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In the literature, different estimation procedures are used for inference
about Kumaraswamy distribution based on complete data sets. But, in many
life-testing and reliability studies, a censored sample of data may be available
in which failure times of some units are not reported. Unlike the common
practice in the literature, this paper considers non-Bayesian and Bayesian
estimation of Kumaraswamy parameters when the data are type II hybrid
censored. The maximum likelihood estimates (MLE) and its asymptotic
variance-covariance matrix are obtained. The asymptotic variances and co-
variances of the MLEs are used to construct approximate confidence intervals.
In addition, by using the parametric bootstrap method, the construction of
confidence intervals for the unknown parameter is discussed. Further, the
Bayesian estimation of the parameters under squared error loss function is
discussed. Based on type II hybrid censored data, the Bayes estimate of
the parameters cannot be obtained explicitly; therefore, an approximation
method, namely Tierney and Kadane’s approximation, is used to compute
the Bayes estimates of the parameters. Monte Carlo simulations are per-
formed to compare the performances of the different methods, and one real
data set is analyzed for illustrative purposes.
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1 Introduction

A random variable X is said to have Kumaraswamy distribution with two positive shape
parameters α and λ, if its probability density function (pdf) and cumulative distribution
function are given, respectively, by

f(x;α, λ) = αλxα−1(1− xα)λ−1, 0 < x < 1, α, λ > 0, (1)

and

F (x;α, λ) = 1− (1− xα)λ. (2)

From now on Kumaraswamy distribution with parameters α and λ will be denoted
by KW (α, λ). Kumaraswamy distribution is applicable to many natural phenomena
whose outcomes have lower and upper bounds, such as the heights of individuals, scores
obtained on a test, atmospheric temperatures, hydrological data, economic data such as
unemployment data, etc. (Nadar et al. , 2012). The basic properties of this distribu-
tion were given by Jones (2009), who also investigated the properties of the skewness
and kurtosis, derived the maximum likelihood estimators (MLEs) for the parameters
and summarized the similarities and differences between the beta and Kumaraswamy
distributions. Recently, Mitnik (2013) derived an expression for the moments of Ku-
maraswamy distribution. Garg (2008) derived the distribution of single order statistics
and the distribution of the product and quotient of two order statistics when the random
variables are independent and identically Kumaraswamy-distributed. Gholizadeh et al.
(2011) discussed inference for the Kumaraswamy distribution by using both grouped and
ungrouped data. Feroze and El-Batal (2013) considered maximum likelihood estimation
of Kumaraswamy parameters based on progressive type II censored data with random
removals.

Censoring schemes have attracted great attention due to their applicability in diverse
areas such as medicine and engineering among others. In many life testing and reliability
analysis, the experiment may be terminated before the failure of all items. Hence, the
available observations are called censored samples. By the censoring, the test time can
be reduced and further some experimental components are kept for future use. A hybrid
type II censoring introduced by Childs et al. (2003), is a mixture of the conventional
type I and type II censoring that can be described as follows. Put n identical items on
test, and then stop the experiment at the random time T ∗ = max{Xl:n, T} , where Xl:n

denotes the time of lth failure.
There is a large amount of literature about the estimation of lifetime model parame-

ters using hybrid type II censoring scheme. However, as we observed, the Kumaraswamy
model is not considered. In this paper, we first obtain likelihood function based on a type
II hybrid censored sample from Kumaraswamy distribution, and then discuss the maxi-
mum likelihood estimation of the parameters α and λ. We also construct approximate
confidence interval of the unknown parameters by using the asymptotic distribution of
the MLEs. In addition, a bootstrap confidence interval are also proposed. We further
consider the Bayesian estimation of the parameters under the squared error loss func-
tion. Based on type II hybrid censored data, the Bayes estimate of the parameters cannot
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be obtained analytically; therefore, we adapt Tierney and Kadane’s approximation to
compute the Bayes estimates.

The rest of this paper is organized as follows. In Section 2, we describe the model and
the available data, and obtain the maximum likelihood estimate of the parameters. The
asymptotic confidence intervals of the parameters α and λ are also derived. In Section
3, by using the parametric bootstrap method, construction of the confidence intervals
for the parameters is discussed. The Bayesian analyses are presented in Section 4. In
Section 5, the estimation procedures are compared via Monte Carlo simulations in terms
of their average values and mean squared errors and a numerical example is given to
illustrate the proposed approaches.

2 Data descriptions and maximum likelihood estimation

Suppose that n identical units are placed on a life test with the corresponding lifetimes
X1, ..., Xn. It is assumed that these variables are independent and identically distributed
as KW (α, λ). For known r and T , and under the type II hybrid censoring scheme, we
can observe the following three types of observations:

Case I: {x(1), ..., x(r)} if x(r) > T .
Case II: {x(1), ..., x(r), x(r+1), ..., x(m)} if r ≤ m < n and x(m) < T .
Case III: {x(1), ..., x(n)} if x(n) < T .

