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A procedure is developed in order to deal with the classification problem
of objects in circular statistics. It is fully nonparametric and based on depth
functions for directional data. Using the so-called DD-plot, we apply the k -
nearest neighbors method in order to discriminate between competing groups.
Three different notions of data depth for directional data are considered: the
angular simplicial, the angular Tukey and the arc distance. We investigate
and compare their performances through the average accuracy rate by means
of simulated and real data sets.

keywords: Angular depths, Supervised circular classification, k-NN, Ac-
curacy rate.

1 Introduction

Circular (or angular) data arise when observations are measured as directions or angles.
They play an important role in many fields such as biology, meteorology and physics; a
well-known example in biology is about the migration of birds.

Within the literature, circular data are presented and discussed in books by Mardia
and Jupp (1972) and Batschelet (1981). They provide a wide survey about specific
features and problems we have to face when dealing with them. As a matter of fact, most
of the standard methods used “on the line” are not appropriate, and often misleading,
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for observations on the circle. For instance, the standard arithmetic mean fails in such
spaces. Thus, specific tools are required, and this is true also for classification.

In this work, the focus is on supervised classification (also called discriminant analysis),
where the aim is to assign observations to classes (or groups), given a previous knowledge
on their structures obtained through some preliminary observed data.

Note that a single cut-off value, which defines two half-lines, may be enough to dis-
criminate between two different distributions on the line. By contrast, to discriminate
on a circle we need to identify at least two angles, which in turns define two different
arcs (one for each distribution). This is necessary as no natural ordering exists for this
kind of data.

To illustrate how discriminant analysis on a circle works, consider data from a two-
armed neurological pilot-study. They are depicted in Figure 1. Two groups of 9 and
10 patients are examined with respect to their orientation abilities, and two different
diagnosis are considered. Sample values (measured in degrees) for the two groups are
55◦, 77◦, 77◦, 82◦, 86◦, 95◦, 110◦, 130◦, 171◦, and 10◦, 29◦, 52◦, 52◦, 58◦, 65◦, 90◦, 285◦, 325◦,
355◦, respectively (Ackermann, 1997). The aim is to identify two sectors so that a new
patient can be assigned to one of the groups given his/her orientation ability. In practice,
according to some proper rule, two splitting angles must be found.

Group 1 Group 2

55◦ 10◦

77◦ 29◦

77◦ 52◦

82◦ 52◦

86◦ 58◦

95◦ 65◦

110◦ 90◦

130◦ 285◦

171◦ 325◦

- 355◦

0
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180

270

+

●
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Figure 1: Sample values (degrees) of a two-armed neurological pilot-study two groups of
N = 9 + 10 = 19 patients associated with two different diagnosis examined
with respect to their abilities of orientation (Ackermann, 1997) (left panel),
and the corresponding circular plot (right panel)

To perform circular data classification, many parametric tools are available (see e.g.
Morris and Laycock, 1974, El Khattabi and Streit, 1996 and Figueiredo, 2009), with
applications in sign language, astronomy, medicine and biology (see e.g. Sengupta and
Ugwuowo, 2011 and the list in López-Cruz et al., 2015).

In spite of the interest on this topic, the literature on nonparametric discriminant
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analysis for circular data is very sparse. Liu and Singh (1992) discussed methods for
ordering directional data and suggested a possible solution for discriminant analysis.
That is, an observation can be classified according to its center-outward ordering with
respect to two given competing distributions. Later, the optimal rule for data on the line
given by Stoller (1954) was adapted to circular data by Ackermann (1997). This method,
which looks for the pair of splitting angles which maximizes the probability of correct
classification, is asymptotically unbiased and consistent. Unfortunately, this optimal
solution requires solving an NP-complex problem, and hence it is quite computationally
infeasible.

In brief, given that Liu and Singh suggestion has not been developed, and that Ack-
ermann’s proposal is infeasible in practice, this work is aimed at analyzing and com-
paring new methods for nonparametric supervised classification on circles (and possibly
on spheres). More specifically, in line with a literature for data in the d-dimensional
Euclidean space Rd, a classifier based on data depth is considered.

The leading idea is to evaluate the depth, i.e. the degree of centrality of a new
observation with respect to the previously collected samples (one for each group), and
then using its value as a basis for a classification rule. Different notions of angular depth
functions and classifications rules are investigated in order to provide suggestions on
their proper use under different conditions.

