailed before proceeding with the estimation
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Table 1: Statistical characterization of paediatric Length of Stay in Hospitals

Measures Values

Mean 2.63

Median 2.00

Maximum 9.00

Skewness 1.47

Excess Kurtosis 5.47

Galton Skewness 1.00

Moors Kurtosis 2.63

S.No Random Variable Support PDF CDF

1 X AX fX(x) FX(x)

2 Y AY fY (y) FY (y)

3 T AT fT (t) FT (t)

4 H AH fH(h) FH(h)

procedures of transformed distribution.

3.1 Numerical Optimization Methods

To estimate the parameters, we consider the numerical optimization technique. Since
the likelihood is not of closed form, hence to solve them we consider the optimization
techniques to estimate the parameters. As there are plethora of optimization techniques,
we consider the most commonly used Nelder-Mead, BFGS and L-BFGS methods (No-
cedal, 2004; Moré and Wild, 2009; Nash, 2014).
Nelder proposed the method which is gradient free and it is also considered as a deriva-
tive free approach. This method is considered to be efficient in finding local minima in
the case of high dimensional, convex and non-linearly constrained problems (Nocedal,
2004). For estimating the parameters, MLE method uses the direct search method and
further, they are helpful in maximizing the likelihood of transformed distributions. For
every iteration, they get terminated with a new function value satisfying the descent
condition to the previous simplex. However, it is to be noted that they have slower
convergence property hence the computational time might be higher (Nash, 2014).
Quasi Newton method is helpful since they do not require the computations of Hessian
matrix and they attain rate of convergence rapidly when compared to NM method (No-
cedal, 2004). We have considered BFGS and L-BFGS methods in this study which are
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Table 2: Relation between different forms of W and random variable T for transformed
distribution

S.No Forms of W Range of W = Domain of FT (t)

1 FX(x) [0, 1]

2 −log[1− FX(x)] [0,∞)

3 FX(x)/(1− FX(x)) [0,∞)

4 log[−log(1− FX(x))] (−∞,∞)

5 log[FX(x)/(1− FX(x))] (−∞,∞)

6 −1/log[1− FX(x)] (−∞,∞)

Table 3: Transformed distribution - using random variables X, T , Y with their support
and W is the differentiable and monotonically non-decreasing function.

S.No Dist X T Y W AX AY AT

1 BC Cauchy Beta NA FX (x) (−∞,∞) NA (0, 1)

2 GP Pareto Gamma NA −log[1− FX (x)] (0,∞) NA [0,∞)

3 WP Pareto Weibull NA −log[1− FX (x)] (0,∞) NA [0,∞)

4 GEC Cauchy Gamma Exponential QY (y) (0,∞) [0,∞) [0,∞)

NA: Not Applicable.

widely used Quasi-Newton methods. The gradient of the objective function is required
which needs to be provided at every iteration. In this approach, the second order deriva-
tive are not required hence they are said to be efficient. In this approach, the upper and
lower limits for the parameters for maximizing the likelihood needs to be provided and,
it should be noted that this approach converges rapidly and are robust in nature when
compared to NM.
L-BFGS method is helpful in computing hessian matrices as they just save few length
of vectors. In this approach, similar approach of BFGS is carried out, but the details
on curvature are only considered from the recent iteration. The approach of L-BFGS
is identical to that of BFGS except the way of handling the Hessian approximation.
Computationally it is also indicated that L-BFGS method is robust, rapid than other
conjugate gradient methods. Among BFGS and L-BFGS, it has been highlighted that
L-BFGS is more efficient since it is limited memory Quasi Newton methods. It is helpful
when there is a need to solve large problems as it is difficult to compute the Hessian
matrices.
In this study, we have compared NM, BFGS and L-BFGS optimization methods for esti-
mating the parameter. The number of iterations carried out by each method to estimate
the parameters are detailed in analysis and result section. These methods are helpful
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in the estimating the parameters of transformed distribution which are discussed in the
next section.

3.2 Parameter Estimation of Transformed Distributions

To estimate the parameters of BC, the Cauchy distribution (θ and λ) parameters are es-
timated from the data. Then, these estimates are considered as initial values to estimate
the BC parameters. In addition, suitable initial values are considered for the parameters
(α, β) of the Beta distribution for each of the numerical optimization methods. Finally,
distribution of BC parameters are estimated starting from these initial values. Smith
(1985) method is considered to estimate the parameters of Pareto distribution for both
GP(α, c, θ) and WP(c,β, θ). Subsequently, they are helpful in estimating the parameters
which are discussed below

Gamma - Pareto Weibull - Pareto

1. Estimate shape parameter θ of the 1. Estimate shape parameter θ of the

Pareto distribution which is the sample Pareto distribution which is the

minimum x(1) sample minimum x(1)

2. Apply transformation Zi = log(xi/x(1) 2. Apply transformation for Zi = θexi

for all xi 6= x(1) for all xi 6= x(1)

3. Initial value for the parameters α and c 3. Initial value for the parameters c

of the Gamma distribution are computed and β are computed as c0 = Π√
6s2Z

as α0 = z2/s2
z and c0 = s2

z/z, where z and β0 = exp(−z − γ
c0

), where z

and s2
z are the sample mean and s2

Z are the sample mean

and variance. and variance.