The likelihood functions for the above three different cases become, respectively, as
Case I:

L(α, λ) = (αλ)r
(

1− xα(r)
)λ(n−r) r∏

i=1

xα−1
(i) (1− xα(i))

λ−1. (3)

Case II:

L(α, λ) = (αλ)m (1− Tα)λ(n−m)
m∏
i=1

xα−1
(i) (1− xα(i))

λ−1. (4)

Case III:

L(α, λ) = (αλ)n
n∏
i=1

xα−1
(i) (1− xα(i))

λ−1. (5)

Combining the three cases, the likelihood function under type II hybrid censoring scheme
can be written as

L(α, λ) = (αλ)δ (1− να)λ(n−δ)
δ∏
i=1

xα−1
(i) (1− xα(i))

λ−1. (6)

where δ denotes the number of failures and ν = x(r) if δ = r , and ν = T if δ > r.

Now, the maximum likelihood estimate of the parameters α and λ, say α̂ and λ̂, can
be derived by maximizing the log-likelihood

L∗(α, λ) = logL(α, λ) = δ(logα+ log λ) + λ(n− δ) log(1− να)

+(α− 1)
δ∑
i=1

log x(i) + (λ− 1)
δ∑
i=1

log(1− xα(i)). (7)
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Equating the partial derivatives of the log-likelihood (7) with respect to α and λ to zero,
the resulting two equations are:

∂L∗(α, λ)

∂α
=
δ

α
+

δ∑
i=1

log x(i) − (λ− 1)

δ∑
i=1

xα(i) log x(i)

1− xα(i)
− λ(n− δ)ν

α log ν

1− να
= 0, (8)

∂L∗(α, λ)

∂λ
=
δ

λ
+ (n− δ) log(1− να) +

δ∑
i=1

log(1− xα(i)) = 0. (9)

Thus, we obtain the MLE of the parameter λ as

λ̂ = λ(α̂) = − δ

(n− δ) log(1− να̂) +
δ∑
i=1

log(1− xα̂(i))
(10)

and α̂ can be obtained as a solution of the non-linear equation G(α) = α where

G(α) = −δ

[
δ∑
i=1

log x(i) − (λ(α)− 1)

δ∑
i=1

xα(i) log x(i)

1− xα(i)
− λ(α)(n− δ)ν

α log ν

1− να

]−1

. (11)

Since α̂ is a fixed point solution of the non-linear Eq. 11, its value can be obtained using
an iterative scheme as G(α(j)) = α(j+1), where α(j) is the jth iterate of α̂. The iteration
procedure should be stopped when | α(j+1) − α(j) | is sufficiently small.

Once the maximum likelihood estimates of α and λ are obtained, we can use the
asymptotic normality of the MLEs to compute the approximate confidence intervals for
the parameters. The asymptotic variances and covariances of the MLEs α̂ and λ̂ are
given by the elements of the inverse of Fisher information matrix

I(α, λ) = −

 E
(
∂2L∗(α,λ)

∂α2

)
E
(
∂2L∗(α,λ)
∂α∂λ

)
E
(
∂2L∗(α,λ)
∂λ∂α

)
E
(
∂2L∗(α,λ)

∂λ2

)  . (12)

But, the exact mathematical expressions for the above expectations in (12) are difficult
to obtain. Therefore, we take the approximate asymptotic variance-covariance matrix
for the MLE of the parameters as

Σ̂ =

 −(∂2L∗(α,λ)
∂α2

)
−
(
∂2L∗(α,λ)
∂α∂λ

)
−
(
∂2L∗(α,λ)
∂λ∂α

)
−
(
∂2L∗(α,λ)

∂λ2

) −1

(α=α̂,λ=λ̂)

=

[
σ2
α σ2

α,λ

σ2
λ,α σ2

λ

]
(α=α̂,λ=λ̂)

(13)

with

∂2L∗(α, λ)

∂α2
= − δ

α2
− λ(n− δ)ν

α(log ν)2(1− να) + (να(log ν))2

(1− να)2

−(λ− 1)

δ∑
i=1

xα(i)(log x(i))
2(1− xα(i)) + (xα(i)(log x(i)))

2

(1− xα(i))2
,
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∂2L∗(α, λ)

∂α∂λ
= −

δ∑
i=1

xα(i) log x(i)

1− xα(i)
− (n− δ)ν

α log ν

1− να
.

∂2L∗(α, λ)

∂λ2
= − δ

λ2
.

Thus, 100(1−γ)% confidence interval for the parameters α and λ can be easily obtained
as

(α̂± Z γ
2

√
σ̂2
α) and (λ̂± Z γ

2

√
σ̂2
λ),

respectively. Here σ̂2
α and σ̂2

λ are the elements on the main diagonal of the variance

covariance matrix Σ̂.