The paper is organized as follows. In Section 2, we provide a brief review of data
depth and depth-based classifiers for data in Rd. In Section 3, data depth functions
for directional data are introduced. In Section 4, simulated data are used to study the
performance of the classifier, and then a real data example is presented. Finally, Section
5 contains some concluding remarks.

2 Nonparametric classification through data depth

A quite large number of tools are available for classification purposes in standard multi-
variate analysis. Assuming normality, linear discriminant analysis is probably the most
used. Other examples of widely used methods are: quadratic discriminant analysis, k-
nearest neighbors (k-NN), support vector machines, and decision trees. For an overview
see e.g. Hastie et al. (2009). Many others methods, both parametric and nonparametric,
are available as well.

Nonparametric classifiers have the important advantage to be more flexible, given that
they do not rely on distributional assumptions and are capable of fitting a large number
of functional forms. Amongst them, this work focuses on classifiers based on data depth.
Considering their full nonparametric nature, they can be used in many different contests.
For instance, apart from data in Rd, they have been also exploited for functional data
(López-Pintado and Romo, 2006).

In the next sections, first a very short introduction to data depth is provided. Then,
how these functions can be used for classification purposes is reviewed.
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2.1 Data depth in Rd

The depth of a point x ∈ Rd (for d ≥ 1) is a function that measures the “centrality”
or “deepness” of it with respect to a multivariate distribution F or a multivariate data
cloud, and it is denoted by D (x, F ). A general definition of statistical depth function was
introduced by Zuo and Serfling (2000). After them, a statistical depth function is any
non-negative and bounded function that satisfies the following four desirable properties:

P1. affine invariance;

P2. maximality at center;

P3. monotonicity relative to the deepest point;

P4. vanishing at infinity.

Different notions of depth function are available within the literature, and reviews
are for instance in Liu et al. (1999), Zuo and Serfling (2000), Serfling (2006), and more
recently in Liu and Modarres (2011).

Amongst them, the halfspace depth, the simplicial depth, the Mahalanobis depth, and
the Lp depth are briefly presented here. Different authors suggested their use for classi-
fication purposes for Rd data. They are defined as follows.

Definition 1 (Halfspace Depth) The halfspace depth (HD) (Tukey, 1975) of a point
x ∈ Rd with respect to a distribution F is defined as the minimum probability measure
of any closed halfspace H containing x.

HD (x, F ) := inf
H

{
PF (H) : H is any closed halfspace in Rd, and x ∈ H

}
.

Given a sample, the empirical version of the halfspace depth of a point x is the smallest
proportion of data points contained in any closed halfspace having the boundary that
passes through x.

Definition 2 (Simplicial Depth) The simplicial depth (SD) (Liu, 1990) of a point
x ∈ Rd with respect to a distribution F is defined as

SD (x, F ) := PF {x ∈ S [X1, . . . , Xd+1]} ,

where S [X1, X2, . . . , Xd+1] is a closed simplex in Rd formed by (d+ 1) random observa-
tions from F .

Given a sample, the empirical version of the simplicial depth of a point x is the
proportion of simplices (made up of observations from the sample) that includes x.

Definition 3 (Mahalanobis Depth) The Mahalanobis depth (MHD) of a point x ∈
Rd with respect to a distribution F is defined as

MHD (x, F ) :=
[
1 + (x− µF )′Σ−1F (x− µF )

]−1
,

where µF and Σ−1F are the mean vector and the covariance matrix of F , respectively.
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The empirical version of the Mahalanobis depth is simply obtained by replacing µF
and ΣF with their sample estimates.

Definition 4 (Lp Depth) The Lp depth (LpD) (Zuo and Serfling, 2000) of a point
x ∈ Rd with respect to a distribution F is defined as

LpD (x, F ) :=
(

1 + E ‖x−X‖p
)−1

,

where ‖·‖ is the Lp norm.

Given a sample, the empirical version of the Lp depth of a point x uses the average
of the p-norm distance of it from the sample observations.

From a computational perspective, the Mahalanobis and the Lp depths should be
preferred. However, the Mahalanobis depth works properly only when distributions are
elliptically contoured (for more details see Zuo and Serfling, 2000). On the other hand,
unlike the others, the Lp depth is not affine invariant, but an affine invariant version of
the L2 depth can be obtained. The maximality at center and monotonicity relative to
the deepest point properties are satisfied by all of them. Moreover, they all vanish at
infinity.