Then, parameters of the GP and WP are estimated using these initial values. In a
similar way, an iterative scheme is adopted in estimating the parameters of the GEC (α,
β, θ) which involves the following steps;

1 Initial value of θ is considered as θ0.

2 Apply the transformation to the data as Ui = −log[0.5 − π1arctan(xi/θ0)] for
i = 1...n, where n is the sample size.

3 Initial values for the parameters α and β of the Gamma distribution are computed

as α0 = U
2
/s2

U and β0 = s2
U/U, where U and s2

U are sample mean and variance.

4 Then, the parameters of the GEC (α, β and θ) are estimated starting from these
initial values. The natural sequence after estimating parameters is to check the
adequate fit, hence most widely used goodness of fit such as Kolmogorov-Smirnov
(KS), Anderson-Darling (AD) and Cramer-Von-Mises (CVM) test are used.
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Figure 2: Mean excess plot for distinguishing heavy and light tail for Length of Stay
datasets.

3.3 Goodness of Fit Test

The next natural process after estimating the parameter is to assess the goodness of
fit and test the hypothesis whether the dataset follows specified distribution. The KS
and AD test are based on the empirical cumulative distribution function and test statis-
tic for KS test is Dn = supx |Fn(x) − FX(x)|, Dn is usually referred as KS distance.
Similarly, the AD distance is referred as A2 which is defined as A2 = −n − S and
S =

∑n
i=1

2i−1
n [ln(FX(xi)) + ln(1− FX(xn+1−i))]. CVM test is based on minimum dis-

tance method and defined as W 2 =
∫∞
−∞ |Fn(x)− FX(x)| dF (x). The hypothesis of the

distributional form has been rejected at given level of significance if Dn, A2 and W 2 are
greater than critical value obtained from the table. Generally, for most of the studies
level of significance are chosen to be 5% to evaluate the hypothesis. If the p-value is
greater than the level of significance then the distribution fits the data, else they do not
fit (Murdoch et al., 2008).

4 Analysis and Results

As discussed in the methodology section, ME plot is discussed in Figure 2 which shows
that the LOS datasets are light-tailed as they have a downward trend. Hence, the tail
property of LOS dataset is identified to be light-tailed in this study. We further proceed
fitting transformed distributions to both the datasets and the results are discussed in
Table 4.

It can be observed from Table 4 that transformed WP distribution is identified as
best fit. In general, Table 4 highlights that transformed distributions are the best fit for
studying LOS datasets with the least AIC values when compared to the usual univariate
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Table 4: Parameter estimates, Number of Iterations, Goodness of Fit tests and AIC for
the Paediatric Length of Stay Dataset.

Measures Gamma Lognormal Pareto GP BC WP GEC

α = 3.342 µ = 0.809 α = 0.871 α = 7.879 λ = 0.580 β = 0.848 α = 38.829

Parameter (0.393) (0.049) (0.064) (1.079) (1.044) (0.029) (6.389)

Estimates β = 1.272 σ2 = 0.559 β = 1.000 c = 0.133 θ = 0.240 c = 2.819 β = 0.091

(S.E) (0.161) (0.034) (0.018) (0.038) (0.127) (0.015)

θ = 1.00 α = 51.6822 k = 1.00 θ = 0.218

β = 4.4792

(0.1523)

Number of

Iterations

NM NA NA NA 59 252 76 164

BFGS NA NA NA 39 142 39 85

L-BFGS NA NA NA 22 123 26 42

Log Likelihood -221.075 -217.423 -297.50 -146.566 -218.358 -153.807 -161.851

KS 0.190 0.193 0.348 0.576 0.521 0.385 0.954

(p-value) (0.001) (0.001) (< 0.001) (0.047) (0.084) (0.141) (0.052)

AD 4.649 4.882 0.807 4.437 5.462 4.481 1.647

(p-value) (0.004) (0.003) (< 0.001) (0.056) (0.053) (0.061) (0.072)

CVM 3.799 4.882 6.218 2.378 3.367 1.767 2.646

(p-value) (0.007) (0.006) (< 0.001) (0.061) (0.057) (0.081) (0.060)