3 Bootstrap confidence intervals

In this section, we discuss the construction of confidence intervals for the unknown
parameter α and λ using a bias-corrected and accelerated (BCa) percentile bootstrap
method (see Efron , 1987 for pertinent details). The bootstrap confidence intervals can
then be compared to the asymptotic confidence intervals in terms of coverage probabil-
ities.

Suppose n identical items are put on a test and in the presence of type II hybrid
censoring scheme, the observed lifetimes are reported as {x(1), ..., x(δ)}. Before we discuss
the construction of the bootstrap confidence intervals for the parameters , the following
algorithm is used to generate the bootstrap sample based on this original hybrid type II
censored data.

Step 1: Given the original hybrid type II censored sample {x(1), ..., x(δ)}, compute

the MLEs α̂ and λ̂.

Step 2: Based on the pre-specied n, r, and T , generate a hybrid type II censored
sample with the underlying distribution as KW (α̂, λ̂), using the algorithm described in
Ganguly et al. (2012).

Step 3: Based on the simulated type II hybrid censored sample in Step 2, calculate
the bootstrap MLEs of α and λ, denoted by α̂∗ and λ̂∗.

Step 4: Repeat step 2 and 3, M times. Then, arrange all the bootstrapped values of

α̂∗ and λ̂∗ in ascending order to obtain the bootstrap samples
(
θ̂
∗(1)
k , ..., θ̂

∗(M)
k

)
, k = 1, 2,

where θ̂∗1 = α̂∗ and θ̂∗2 = λ̂∗.

With the bootstrap samples generated as above, a two sided 100(1−γ)% BCa percentile
bootstrap confidence interval for α and λ can be obtained as(

θ̂
∗[ηkM ]
k , θ̂

∗[ωkM ]
k

)
,

where

ηk = Φ

(
ẑ0k +

ẑ0k − zα/2
1− ρ̂k(ẑ0k − zα/2)

)
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and

ωk = Φ

(
ẑ0k +

ẑ0k + zα/2

1− ρ̂k(ẑ0k + zα/2)

)
, k = 1, 2.

Here, Φ(.) denotes the CDF of the standard normal distribution, zγ is the upper γ−point
of the standard normal distribution and [x] denotes the integer part of x. The value of
bias-correction ẑ0k is given by

ẑ0k = Φ−1


M∑
j=1

I(θ̂
∗(j)
k < θ̂k)

M

 ,

and a good estimate of the acceleration factor ρ̂k is suggested to be

ρ̂k =

l∑
j=1

(θ̂
(.)
k − θ̂

j
k)

3

6

{
l∑

j=1
(θ̂

(.)
k − θ̂

j
k)

2

}3/2
,

where θ̂j1 and θ̂j2 are the MLEs of α and λ based on the original hybrid type II censored
sample with the jth observation deleted for j = 1, ..., l, and

θ̂
(.)
k =

1

l

l∑
j=1

θ̂jk.

4 Bayes estimation

In this section we obtain the Bayesian estimates of the parameters assuming that α and
λ are independent random variables and follow the gamma prior distributions{

π1(α) ∝ αa1−1 exp(−αb1)

π2(λ) ∝ λa2−1 exp(−λb2)
, (14)

where the hyperparameters a1, a2, b1, and b2 are nonnegative. By combining (6) with
(14), the joint density function of α, λ and the data can be written as

π(data, α, λ) ∝ αδ+a1−1λδ+a2−1 exp(−αb1) exp(−λb2) (1− να)λ(n−δ)
δ∏
i=1

xα−1
(i) (1−xα(i))

λ−1.

(15)
Thus, the posterior density function of α and λ given the data can be obtained as

π(α, λ | data) =
π(data, α, λ)

∞∫
0

∞∫
0

π(data, α, λ)dαdλ

. (16)
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It is well known that the Bayes estimate of any function of α and λ, say g(α, λ), under
squared error loss function is the posterior mean which is obtained by

∞∫
0

∞∫
0

π(α, λ | data)g(α, λ)dαdλ. (17)

The Eq. (17) do not simplified to a nice closed form due to the complex form of the
posterior density function π(α, λ | data); therefore, in the following, we provide Tierney
and Kadane’s approximation for computing the Bayes estimates.

SettingH(α, λ) = Q(α, λ)/n andH∗(α, λ) = [ln g(α, λ) +Q(α, λ)] /n, whereQ(α, λ) =
lnπ(data, α, λ), the Bayes estimate of g(α, λ) can be expressed as

E(g(α, λ) | data) =

∫∞
0

∫∞
0 enH

∗(α,λ)dαdλ∫∞
0

∫∞
0 enH(α,λ)dαdλ

. (18)

Following Tierney and Kadane (1986), Eq. (18) can be approximated as the following
form:

ĝBT (α, λ) =

[
det Ψ∗

det Ψ

]1/2

exp
{
n
[
H∗(ᾱ∗, λ̄∗)−H(ᾱ, λ̄)

]}
, (19)

where (ᾱ∗, λ̄∗) and (ᾱ, λ̄) maximize H∗(α, λ) and H(α, λ), respectively, and Ψ∗ and Ψ
are the negatives of the inverse Hessians of H∗(α, λ) and H(α, λ) at (ᾱ∗, λ̄∗) and (ᾱ, λ̄),
respectively.