2.2 Depth-based classifiers

After the first proposal of Liu and Singh (1992), the use of data depth to perform
supervised classification has been suggested and investigated by many authors. Two
main approaches have been adopted in the literature: the maximum depth classifier and
the Depth vs. Depth (DD) classifier.

The first computes the depth function of a new observation x with respect to all the
competing distributions (or groups) F1, . . . , Fm, and then assign x to the distribution
(or group) with respect to which it attains the highest depth value, that is:

D (x, Fi) > D (x, Fj) i 6= j, ⇒ assign x to Fi,

where D (x, Fi) and D (x, Fj) are the empirical depths of x w.r.t. the ith and the j th
distribution, respectively.

This classifier is asymptotically optimal (i.e., its misclassification rate is minimized)
when populations differ only in location, under the assumption that prior probabilities
of the possible classes are equal.

This method was used first by Jörnsten (2004) and later also by Hartikainen and Oja
(2006) and Mosler and Hoberg (2006). A modified version for unequal prior probabil-
ities which is asymptotically optimal when the underlying population distributions are
elliptical and the density functions are strictly decreasing about the center was proposed
by Ghosh and Chaudhuri (2005). However, this technique works well only when the
halfspace depth function is adopted. Moreover, this approach requires complicated esti-
mation techniques. A maximum depth classifier for skewed unimodal distributions was
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proposed by Hubert and Van der Veeken (2010). On the other hand, Dutta and Ghosh
(2011) considered a maximum depth classifier based on the Lp depth.

Recently, Li et al. (2012) proposed the so called DD-classifier that generalizes the con-
cept of maximum depth classifier by using polynomial separating functions. This method
is based on the DD-plot (Depth vs Depth plot), introduced by Liu et al. (1999), which
is a graphical representation that compares two multivariate distributions or samples
based on data depth.

It is a two-dimensional scatterplot where each data point in Rd is represented with
coordinates evaluated with respect to two distributions. The depth of each data point
in Rd is computed with respect to two multivariate distributions. Then, these depth
values are used as coordinates in a scatterplot. If the two empirical distributions are
quite separated in the sample space, then the corresponding points are separated in the
DD-plot as well. For this reason, a classification rule can be directly applied in this
latter. Accordingly, the following classification rule can be adopted:

{
D (x,G) > r (D (x, F )) ⇒ assign x to G

D (x,G) ≤ r (D (x, F )) ⇒ assign x to F

where F and G are two competing distributions, and r (·) is a real increasing func-
tion. As separating function r (·), Li et al. (2012) suggested to look for a polynomial
separator. This is chosen in order to minimize the empirical misclassification error rate
on the training sample. Note that when r (·) is the identity function, the corresponding
classification rule turns out to be the maximum depth classifier.

The max depth classifier is an intuitive method, easy to be implemented. In addition,
it is able to deal with classification problems with a large number of groups. On the
other hand, the DD-classifier is more flexible than the maximum depth classifier, but
it requires to find the degree of the polynomial function for which the misclassification
rate is minimized.

A recent approach is given by Paindaveine et al. (2015) who proposed a class of depth-
based classifiers of a k -nearest neighbors nature. However, this method is not further
considered here since not yet extended to circular data.

Finally, an important aspect to be considered regards the choice of the depth function.
Indeed, from a classification perspective, it must be noted that for points not belonging
to the convex hull of the support of distribution, the halfspace and simplicial depths
assign zero depth value. This implies that sample points lying outside the convex hull of
the training set have zero empirical depth, thus it is not possible to assign an observation
to one of the competing groups. On the contrary, this does not occur by adopting the
Mahalanobis and Lp depths since they are always positive for any data point in the
sample space.
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3 Classifying circular objects through depth functions

In this section, data depth functions for directional data are briefly introduced. Then,
a notion of circular DD-classifier is provided.

3.1 Angular data depths

Three notions of angular data depth are essentially available within the literature: the
angular simplicial depth, the angular Tukey depth and the arc distance depth. All these
were introduced by Liu and Singh (1992). The angular simplicial and the angular
Tukey depth functions extend the notion of simplicial and halfspace depths from Rd to
distributions on circles or on spheres. The arc distance depth is specific for data on
circles or spheres and can be considered the analog of the Lp depth for directional data.
Recently, Pandolfo et al. (2017) introduced a class of depth functions for directional data
based on angular distance between points on circles or hyperspheres.

