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Birnbaum-Saunders (BS) distribution is a model with positive domain that
is used in many fields including reliability and environmental studies. This
article introduces a generalized version of the BS distribution which arises
from the shape mixture of skew-normal distribution. A feasible EM type
algorithm is developed to obtain maximum likelihood (ML) estimates of pa-
rameters of the new model. The asymptotic standard errors of ML estimates
are obtained via the information-based approximation. The robustness and
application of the proposed methodology are illustrated through simulation
studies and air pollution analysis.

Keywords: ECM algorithm, Observed information matrix, Robustness,
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1 Introduction

Birnbaum and Saunders (1969) introduced a two-parameter positive distribution, and
used it in analyzing fatigue failure time data. Their distribution, here after called
Birnbaum-Saunders (BS), is better suited for modeling data with extreme observations,
as compared with lifetime distributions, such as gamma, Weibull and inverse Gaussian.
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Suppose Z is a standard normal random variable (denoted by Z ∼ N(0, 1)), and α and
β are positive constants. Then, the random variable

T =
β

4

[
αZ +

√
(αZ)2 + 4

]2
(1)

is said to have the BS distribution with shape parameter α and scale parameter β. The
probability density function (PDF) of T is given by

g(t;α, β) = φ (a(t;α, β))A(t;α, β), t > 0;α, β > 0

where φ (·) is the PDF of Z,

a(t;α, β) =
1

α

[√
t

β
−
√
β

t

]
(2)

and

A(t;α, β) =
t+ β

2α
√
β
√
t3
. (3)

The BS distribution and its extensions have received considerable attention with re-
gard to theoretical properties, inference and applications. Desmond (1985) presented a
more general derivation of the distribution using a biological model. He motivated this
model with several examples in the context of engineering. Louis Floyd (1998) provided
an application in the area of risk management. Cordeiro and Lemonte (2011) proposed
beta BS distribution, and used it in studying the number of successive failures for the
air conditioning system. Cordeiro et al. (2016) introduced an extension of the BS
distribution, and employed it in investigating shocks before failure and accelerated life
testing in a system. Also the BS distribution and its generalizations have been utilized
in environmental studies. See, among others Vilca et al. (2010), Ferreira et al. (2012),
and Marchant et al. (2013).

Azzalini (1985) developed skew-normal (SN) distribution as an extension of the normal
distribution. Let φ(·) and Φ(·) be the PDF and cumulative distribution function of
Z ∼ N(0, 1), respectively. The random variable Y is said to have SN model with shape
parameter λ, denoted by Y ∼ SN(λ), if its PDF is given by

fSN (y;λ) = 2φ(y)Φ(λy), y ∈ R;λ ∈ R.

Arellano-Valle et al. (2004) introduced shape mixture of skew-normal (SMSN) distribu-
tion. It has the following hierarchical formulation. If τ ∼ N(γ, δ) and V |τ ∼ SN(τ),
then the marginal distribution of V is the SMSN, denoted by V ∼ SMSN(γ, δ). A
further representation of SMSN model is given by

V
d
=

1√
1 + τ2

U1 +
τ√

1 + τ2
|U0| , (4)

where U0 and U1 are independently distributed as N(0, 1).
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In this work, we propose a new generalization of the BS distribution called shape
mixture of skew normal BS (SMSN-BS). It is constructed by replacing Z in (1) by
a SMSN random variable. Owing to the additional flexibility of SN model over the
standard normal distribution, the SMSN-BS distribution is expected to be a viable
alternative to the BS distribution. The basic motivation of this study is to construct
a model with adequate fit to data that are highly concentrated on the right-tail of the
distribution. As compared with current modifications of the BS distribution, our model
enjoys the advantage of better fit to data in the presence of outliers. It also covers
a variety of functional forms including bimodal distributions, which happen in many
practical situations.