In our case, we have

H(α, λ) =
1

n
{k + (δ + a1 − 1) logα+ (δ + a2 − 1) log λ+ λ(n− δ) log(1− να)

−αb1 − λb2 + (α− 1)
δ∑
i=1

log x(i) + (λ− 1)
δ∑
i=1

log(1− xα(i))}. (20)

where k is a constant. Hence, (ᾱ, λ̄) can be obtained by solving the following two
equations

∂

∂α
H(α, λ) =

1

n
{δ + a1 − 1

α
− b1 +

δ∑
i=1

log x(i)

−(λ− 1)
δ∑
i=1

xα(i) log x(i)

1− xα(i)
− λ(n− δ)ν

α log ν

1− να
} = 0, (21)

∂

∂λ
H(α, λ) =

1

n

{
δ + a2 − 1

λ
− b2 + (n− δ) log(1− να) +

δ∑
i=1

log(1− xα(i))

}
= 0. (22)
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By using Eq. (22), λ̄ is derived as

λ̄ = λ(ᾱ) =
δ + a2 − 1

b2 − (n− δ) log(1− νᾱ)−
δ∑
i=1

log(1− xᾱ(i))
(23)

and ᾱ is the solution of the non-linear equation

δ + a1 − 1

α
− b1 +

δ∑
i=1

log x(i) − (λ(ᾱ)− 1)
δ∑
i=1

xα(i) log x(i)

1− xα(i)
− λ(ᾱ)(n− δ)ν

α log ν

1− να
= 0.

(24)

The fixed point method can be applied as in the ML estimation to compute ᾱ. Then,
from the second derivatives of H(α, λ), the determinant of the negative of the inverse
Hessian of H(α, λ) at (ᾱ, λ̄) is obtained by

det Ψ = (H11H22 −H2
12)−1,

where

H11 =
1

n
{−δ + a1 − 1

ᾱ2
− λ̄(n− δ)ν

ᾱ(log ν)2(1− νᾱ) + (νᾱ(log ν))2

(1− νᾱ)2

−(λ̄− 1)

δ∑
i=1

xᾱ(i)(log x(i))
2(1− xᾱ(i)) + (xᾱ(i)(log x(i)))

2

(1− xᾱ(i))2
},

H12 =
1

n
{−

δ∑
i=1

xᾱ(i) log x(i)

1− xᾱ(i)
− (n− δ)ν

ᾱ log ν

1− νᾱ
},

H22 =
1

n
{−δ + a2 − 1

λ̄2
}.

Now, following the same arguments with g(α, λ) = α and λ, respectively, in H∗(α, λ),
α̂BT and λ̂BT in Eq. (19) can then be obtained straightforwardly.

5 Numerical Experiments

5.1 Simulation study

This section consists the simulation study to compare the performances of different es-
timators and also different confidence intervals. The performance of the competitive
estimates has been compared on the basis of their average values and mean squared er-
rors. Also, the average lengths of the confidence intervals and their coverage percentages
are compared. The computations are performed using R 2.14.0 (R Development Core
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Team , 2011), which is a non-commercial, open source software package for statistical
computing and graphics.

First, for different sets of parameter values, namely (α, λ) = (2, 2), (3, 5) and different
choices of n, r and T , we have generated random samples from Kumaraswamy distri-
bution. Then, the estimate of the parameters α and λ for the generated samples were
computed using the maximum likelihood procedure. For computing the Bayes estimates,
we have assumed the following priors:

Prior I (non-informative gamma prior): (a1, b1) = (0, 0), (a2, b2) = (0, 0),

Prior II (informative gamma prior): (a1, b1) = (0.2, 2), (a2, b2) = (5, 1).

We replicate the process 1000 times and report the average values (AV) and mean squared
errors (MSE) of the estimates in Tables 1-4.

We have also computed approximate 95% confidence intervals and bootstrap confi-
dence intervals of the unknown parameters α and λ. Criteria appropriate to the evalu-
ation of the two methods under scrutiny include: closeness of the coverage probability
to its nominal value and expected interval width. For each simulated sample, we have
computed confidence intervals and checked whether the true value of the parameter lay
within the intervals and recorded the length of the intervals. The estimated coverage
probability was computed as the number of intervals that covered the true value divided
by 1000 while the estimated expected width of the intervals was computed as the sum of
the lengths for all intervals divided by 1000. The coverage probabilities and the expected
widths for different sample sizes are presented in Tables 5-6.