A brief description and the definition of these depth functions are listed below. For the
sake of simplicity, we discuss only the case on the circle. The same notions are available
for hyperspheres in any dimension. Further discussion on depth functions for circular
data is available in Agostinelli and Romanazzi (2013).

When we are dealing with data on circular spaces, simplices are replaced with the
“shortest curve” that joins the pairs of data points on the circle. Hence, taking two
points θ1 and θ2 on a circle, the shortest curve joining θ1 and θ2 is the arc (θ1, θ2).

Definition 5 (Angular simplicial depth) The angular simplicial depth is defined as
follows:

ASD (θ,H) := PH {θ ∈ arc (W1,W2)} ,

where θ is any points on the circle and H is the underlying distribution on the circle.
W1 and W2 are i.i.d. observations of H.

The empirical version of the angular simplicial depth is the proportion of all
(
n
2

)
sam-

ple arcs including θ.

On the circle, closed halfspaces are replaced with closed semicircles.

Definition 6 (Angular Tukey depth) Following Small (1987), the angular Tukey
depth for a circular distribution H is defined as follows:

ATD (θ,H) := inf
{S:θ∈S}

{PH (S)} ,

that is the infimum taken over the set of all closed semicircles S containing θ in their
boundaries or in their interiors.

The empirical version of the angular Tukey depth of the point θ is the smallest pro-
portion of data points contained in any semicircle including θ.
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The arc distance depth is computed on a Riemannian manifold.

Definition 7 (Arc distance depth) The arc distance depth function of a point θ on
the circle Sd is defined as follows:

ADD (θ,H) := π −
∫
l (θ, ϕ) dH (ϕ) ,

where l (θ, ϕ) is the Riemannian distance between θ and ϕ. This distance is the length
of the shortest arc that joins θ and ϕ on the great circle determined by θ and ϕ.

The empirical version of arc distance depth is the mean distance of the point θ from
all the other observations on the circle.

All these depth functions are invariant under rotation, are maximized at center, and
possess monotonicity relative to the deepest point for unimodal symmetric distributions.
The angular Tukey depth requires high computational costs and its empirical version is
constant and assumes its minimum on the semi circle opposed to that of the deepest
point. The angular simplicial depth is less computationally intensive but is constant on
empty arcs. The arc distance depth is computationally feasible and it assumes positive
values for points all-over the circle.

3.2 Circular DD-classifier

To illustrate how circular depth based classifier may work, we depicted DD-plots for
circular Ackermann’s data introduced above (Figure 2). The three plots are given by
the three depth functions just described (angular simplicial, angular Tukey and arc
distance depths; upper-left, upper-right, and center-bottom pictures, respectively).

The aim of a DD-classifier is to define a partition of such a DD-space in order to
separate the two groups of observations at their best. That is, a proper depth based
classifier should be able to discriminate between the two groups (denoted by triangles
and circles) in the pictures.

The max depth classifier correspond to a partition of such space defined according to
the 45◦ line (the solid line in the plots).

According to the discussion in Section 2, a polynomial separating function of order s
can be adopted. However, this scheme is really time-consuming. Indeed, the number of
different polynomials of order s that can serve as a classification rule is

(
N
s

)
, where N

is the sample size. This is the number of possible ways to select s points from N , and
each of the selections has an associated order s polynomial which interpolates between
these s points and the origin (0, 0)′ of the DD-plot. Consequently, as N increases, the
complexity of the estimation grows at the rate N s. For this reason, alternatively, we
suggest to consider a k -NN approach.

This nonparametric method is used for classification (and also for regression), and
it classifies a given observation θ0 to the class with the highest estimated probability
considering the k points in the training set that are closest to θ0. Then, it estimates the
conditional probability for class i as the fraction of k points in the neighborhood of θ0.
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Figure 2: DD-plots of Ackermann’s data using the Arc distance, the angular simplicial
and the angular Tukey depth functions.

Thus, an object is classified by the majority vote of its neighbors, that is, to the class
most common among its k nearest neighbors.