In Section 2, the new model is introduced and some of its properties are investigated.
In Section 3, an expectation-maximization (EM) algorithm is developed to find maxi-
mum likelihood (ML) estimates of the parameters. Also, a general information-based
method for obtaining the asymptotic standard errors of the ML estimates is presented.
In Section 4, properties of the ML estimators, and flexibility of the proposed distribu-
tion are studied using numerical experiments. Section 5 illustrates application of the
SMSN-BS distribution for modeling air pollution data. Final conclusions are given in
Section 6.

2 The proposed distribution

If V ∼ SMSN(γ, δ), and α and β are positive constants, then the random variable

T =
β

4

[
αV +

√
(αV )2 + 4

]2
(5)

follows a SMSN-BS distribution, denoted by T ∼ SMSN − BS(α, β, γ, δ). This repre-
sentation can be used to draw random samples from the SMSN-BS distribution.

To present a feasible EM-type algorithm for maximum likelihood estimation of the
parameters, we introduce a hierarchical representation of SMSN-BS distribution. Before
that, it is nessesary to address two distributions which are used in this representation.

Leiva et al. (2010) introduced an extended BS (EBS) distribution using a skewed
sinh-normal model. A random variable T follows EBS distribution, denoted by T ∼
EBS(α, β, σ, ν, λ), if its PDF is given by

f(t;α, β, σ, ν, λ) = 2φ(c(t))Φ(λc(t))C(t), t > 0,

where c(t) = ν + 1
α

[
( tβ )1/σ − (βt )1/σ

]
and C(t) = t2/σ+β2/σ

σαβ1/σt1+1/σ .

The second distribution which will be used in hierarchical representation is trun-
cated normal (TN). A random variable X has a TN distribution, denoted by X ∼
TN(µ, σ2; (a, b)), if it has the following PDF

f(x;µ, σ, a, b) =
φ
(x−µ

σ

)
σ
(

Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)) , a ≤ x ≤ b.
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Now, let ψ =
√

1 + τ2 |U0| be a reparameterized latent variable, where τ ∼ N(γ, δ)
and U0 ∼ N(0, 1). The SMSN-BS distribution has the following hierarchical formulation.
If

τ ∼ N(γ, δ)

ψ|τ ∼ TN
(
0, 1 + τ2; (0,∞)

)
(T |ψ, τ) ∼ EBS

(
α√

1 + τ2
, β, 2,− τψ√

1 + τ2
, 0

)
, (6)

then the marginal distribution of T is the SMSN −BS(α, β, γ, δ).

The joint PDF of T , ψ and τ is given by

f(t, ψ, τ) = f(t|ψ, τ)f(ψ|τ)f(τ)

= A(t;α, β)φ

(√
1 + τ2

[
a(t;α, β)− ψτ

1 + τ2

])
φ

(
ψ√

1 + τ2

)
1√
δ
φ

(
τ − γ√

δ

)
=

1

π
√
δ
A(t;α, β)φ

(
τ − γ√

δ

)
exp

{
−1

2

[
a2(t;α, β) + (ψ − a(t;α, β)τ)2

]}
, (7)

where a(t;α, β) and A(t;α, β) are defined in (2) and (3), respectively. Integrating out ψ
in (7), we get

f(t, τ) = 2A(t;α, β)φ (a(t;α, β)) Φ (τa(t;α, β))
1√
δ
φ

(
τ − γ√

δ

)
. (8)

Finally, integrating out τ in (8), the marginal PDF of the SMSN-BS distribution is
derived as

fSMSN−BS (t) = 2φ (a(t;α, β)) Φ

(
γa(t;α, β)√

1 + δ (a2(t;α, β))

)
A(t;α, β), t > 0. (9)

It should be mentioned that the SMSN −BS(α, β, γ, δ) distribution includes the BS
when γ = 0 or δ →∞. Also, if δ = 0, it reduces to an extension of the BS distribution
constructed using the SN model, which is called SN-BS disribution (see Vilca et al.
(2011) for details). Figure 1 displays the PDF of SMSN-BS model for several choices
of the parameters. Assuming α > 1, it can be seen that the SMSN-BS distribution has
fatter tail to the right, as γ grows. Also, for α > 1, the PDF of SMSN-BS tends to a
bimodal PDF when δ increases. So this distribution is a good model for investigating
the positive mixture data.