From Tables 1-4, some of the points are quite clear. For both the estimators, it is ob-
served that for fixed n as r increases or T increases, the biases and MSEs decrease. The
performances of the Bayes estimates obtained from non-informative priors and the maxi-
mum likelihood estimates are very similar in all aspects. Moreover, using the informative
gamma prior distributions, results in reasonable improvements in the performances of
Bayes estimates. It is also seen that, for small sample sizes (n = 15, 20), the coverage
percentages of the asymptotic confidence intervals are lower than the nominal level 95%,
however for larger sample sizes (n ≥ 30), the asymptotic results work quite well in most
of the cases. The coverage percentage of the adjusted bootstrap method is somewhat
close to its nominal level. It can be further observed that the widths of the confidence
intervals narrow down with increases in r or T for fixed n.

5.2 Data Analysis

To demonstrate the application of the proposed methods to real data, let us con-
sider a data set collected during the experiment reported in Eldin et al. (2014).
It is the water capacity data from the Shasta reservoir in California, USA, http :
//cdec.water.ca.gov/reservoirmap.html. The maximum capacity of the reservoir is
4552000 AF and the data were transformed to the interval [0, 1]. Table 7, gives the
date, actual and transformed data. Eldin et al. (2014) observed that Kumaraswamy
distribution works quite well for these capacity data.

We have considered hybrid type II censored samples from these data using the follow-
ing two sampling schemes:



244 Pak, Mahmoudi, Rastogi

Scheme 1: T = 0.75, r = 5, 10, 12;
Scheme 2: T = 0.8, r = 10, 12, 15.

Based on the above type II hybrid censored samples, we obtained the estimate of the
parameters using ML and Bayesian procedures. We have also computed approximate
95% confidence intervals of the unknown parameters . Furthermore, using the algorithm
described in Section 3 of the BCa bootstrap method, we presented the 95% bootstrap
confidence intervals. All the results are summarized in Table 8.

6 Conclusions

In this paper, we have considered the classical and Bayesian inference procedures for
the parameters of Kumaraswamy distribution under type II hybrid censoring scheme.
We have provided likelihood function based on type II hybrid censored sample and
obtained maximum likelihood estimate of the parameters. In the Bayesian setting, we
have computed the estimate of the unknown parameters by using Tierney and Kadane’s
approximation under the assumption of both non-informative and informative gamma
priors. We have further constructed approximate confidence interval and bootstrap
confidence interval of the parameters. The performances of the different methods have
been compared by Monte Carlo simulations. Based on the results of the simulation
study, we see clearly that, the Bayesian procedure based on non-informative prior and
the ML procedure give similar estimation results. However, using the ML method, we can
also obtain approximate confidence interval of the parameters. On the other hand, the
Bayes estimates of the parameters based on informative priors give better performances
than the MLEs in terms of minimum MSEs. As a result, when information about
the hyperparameters are available, we suggest using Bayesian approach to estimate the
parameters of Kumaraswamy distribution. Moreover, as we expected, the performances
of all estimators are improved when the effective sample size increases. It can be further
observed that, in most of the cases, the coverage probabilities of confidence intervals
are close to the nominal level. Also, approximate method of construction of confidence
interval is better with respect to coverage percentage and average length.
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Table 1: AVs and MSEs of the ML and Bayes estimates when n = 15, 20, T = 0.4, 0.6
and (α, λ) = (2, 2).

n T r MLE Non-informative Bayes Informative Bayes

α̂ λ̂ α̂BT λ̂BT α̂BT λ̂BT

15 0.4 7 2.2164 2.3894 2.2182 2.3922 2.2063 2.3817

0.3147 0.6521 0.3159 0.6527 0.3094 0.6482

9 2.1913 2.3816 2.1974 2.3803 2.1885 2.3790

0.3091 0.4776 0.3116 0.6503 0.3028 0.6412

12 2.1836 2.3629 2.1850 2.3685 2.1871 2.3645

0.2782 0.6248 0.2746 0.6292 0.2715 0.6137

0.6 7 2.1973 2.3706 2.1945 2.3741 2.1907 2.3723

0.3065 0.6317 0.3077 0.6358 0.2973 0.6219

9 2.1822 2.3652 2.1854 2.3628 2.1797 2.3611

0.2917 0.6125 0.2958 0.6134 0.2832 0.6053

12 2.1653 2.3544 2.1692 2.3572 2.1728 2.3508

0.2648 0.6063 0.2673 0.6047 0.2604 0.5984

20 0.4 7 2.1962 2.4173 2.1986 2.4192 2.1845 2.4027

0.2748 0.6395 0.2790 0.6423 0.2633 0.6352

9 2.1643 2.3915 2.1675 2.3923 2.1727 2.3842

0.2650 0.6109 0.2618 0.6147 0.2452 0.6073

12 2.1827 2.3354 2.1884 2.3378 2.1914 2.3279

0.2466 0.5813 0.2472 0.5819 0.2436 0.5745

0.6 7 2.1879 2.4107 2.1935 2.4165 2.1828 2.4093

0.2681 0.6168 0.2685 0.6180 0.2645 0.6132

9 2.1804 2.3862 2.1841 2.3902 2.1764 2.3831

0.2635 0.6091 0.2653 0.6117 0.2595 0.6077

12 2.1748 2.3427 2.1792 2.3451 2.1803 2.3479

0.2417 0.5735 0.2436 0.5752 0.2413 0.5716

Notes: The first and second rows show the AVs and MSEs of the parameters, respectively.
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Table 2: AVs and MSEs of the ML and Bayes estimates when n = 30, 40, T = 0.5, 0.75
and (α, λ) = (2, 2).