4 Simulation study

A simulation study was ran in order to evaluate the performance of the DD-classifier
for circular data and comparing results obtained through the three data depth functions
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described in section 3. Simulations have been run with respect to the reference distri-
bution for circular data, that is, the von Mises distribution. The probability density
function of the von Mises distribution is defined as follows:

F (θ;µ, c) =
1

2πI0 (ν)
eν cos(θ−µ), 0 ≤ θ < 2π,

where the mean direction 0 ≤ µ < 2π and concentration ν ≥ 0 are the parameters,
and I0 (c) in the normalizing constant is the modified Bessel function of the first kind
and order zero.

To illustrate how the concentration parameter ν works, the circular density plots of
von Mises distributions for four different concentration parameters (0, 3, 5 and 10) are
displayed in Figure 3. The density lines are obtained through a kernel density estimation.
As one can see, for ν = 0 the distribution on the circle is uniform and when ν increases
the distribution becomes more and more concentrated about the mean direction µ.

0

π

2

π

3π

2

+

Figure 3: The kernel density functions of several von Mises distributions with mean di-
rection, µ = π

2 , and various concentration parameters: 0 (solid line), 3 (dashed
line), 5 (dotted line) and 10 (dot-dashed line).

In our analysis we consider discrimination between two groups. The observations are
generated from von Mises distributions with different location parameters µ1 6= µ2 and
equal concentration parameters ν = ν1 = ν2. Partially following Figueiredo (2009),
three different values of the concentration parameter ν are considered, that is, ν ∈
{3, 5, 10}. In addition, different distances between the mean directions of the two groups
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are considered, that is d (µ1, µ2) = π/6, π/3, π/2 and 2/3π.

The analysis is limited to equal prior probabilities cases (50% for each group). For
each simulation setting, N = 2000 observations are generated (1000 for each group), and
the 75% of the data are assigned to the training set and the 25% to the test set. For
each combination of parameters, we conducted 100 independent replications. The same
simulated data have been analyzed by using a DD-plot classifier approach considering the
three notions of data depth functions for circular data presented in section 3, that is, the
angular simplicial, the angular Tukey and the arc distance (hereafter, for convenience’s
sake these depth functions are simply called simplicial, Tukey and Arc distance), and the
Naive Bayes classifier for von Mises distributions (vMNB) classifier introduced first by
Figueiredo (2009) and later further investigated by López-Cruz et al. (2015). This latter,
with a binary class and one predictive angular variable reduces to a linear classifier in R2.
Specifically, in the case of equal concentration parameters and different mean directions,
the vMNB can be seen as a linear classifier finding the line that goes through the points
on the circumference defined by φ′ and φ′′ defined as follows:

φ′ =
1

2
(µ1 + µ2) ,

φ′′ =
1

2
(µ1 + µ2) + π.

Hence the two discriminant regions are simply two semicircles.

For all DD-classifiers, the leave one-out cross-validation was used to determine the op-
timal k. The performances of the considered classifiers are then analyzed and compared
in terms of accuracy rate which is computed as follows:

Accuracy =
TP + TN

N
,

where TP and TN denote the true positive hits and the true negative correct rejections,
respectively.

The classification procedures have been performed in an R environment. Circular
data are simulated through the rvonmises in the circular package. The function
localdepth in the localdepth package is used to compute the simplicial, while the
function sdepth in the depth package is used to compute the Tukey. On the other
hand, for the computation of the Arc distance, a specific function has been written by
the authors. The k -NN procedure is performed with the R packages FNN and class.

Table 1 shows the mean accuracy and the standard deviation of the compared clas-
sifiers for each setup. As expected, when ν increases (for each setup) the estimated
accuracy increases for all the compared classifiers. Furthermore, the accuracy increases
as the distance between the two groups increases. The performances of the von Mises
naive Bayes classifier are in line with its theoretical predictions discussed by Figueiredo
(2009). However, the performances of the considered DD-classifiers deserve a great at-
tention; indeed they all perform remarkably well showing accuracies which extremely
similar to those of the von Mises Bayes classifier in each setup.
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d (µ1, µ2) ν
Classifier

DDADD DDASD DDATD vMNB

π/6 3 0.667 (0.029) 0.656 (0.070) 0.668 (0.036) 0.690 (0.028)

5 0.732 (0.038) 0.734 (0.026) 0.743 (0.024) 0.747 (0.033)

10 0.822 (0.022) 0.823 (0.022) 0.825 (0.028) 0.828 (0.026)

π/3 3 0.786 (0.030) 0.795 (0.020) 0.781 (0.019) 0.797 (0.024)