The moments of the SMSN-BS distribution can be expressed in terms of the moments
of the BS distribution. In the following lemma, relationships between the mean, variance,
skewness and kurtosis of the two distributions are presented.

Lemma 1 Let TSMBS ∼ SMSN − BS(α, β, γ, δ) and TBS ∼ BS(α, β). Also, assume

that ωk = E
(
V k
√

(αV )2 + 4
)
, with V ∼ SMSN(γ, δ). Then the mean, variance,
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Figure 1: The PDF of the SMSN-BS distribution for several choices of the parameters

skewness (γ3) and kurtosis (γ4) of these two random variables satisfy the following rela-
tionships:

E(TSMBS) = E(TBS) +
αβ

2
ω1,

V ar(TSMBS) = V ar(TBS) +

(
αβ

2

)2

αω,

γ3(TSMBS) = γ3(TBS)

(
4 + 5α2

4 + 5α2 + αω

)3/2

+ 2
a0 + a1α+ a2α

2

(4 + 5α2 + αω)3/2
,

and

γ4(TSMBS) =

(
γ4(TBS) +

b0 + b1α+ b2α
2 + b3α

3

(4 + 5α2)2

)
(4 + 5α2)2

(4 + 5α2 + αω)2
,
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where
a0 = −6ω1 + ω3

1 + 2ω3, a1 = 3ω2
1 − 3ω1ω3,

a2 = −6ω1 − 3ω3 + 2ω5, αω = 2α(ω3 − ω1)− ω2
1,

b0 = 24ω2
1 − 3ω4

1 − 16ω1ω3, b1 = −96ω1 − 12ω3
1 − 16ω3 + 12ω2

1ω3 + 16ω5,

and
b2 = 18ω2

1 + 24ω1ω3 − 16ω1ω5, b3 = 8ω7 − 168ω1 − 16ω5.

Proof: A stochastic representation of T can be obtained by combining (4) and (5).
Then the moments of SMSN-BS random variable can be calculated with some algebra.
It should be noted that ωk’s are calculated numerically. 2

Table 1 presents values of some central moments (up to order five) for the SMSN-
BS distribution, along with its skewness and kurtosis for different configurations of the
parameters. It is observed that when γ < 0, the skewness and kurtosis of the SMSN-BS
may be bigger than these quantities in the BS and SN-BS models. The next lemma
plays a key role in the ML estimation for the SMSN-BS distribution.

Table 1: Values of central moments of the SMSN-BS distribution, along with its skewness and
kurtosis for different configurations of the parameters

α = 0.5, β = 1 α = 1, β = 0.5

γ = 0, γ = −1, γ = −1, γ = 5, γ = 0, γ = −1, γ = −1, γ = 5,

Moments δ = 5 δ = 0 δ = 5 δ = 5 δ = 5 δ = 0 δ = 5 δ = 5

µ1 1.12 0.82 0.99 1.52 0.74 0.39 0.59 1.20

µ2 1.59 0.78 1.25 2.60 1.12 0.26 0.78 2.11

µ3 2.80 0.88 2.03 5.08 2.75 0.28 1.84 5.37

µ4 6.01 1.13 4.16 11.46 9.46 0.43 6.27 18.64

µ5 15.42 1.66 10.38 30.04 42.14 0.88 27.80 83.10

Variance 0.32 0.11 0.26 0.28 0.56 0.11 0.42 0.66

Skewness 1.45 1.15 1.78 1.62 2.51 2.46 3.04 2.23

Kurtosis 6.44 5.18 8.02 7.37 12.85 12.89 17.12 10.94

Lemma 2 If the hierarchical representation in (6) holds, then we have

E (τ |t) = γ +
δu(t)√

1 + δu2(t)
R

(
γu(t)√

1 + δu2(t)