n T r MLE Non-informative Bayes Informative Bayes

α̂ λ̂ α̂BT λ̂BT α̂BT λ̂BT

30 0.5 20 2.1751 2.4168 2.1773 2.4172 2.1638 2.3512

0.2376 0.6134 0.2384 0.6152 0.2275 0.5804

22 2.1683 2.3852 2.1689 2.3894 2.1579 2.3462

0.2193 0.5765 0.2217 0.5771 0.2088 0.5529

26 2.1473 2.3118 2.1492 2.3137 2.1533 2.3474

0.1981 0.5048 0.1987 0.5063 0.1767 0.4811

0.75 20 2.1736 2.3931 2.1758 2.3942 2.1641 2.2851

0.2218 0.5473 0.2234 0.5478 0.2011 0.5265

22 2.1628 2.3472 2.1638 2.3475 2.1331 2.2249

0.2079 0.5192 0.2093 0.5215 0.1962 0.5042

26 2.1259 2.2865 2.1265 2.2891 2.1221 2.1672

0.1875 0.4851 0.1869 0.4855 0.1425 0.4739

40 0.5 20 2.1282 2.3227 2.1316 2.3241 2.1284 2.3176

0.1748 0.4835 0.1757 0.4839 0.1675 0.4772

22 2.1139 2.2713 2.1148 2.2736 2.0931 2.2845

0.1693 0.4470 0.1706 0.4492 0.1608 0.4216

26 2.1041 2.1758 2.1055 2.1762 2.0753 2.1894

0.1384 0.2572 0.1395 0.2584 0.1371 0.2527

0.75 20 2.1174 2.2941 2.1177 2.2947 2.1092 2.2831

0.2218 0.4165 0.1529 0.4180 0.1429 0.3958

22 2.1086 2.2574 2.1093 2.2588 2.0966 2.2679

0.1337 0.3319 0.1351 0.3329 0.1314 0.3307

26 2.0937 2.1626 2.0945 2.1637 2.0619 2.1842

0.1058 0.2291 0.1067 0.2307 0.1021 0.2296

Notes: The first and second rows show the AVs and MSEs of the parameters, respectively.
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Table 3: AVs and MSEs of the ML and Bayes estimates when n = 15, 20, T = 0.4, 0.6
and (α, λ) = (3, 5).

n T r MLE Non-informative Bayes Informative Bayes

α̂ λ̂ α̂BT λ̂BT α̂BT λ̂BT

15 0.4 7 3.2781 5.6845 3.2762 5.6839 3.2619 5.6785

0.5433 1.0715 0.5476 1.0784 0.5281 0.9835

9 3.2537 5.6719 3.2539 5.6773 3.2541 5.6746

0.5307 1.0138 0.5322 1.0218 0.5239 0.9748

12 3.2419 5.6473 3.2485 5.6518 3.2308 5.6417

0.5126 0.9613 0.5117 0.9642 0.5094 0.9522

0.6 7 3.2644 5.6724 3.2673 5.6739 3.2611 5.6678

0.5318 1.0247 0.5369 1.0308 0.5178 0.9814

9 3.2592 5.6541 3.2612 5.6532 3.2536 5.6394

0.5149 0.9739 0.5214 0.9763 0.5026 0.9456

12 3.2471 5.6393 3.2478 5.6355 3.2454 5.6217

0.5064 0.9514 0.5136 0.9581 0.4873 0.9316

20 0.4 7 3.2875 5.6418 3.2913 5.6472 3.2821 5.6371

0.5137 0.9865 0.5174 0.9738 0.5044 0.9717

9 3.2403 5.6487 3.2461 5.6533 3.2391 5.6231

0.4906 0.9127 0.4939 0.9166 0.4618 0.9043

12 3.2447 5.6132 3.2345 5.6154 3.2358 5.6046

0.4819 0.8933 0.4855 0.9047 0.4523 0.8629

0.6 7 3.2512 5.6277 3.2530 5.6281 3.2470 5.6183

0.4826 0.9751 0.4893 0.9619 0.4806 0.9445

9 3.2384 5.6108 3.2488 5.6219 3.2342 5.5729

0.4723 0.9048 0.4711 0.9176 0.4536 0.8731

12 3.2253 5.5813 3.2279 5.5845 3.2217 5.5534

0.4592 0.8771 0.4581 0.8734 0.4428 0.8562

Notes: The first and second rows show the AVs and MSEs of the parameters, respectively.