AIC 446.151 438.846 617.23 297.132 314.776 156.415 340.801

distributions. Pareto distribution did not fit the dataset; similarly, all the three usual
univariate distributions failed to fit the dataset in all the three goodness of fit tests KS,
AD and CVM.
The L-BFGS method of optimization is found to be efficient and superior when compared
to NM and BFGS methods in estimating the parameters of transformed distributions.
The time taken by NM method for convergence is twice the iterations of L-BFGS and
BFGS method. It needs to be noted L-BFGS methods converges rapidly for both the
datasets which can be observed from Table 4. Indeed, BFGS also converge quickly with
lesser iterations when compared to NM method.
Among the three measures of goodness of fit, CVM test provides much scope for handling
asymmetric datasets as the acceptance level of significance is higher when compared with
KS and AD tests. For both the transformed and usual univariate distributions CVM test
is superior. Hence, CVM might be an ideal choice for fitting any light-tailed datasets
as they provide consistent results when compared to the other goodness of fit tests
considered in this study.

5 Conclusion

The study of length of stay in hospital is very much important for the healthcare man-
agement. The hospital administrators are highly interested in studying the LOS due to
the increasing number of patients. They are also very much interested in understanding
the distribution of LOS since it is useful for modelling or prediction of length of stay
in hospitals. The main aim of this study is to understand the underlying statistical
distribution for length of stay. Further, this study proposes transformed distribution to



700 Harini et al.

be a better choice when compared to the usual univariate distributions.
In this study, transformed distributions are compared with the usual univariate distri-
butions and the result shows that transformed distribution to be more ideal choice when
compared to the latter. Earlier study identified Gamma-Pareto as the best for diabetes
LOS dataset. However, in this study, it has been identified that Weibull-Pareto as the
best fit for paediatric asthma patients. Due to advent of computers, computational as-
pect also plays a vital role. Hence, for estimating the parameter, numerical optimization
has been considered, and this study identified L-BFGS method to be superior as it con-
verges rapidly when compared to NM and BFGS. This will be very much helpful when
dealing with large datasets since the time and cost involved might be minimal due to
rapid convergence.
In conclusion, it may be noted from the analysis from this study that transformed dis-
tribution is an ideal choice for fitting the length of stay in hospitals. However, the choice
of transformed distribution might vary based on the speciality or different stay of pa-
tients in hospitals. Further studies can be attempted for different LOS datasets of varied
specialities using other transformed distributions available in the literature.
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6 Appendix A

6.1 Beta-Cauchy Distribution

Here, X ∼ Cauchy(θ, λ) and T ∼ Beta(α, β) with PDF fX(x) and fT (t) respectively.
By assuming W = FX(x), CDF of X, we get CDF of H using the transformation FT ◦W .
That is

1

B(α, β)

∫ FX(x)

0
tα−1(1− t)β−1dt; 0 < α, β <∞

where B(α, β) = Γ(α)Γ(β)/Γ(α+ β) and hence PDF of transformed random variable H
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−∞ < x <∞; 0 < α, β, λ <∞; λ <∞; −∞ < θ <∞.

6.2 Gamma-Pareto Distribution

Here, X ∼ Pareto Type 1 (θ, k) and T ∼ Gamma(α, β) with PDF fX(x) and fT (t)
respectively. By assuming W = −log[1 − FX(x)], CDF of X, we get CDF of H using
the transformation FT ◦W . That is
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Where where B(α, β) = Γ(α)Γ(β)/Γ(α + β) and hence PDF of transformed random
variable H is
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where c = β
k ; α, c, θ > 0; 0 < x <∞.

6.3 Weibull-Pareto

Here, X ∼ Pareto Type 1 (θ, k) and T ∼ Weibull(α, β) with PDF fX(x) and fT (t)
respectively. By assuming W = −log[1 − FX(x)], CDF of X, we get CDF of H using
the transformation FT ◦W . That is

FH(x) =

∫ −log[1−FX(x)]

0

α

β

(
t

β

)α−1

e
−
(
t
β

)α
dt; −∞ < t <∞; 0 < α, β, λ <∞



704 Harini et al.
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6.4 Gamma -Exponential - Cauchy Distribution

Let X ∼ Cauchy(θ, λ), T ∼ Γ(α, β) a random variable Y is defined using a quantile func-
tion QY which follows exponential distribution. By assuming QY = −log[1−FX(x)],we
get CDF of H using the transformation FT ◦QY ◦ FX . That is
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∫ QY (y)
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; −∞ < x <∞; 0 < θ, α, β <∞

and hence PDF of transformed random variable H is

fH(x) =
fX(x)

1− FX(x)
fT (−log(1− Fx(x))); −∞ < x <∞; 0 < θ, α, β <∞.