)
,

E
(
τ2|t

)
= γ2 + δ +

γδu(t)√
1 + δu2(t)

(
1 +

1

1 + δu2(t)

)
R

(
γu(t)√

1 + δu2(t)

)
,

and

E (ψτ |t) = u(t)
(
γ2 + δ

)
+ γ
√

1 + δu2(t)R

(
γu(t)√

1 + δu2(t)

)
,

where u(t) = a(t;α, β) and R(x) = φ(x)/Φ(x).
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Proof: Dividing (8) by (9) gives

f(τ |t) =
Φ (τa(t;α, β))

Φ

(
γa(t;α,β)√
1+δa2(t;α,β)

) 1√
δ
φ

(
τ − γ√

δ

)
. (10)

So τ |t follows the extended SN (ESN) distribution (Azzalini and Capitanio, 2014), de-
noted by ESN(γ, δ,

√
δa(t, α, β), γa(t, α, β)). The first two expectations in the lemma

are obtained from the properties of ESN model, see Azzalini and Capitanio (2014).
Dividing (7) by (8) yields

f(ψ|t, τ) =
φ (ψ − τa(t;α, β))

Φ (τa(t;α, β))
. (11)

It can be seen that (ψ|t, τ) ∼ TN (τa(t;α, β), 1; (0,∞)). The last expectation in the
lemma is concluded by applying (11). 2

3 Parameter estimation

The ML estimation is one of the most widely used methods for estimating the parameters
of a model. It selects the set of values of the model parameters that maximizes the
likelihood function. In doing so, the “agreement” of the selected model with the observed
data is maximized. Generally, the ML estimation for the SMSN-BS distribution is not
an easy job due to complexity of the associated likelihood function. To sidestep this
problem, an EM-type algorithm is proposed in the following. A method of obtaining the
asymptotic standard errors of the ML estimates is also provided.

3.1 The ECM algorithm

The EM type algorithm, introduced by Dempster (1977), is a widely applicable method
for iterative computation of the ML estimates. The power of the EM procedure lies in
its ability in preserving implementation simplicity and monotonic convergence. How-
ever, it is not directly practicable to estimating the SMSN-BS model because the the
M-step involves intractable computations. To solve this critical limitation, expectation-
conditional maximization (ECM) algorithm, proposed by Meng and Rubin (1993), can
be utilized. It substitutes the M-step of the EM algorithm by simpler conditional max-
imization steps.

Let T1, . . . , Tn be a random sample from SMSN −BS(α, β, γ, δ). From the represen-
tation (6), it follows that

τi
iid∼ N(γ, δ),

ψi|τi
iid∼ TN

(
0, 1 + τ2i ; (0,∞)

)
,

and

(Ti|ψi, τi)
iid∼ EBS

 α√
1 + τ2i

, β, 2,− τiψi√
1 + τ2i

, 0

 .
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Assume that θ = (α, β, γ, δ), τ = (τ1, . . . , τn) and ψ = (ψ1, . . . , ψn). Also, the vector of
observed Ti’s is denoted by t = (t1, . . . , tn). Then, complete log-likelihood function of
the data is given by

`c(θ|t,ψ, τ ) =
n∑
i=1

log f(ti, ψi, τi)

= −n
2

(3 log π + log 2 + log δ) +
n∑
i=1

logA(ti;α, β)

− 1

2

n∑
i=1

{
a2(ti;α, β) + (ψi − a(ti;α, β)τi)

2 +
(τi − γ)2

δ

}

Given the estimate of θ at the k-th iteration, say θ̂
(k)

= (α̂(k), β̂(k), γ̂(k), δ̂(k)), the
expected value of the log-likelihood function becomes

Q
(
θ|θ̂(k)

)
= E

{
`c(θ|t,ψ, τ )