248 Pak, Mahmoudi, Rastogi

Table 4: AVs and MSEs of the ML and Bayes estimates when n = 30, 40, T = 0.5, 0.75
and (α, λ) = (3, 5).

n T r MLE Non-informative Bayes Informative Bayes

α̂ λ̂ α̂BT λ̂BT α̂BT λ̂BT

30 0.5 7 3.2531 5.6571 3.2617 5.6637 3.2509 5.6436

0.4806 0.9415 0.4861 0.9483 0.4759 0.9225

9 3.2397 5.6328 3.2435 5.6395 3.2336 5.6054

0.4562 0.9237 0.4627 0.9316 0.4539 0.9071

12 3.2341 5.6219 3.2318 5.6248 3.2274 5.5973

0.4454 0.8846 0.4452 0.8972 0.4361 0.8439

0.75 7 3.2219 5.6347 3.2276 5.6213 3.2158 5.5708

0.4782 0.9134 0.4831 0.9227 0.4519 0.9112

9 3.2308 5.6038 3.2314 5.6129 3.2243 5.5582

0.4577 0.9021 0.4524 0.9134 0.4271 0.8540

12 3.2159 5.5436 3.2162 5.5486 3.2092 5.5317

0.4122 0.8578 0.4179 0.8549 0.4056 0.8363

40 0.5 7 3.2248 5.6112 3.2369 5.6134 3.2113 5.5972

0.4513 0.8635 0.4527 0.8746 0.4352 0.8524

9 3.1935 5.5645 3.1976 5.5702 3.1863 5.5637

0.4407 0.8419 0.4461 0.8439 0.4319 0.8265

12 3.2078 5.5506 3.2103 5.5528 3.2138 5.5417

0.4029 0.8067 0.4036 0.8121 0.3965 0.7962

0.75 7 3.1946 5.5839 3.1948 5.5873 3.1827 5.5792

0.4155 0.8352 0.4204 0.8386 0.4126 0.8233

9 3.1902 5.5574 3.1874 5.5519 3.1856 5.5125

0.3728 0.8245 0.3793 0.8132 0.3697 0.7958

12 3.1865 5.5123 3.1851 5.5248 3.1731 5.4976

0.3518 0.7906 0.3548 0.7954 0.3451 0.7822

Notes: The first and second rows show the AVs and MSEs of the parameters, respectively.



Electronic Journal of Applied Statistical Analysis 249

Table 5: Average confidence lengths (A.L.) and the corresponding coverage probabilities
(C.P.) of the approximate and BCa confidence intervals for (α, λ) = (2, 2).

n T r α λ

ACI BCa ACI BCa

A.L. C.P. A.L. C.P. A.L. C.P. A.L. C.P.

15 0.4 20 1.2871 0.871 1.2612 0.894 1.3627 0.892 1.3451 0.852

22 1.2806 0.882 1.2568 0.903 1.3308 0.897 1.3276 0.883

26 1.2542 0.895 1.2391 0.906 1.3265 0.916 1.3028 0.909

0.6 20 1.2833 0.881 1.2574 0.896 1.3591 0.903 1.3369 0.861

22 1.2761 0.903 1.2407 0.905 1.3227 0.914 1.3041 0.895

26 1.2459 0.908 1.280 0.913 1.3054 0.921 1.2975 0.911

20 0.4 20 1.2238 0.887 1.2173 0.874 1.2667 0.885 1.2507 0.889

22 1.2076 0.906 1.2048 0.877 1.2582 0.902 1.2318 0.906

26 1.1963 0.908 1.1721 0.891 1.2441 0.917 1.2092 0.911

0.6 20 1.2214 0.906 1.2106 0.889 1.2605 0.893 1.2466 0.903

22 1.2137 0.911 1.1964 0.895 1.2571 0.908 1.2217 0.917

26 1.1892 0.919 1.1875 0.908 1.2136 0.926 1.2048 0.920

30 0.5 20 1.1751 0.931 1.1684 0.925 1.1963 0.927 1.1908 0.892

22 1.1709 0.933 1.1631 0.929 1.1874 0.928 1.1811 0.898

26 1.1575 0.941 1.1452 0.935 1.1551 0.936 1.1422 0.916

0.75 20 1.1663 0.943 1.1518 0.936 1.1838 0.940 1.1765 0.926

22 1.1511 0.948 1.1475 0.938 1.1676 0.945 1.1632 0.927

26 1.1286 0.949 1.1174 0.939 1.1344 0.946 1.1261 0.935

40 0.5 20 1.1237 0.949 1.1081 0.940 1.1317 0.948 1.1192 0.939

22 1.1194 0.950 1.1016 0.940 1.1253 0.948 1.1087 0.942

26 1.1028 0.951 1.0891 0.943 1.1095 0.952 1.0841 0.945

0.75 20 1.0924 0.952 1.0813 0.946 1.1082 0.952 1.0935 0.946

22 1.0789 0.952 1.0547 0.947 1.0971 0.953 1.0878 0.947

26 1.0317 0.955 1.0176 0.951 1.0663 0.954 1.0511 0.950
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Table 6: Average confidence lengths (A.L.) and the corresponding coverage probabilities
(C.P.) of the approximate and BCa confidence intervals for (α, λ) = (3, 5).

n T r α λ

ACI BCa ACI BCa

A.L. C.P. A.L. C.P. A.L. C.P. A.L. C.P.