5 0.857 (0.024) 0.860 (0.023) 0.858 (0.022) 0.863 (0.026)

10 0.943 (0.011) 0.943 (0.010) 0.943 (0.010) 0.946 (0.008)

π/2 3 0.879 (0.021) 0.885 (0.024) 0.874 (0.026) 0.883 (0.023)

5 0.953 (0.014) 0.956 (0.012) 0.955 (0.014) 0.955 (0.011)

10 0.992 (0.007) 0.994 (0.006) 0.994 (0.006) 0.993 (0.007)

2/3π 3 0.942 (0.014) 0.942 (0.019) 0.935 (0.017) 0.943 (0.020)

5 0.987 (0.005) 0.990 (0.005) 0.988 (0.006) 0.988 (0.006)

10 0.998 (0.004) 0.999 (0.002) 0.999 (0.002) 0.999 (0.001)

Table 1: Average accuracy rate and standard deviation reported in parentheses (over 100
replications) of the considered classifiers under different distributional settings.
The best results are marked in bold.

All the angular depth functions show similar performances in terms of average accuracy
rate, thus no clear preference can be stated. As shown in Section 3.2, different depths
can give rise to different data structures in the DD-plot. Hence, following the advice of
Li et al. (2012), one can use a cross validation approach to choose the depth that yields
the highest accuracy rate.

4.1 Real data examples

In this section, we apply the classifiers considered in this paper to two real data sets.

4.2 Back to Ackermann’s data

Here we apply the proposed classification approach to Ackermann’s data depicted in
Figure 1. We used the leave-one-out cross validation to find the optimal k for the DD-
classifier based on each of the three directional depth functions.

Table 2 shows the accuracy rates of the classifiers. More in detail, in this case the
classifiers based on the simplicial performs better than the other ones and has an accuracy
rate equal to 0.947. The Arc distance and the Tukey depths based classifiers have an
accuracy rate equal to 0.895 just like the von Mises naive Bayes classifier.

To give some insight, in Figure 4 is depicted the decision boundary of a 2-nearest
neighbor classifier on the DD-plot obtained through the angular simplicial depth for the
Ackermann’s data.
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Classifier

DDADD DDASD DDATD vMNB

0.895 0.947 0.895 0.895

Table 2: Accuracy rate of the classifiers for the Ackermann’s data. The best result are
marked in bold.
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Figure 4: The decision boundary of a 2-nearest neighbor classifier on the DD-plot ob-
tained through the angular simplicial depth for the Ackermann’s data.

4.3 Megaspores data

The proposed classifiers and the von Mises naive Bayes classifier are evaluated through
the Megaspores data set (included in Oriana software), where megaspores are classified
into two classes according to the angle of their wall elements. The two groups of megas-
pores used in this study are called Selaginellalean and Isoetalean. The data set counts
960 instances, where 360 are Selaginellalean (37.5%) and 600 are Isoetalean (62.5%).
Table 2 reports the mean accuracy of the classifiers obtained by a 10-fold cross valida-
tion averaged over 10 runs. The leave one-out cross-validation was used to determine
the optimal k for the DD-classifiers based on data depths. Results show that all the
classifiers have comparable performances.

As one can see, the performances of the compared classifiers are approximately equal
with the von Mises naive Bayes and the angular Tukey depth based classifiers achieving
slightly better accuracy.
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Classifier

DDADD DDASD DDATD vMNB

0.758 (0.020) 0.760 (0.020) 0.765 (0.021) 0.765 (0.036)

Table 3: Average accuracy rate and standard deviation reported in parentheses of the
considered classifiers for the megaspores data set using ten runs of a stratified
10-fold cross validation. The best result are marked in bold.

5 Conclusions

In this paper, we extended the depth vs. depth classification method to circular data.
The idea of depth provides a criterion to order a circular sample from center-outward
and gives a new way in classifying angular objects. The performances in terms of average
accuracy rate of the DD-classifiers are investigated by means of simulated data drawn
from the reference distribution for circular data, that is the von Mises distribution, and
two real data examples in neurology and biology, and compared with the von Mises naive
Bayes classifier. The results indicate that the DD-classifiers perform remarkably similar
to the von Mises naive Bayes classifier. Hence, an interesting new way to perform
nonparametric classification in the context of circular data seem to appear. Further
developments for other distributions and for spherical data are under study and will be
reported elsewhere.
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