∣∣∣t, θ̂(k)}
∝ γ

δ

n∑
i=1

ŝ
(k)
1i −

1

2

n∑
i=1

(a2(ti;α, β) +
1

δ
)ŝ

(k)
2i +

n∑
i=1

a(ti;α, β)ŝ
(k)
3i

− nγ2

2δ
− n

2
log δ − 1

2

n∑
i=1

a2(ti;α, β) +
n∑
i=1

logA(ti;α, β), (12)

where

ŝ
(k)
1i = E(τi|ti, θ̂

(k)
),

ŝ
(k)
2i = E(τ2i |ti, θ̂

(k)
),

and

ŝ
(k)
3i = E(ψiτi|ti, θ̂

(k)
). (13)

The above quantities are easily obtained using lemma 2.

We thus propose the following ECM algorithm to perform the ML estimation for the
SMSN-BS distribution:

• E-step: Given θ = θ̂
(k)

, compute ŝ
(k)
1i , ŝ

(k)
2i and ŝ

(k)
3i in (13), for i = 1, . . . , n.

• CM-step 1: Maximize (12) with respect to γ, δ and α, and obtain the following
estimates

γ̂(k+1) =
1

n

n∑
i=1

ŝ
(k)
1i ,

δ̂(k+1) =
1

n

n∑
i=1

ŝ
(k)
2i − γ̂

2(k+1),
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and

α̂(k+1) =

√
b2k + 4ck − bk

2
,

where

bk =
1

n

n∑
i=1

√ ti

β̂(k)
−

√
β̂(k)

ti

 ŝ
(k)
3i ,

and

ck =
1

n

n∑
i=1

√ ti

β̂(k)
−

√
β̂(k)

ti

2

(1 + ŝ
(k)
2i ).

• CM-step 2: Use α̂(k+1), γ̂(k+1) and δ̂(k+1) in the previous step, and obtain β̂(k+1)

from
β̂(k+1) = arg max

β
Q(α̂(k+1), β, γ̂(k+1), δ̂(k+1)|θ̂(k+1)

).

The above procedure is repeated until a suitable stopping criterion is met. To facilitate
the process of determining the actual convergence, we adopt an acceleration method due
to Aitken (1926). Given the sequence of observed log-likelihood {`(k)}∞k=0, the Aitken’s
acceleration criterion is calculated as a(k) = (`(k+1)−`(k))/(`(k)−`(k−1)). This yields the

asymptotic estimate of the log-likelihood `
(k+1)
∞ = `(k) + (`(k+1) − `(k))/(1− a(k)), which

can be computed in advance at (k + 1)-th iteration. Then, the algorithm is considered

to be convergent if `
(k+1)
∞ − `(k) < ε, where ε = 10−6 is the default tolerance employed

in our experimental study.
It is well-known that the EM-type algorithm is likely to get trapped in one of the

many local maxima of the likelihood function. To overcome this problem, we generate
a variety of reasonable initial values, and the set of parameters associated with the
highest converged log-likelihood is selected. We use modified moment estimators of α
and β as initial values. This quantities are obtained from Vilca et al. (2011). Thus we
have α̂(0) =

√
2(s/r)1/2 − 1 and β̂(0) =

√
sr, where s and r are arithmetic and harmonic

means of samples. Each of these values are multiplied by a fixed number that is randomly
drawn from the uniform distribution on the interval (0.5,2). Finally, initial values of the
shape parameters γ and δ are randomly chosen from the uniform distribution on the
interval (1,10).

3.2 The observed information matrix

The Fisher information is a measure of information contained in the sample about param-
eters of the parent distribution. It also has connections to the ML estimation method.
Under regularity conditions (see Cramer, 1946), the asymptotic covariance matrix of the
ML estimator θ̂ can be approximated by the inverse of this matrix. Specifically, the
Fisher information matrix is defined as

I(θ) = −E

{
n∑
i=1

Hi(θ)

}
.
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where Hi(θ) =
[

∂2

∂θk∂θj
`(θ | ti)

]
denotes the Hessian matrix associated with ti.