15 0.4 20 1.8431 0.854 1.7952 0.872 2.2149 0.891 2.1891 0.865

22 1.8067 0.861 1.7741 0.878 2.1975 0.895 2.1743 0.873

26 1.7942 0.893 1.7633 0.895 2.1806 0.912 2.1236 0.892

0.6 20 1.8255 0.857 1.8097 0.863 2.2127 0.901 2.1591 0.874

22 1.7739 0.893 1.7615 0.877 2.1794 0.903 2.1473 0.880

26 1.7518 0.902 1.7469 0.890 2.1635 0.917 2.1148 0.883

20 0.4 20 1.8063 0.867 1.7645 0.874 2.1773 0.903 2.1518 0.872

22 1.7955 0.886 1.7593 0.881 2.1342 0.912 2.1263 0.884

26 1.7608 0.895 1.7056 0.894 2.1169 0.913 2.1108 0.897

0.6 20 1.8192 0.873 1.7714 0.897 2.1457 0.906 2.1036 0.893

22 1.7721 0.905 1.7082 0.908 2.1083 0.915 2.0851 0.906

26 1.7344 0.908 1.6649 0.913 2.0952 0.928 2.0762 0.14

30 0.5 20 1.6905 0.913 1.6718 0.884 2.0814 0.913 2.0318 0.897

22 1.6638 0.917 1.6275 0.892 2.0728 0.918 2.0160 0.905

26 1.6195 0.926 1.5873 0.903 2.0419 0.927 1.9736 0.918

0.75 20 1.6417 0.922 1.5692 0.898 2.0736 0.914 2.0245 0.909

22 1.6251 0.927 1.5564 0.907 2.0592 0.930 1.9805 0.917

26 1.5778 0.938 1.5312 0.911 2.0117 0.936 1.9576 0.925

40 0.5 20 1.6113 0.918 1.5078 0.897 1.9841 0.922 1.9754 0.911

22 1.5849 0.925 1.4491 0.905 1.9633 0.929 1.9412 0.917

26 1.4507 0.937 1.4335 0.912 1.9578 0.938 1.9225 0.926

0.75 20 1.5782 0.922 1.5260 0.903 1.9512 0.931 1.9437 0.911

22 1.5162 0.928 1.4541 0.926 1.9407 0.933 1.9315 0.919

26 1.4237 0.943 1.4127 0.933 1.9342 0.947 1.9176 0.932
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Table 7: Capacity for August and proportion of total capacity for Shasta reservoir

Capacity Proportion of Capacity Proportion of

total capacity total capacity

1542838 0.338936 3495969 0.768007

1966077 0.431915 3839544 0.843485

3459209 0.759932 3584238 0.787408

3298496 0.724626 3868600 0.849868

3448519 0.757583 3168056 0.695970

3694201 0.811556 3834224 0.842316

3574861 0.785339 3772193 0.828689

3567220 0.783660 2641041 0.580194

3712733 0.815627 1960458 0.430681

3857423 0.847413 3380147 0.742563

Table 8: MLE, Bayes, approximate and BCa confidence intervals of the parameters for
hybrid type II censored samples from capacity data.

MLE Bayes ACI BCa

0.75 5 α 4.5134 4.5166 (2.2742,8.5845) (2.2716,8.1435)

λ 2.2048 2.2072 (0.2184,5.3366) (0.2062,5.3818)

10 α 4.7578 4.7592 (2.3328,7.6884) (2.2264,7.5729)

λ 2.5473 2.5496 (0.2206,5.3047) (0.2165,5.3476)

12 α 4.7742 4.7811 (2.3351,7.6522) (2.3470,7.6832)

λ 2.5528 2.5563 (0.3177,5.3582) (0.2461,5.3735)

0.8 12 α 4.7795 4.7826 (2.4417,7.6791) (2.3522,7.6514)

λ 2.5567 2.5582 (0.2316,5.2541) (0.22475.3312)

14 α 4.7840 4.7851 (2.3463,6.3845) (2.3609,7.5033)

λ 2.5619 2.5632 (0.4481,5.3812) (0.2737,5.3759)

16 α 4.8147 4.8169 (2.9621,6.7316) (2.6224,7.7245)

λ 2.5677 2.5745 (0.4750,5.2897) (0.2814,5.3662)
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