Unfortunately, the above expectation cannot be obtained analytically for the SMSN-
BS model. As remarked by Efron and Hinkley (1978), the Fisher information matrix
can be consistently estimated by −

∑n
i=1Hi(θ̂), which is called the observed information

matrix.
From (9), the log-likelihood function of θ = (α, β, γ, δ) given the observed data t =

(t1, ..., tn) is `(θ|t) =
∑n

i=1 `(θ|ti), where

`(θ|ti) ∝ logA(ti;α, β) + log φ(a(ti;α, β)) + log Φ(xi),

with xi = γa(ti;α,β)√
1+δa2(ti;α,β)

.

After some algebra, the second derivatives of `(θ|ti) are derived as

∂2`(θ|ti)
∂θ1∂θ2

= − 1

A2(ti;α, β)

∂A(ti;α, β)

∂θ1

∂A(ti;α, β)

∂θ2
+

1

A(ti;α, β)

∂2A(ti;α, β)

∂θ1∂θ2

− a(ti;α, β)
∂2a(ti;α, β)

∂θ1∂θ2
− ∂a(ti;α, β)

∂θ1

∂a(ti;α, β)

∂θ2
+ w(θ1, θ2)R(xi) + w(θ1)w(θ2)R

′(xi), θ1, θ2 ∈ {α, β}.

with

w(θj) =
γ

(1 + δa2(ti;α, β))3/2
∂a(ti;α, β)

∂θj
, j = 1, 2,

w(θ1, θ2) =
γ

(1 + δa2(ti;α, β))3/2

×
[
∂2a(ti;α, β)

∂θ1∂θ2
− 3

δa(ti;α, β)

(1 + δa2(ti;α, β))

∂a(ti;α, β)

∂θ1

∂a(ti;α, β)

∂θ2

]
,

and
R′(v) = −R(v)(v +R(v)).

Furthermore, we have

∂2`(θ|ti)
∂δ∂θj

= −∂a(ti;α, β)

∂θj

γa2(ti;α, β)

2 (1 + δa2(ti;α, β))5/2
[
3R(xi) + xiR

′(xi)
]
,

∂2`(θ|ti)
∂γ∂θj

=
∂a(ti;α, β)

∂θj

1

(1 + δa2(ti;α, β))3/2
[
R(xi) + xiR

′(xi)
]
,

∂2`(θ|ti)
∂γ∂δ

= − a3(ti;α, β)

2(1 + δa2(ti;α, β))3/2
[
R(xi) + xiR

′(xi)
]
,

∂2`(θ|ti)
∂δ2

=
γa5(ti;α, β)

4 (1 + δa2(ti;α, β))5/2
[
3R(xi) + xiR

′(xi)
]
,

and
∂2`(θ|ti)
∂γ2

=
a2(ti;α, β)

1 + δa2(ti;α, β)
R′(xi).
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The standard errors of estimates can be obtained by the square root of the diagonal
elements of the inverse of −

∑n
i=1Hi(θ̂). The calculation standard errors is particularly

useful for inferential purposes, e.g. construction of confidence intervals, or hypothesis
testing.

4 Numerical results

In this section, two simulation studies are conducted to assess finite-sample performance
of our proposed model and the ECM algorithm. The objective of the first simulation is
to investigate properties of the ML estimates. The second simulation aims to compare
the SMSN-BS distribution with the BS, EBS and SN-BS models in terms of robustness
and flexibility. The EBS distribution, introduced by Vilca et al. (2010), is more flexible
than the classical BS and some its generalizations. On the other hand, as mentioned
before, the SN-BS distribution is a special case of SMSN-BS model when γ = λ and
δ = 0. For properties and further details about SN-BS model, see Vilca et al. (2011).

We first study properties of the ML estimates obtained from the ECM algorithm de-
scribed in the previous section. To this end, 500 samples of sizes n = 250, 500, 1000, 2000
are generated from the SMSN-BS distribution with parameters α = 0.5, β = 1, γ = 1.5
and δ = 2. The parameters are estimated from each sample via the ECM algorithm.
The resulting values are then used to determine absolute bias (AB) and mean squared
error (MSE) of any estimator as

AB =
1

500

500∑
i=1

∣∣∣θ̂i − θtrue∣∣∣ and MSE =
1

500

500∑
i=1

(
θ̂i − θtrue

)2
.

where θ̂i denotes estimate of a specific parameter at the ith replication.
Furthermore, we compute the standard deviations (SDs) of the ML estimates across

500 simulated samples and compare them with the average values of the approximate
standard errors (ASEs) obtained through Hessian matrix. The SD is computed as

SD =

 1

499

 500∑
i=1

θ̂2i −
1

500

(
500∑
i=1

θ̂i

)2
1/2

.

Numerical results in Table 2 support consistency of the ML estimates because the AB
and MSE values shrink toward zero as n increases. We note that the SD values are in
good agreement with the corresponding ASE values for all sample sizes.

Moreover, it should be noted that the likelihood function for the SMSN-BS distribution
tends to be relatively flat near the ML estimates of γ and δ. Therefore, as evidenced in
Table 2, the parameters γ and δ have larger MSE values as well as estimated variances
than the corresponding values for the other parameters.

In the second simulation design, we evaluate robustness of the proposed model and
some of its competitors. To do so, 300 samples of sizes n = 500, 1000 are generated
from the BS distribution with parameters α = 0.5 and β = 1. To create heavy tails, the
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Table 2: Simulation results for assessing the consistency of parameter estimates and accuracy
of approximate standard errors for various sample sizes.

n Measure α β γ δ

250 AB 0.0037 0.0025 0.2986 2.0537

MSE 0.0015 0.0039 0.6901 38.040

SD 0.0380 0.0685 0.7650 4.7655

ASE 0.0357 0.0600 0.7713 4.2012

500 AB 0.0004 0.0010 0.0767 0.4806

MSE 0.0009 0.0022 0.1881 3.6532

SD 0.0263 0.0477 0.4417 2.5023

ASE 0.0254 0.0429 0.5105 2.4036

1000 AB 0.0011 0.0032 0.0338 0.3098

MSE 0.0003 0.0011 0.0919 1.5251

SD 0.0187 0.0327 0.2878 1.1428

ASE 0.0180 0.0302 0.3395 1.3999

2000 AB 0.00008 0.0001 0.0347 0.1659

MSE 0.0001 0.0005 0.0341 0.4378

SD 0.0141 0.0236 0.2018 0.6940

ASE 0.0127 0.0209 0.2334 0.8895

size of each sample is increased by 2% through adding data generated from a uniform
distribution on the interval (10,20). Finally, the EBS, SN-BS and SMSN-BS distributions
are fitted to each simulated data set. For any model and sample size, averages and SDs of
the log-likelihood maxima, Akaike information criterion (AIC) and Bayesian information
criterion (BIC) are computed based on 300 replications. The AIC and BIC criteria are
defined as

AIC = 2m− 2`max and BIC = m log n− 2`max

where n is the sample size, m is the number of parameters, and `max is the maximized
log-likelihood (see Akaike, 1973 and Schwarz, 1978).

Table 3 reports the above mentioned quantities. As a general rule, smaller values of
AIC or BIC indicate a better-fitting model. The number of times (out of 300 replications)
that each model is selected by a given criterion comes with Freq label. It can be observed
that all criteria tend to select the SMSN-BS model. Moreover, it is clear that the
performance of SMSN-BS significantly improves with larger sample size.

5 Illustration

Recently, the air quality of many big cities has seriously deteriorated. Research studies
show that some of air contaminant concentrations can be very harmful for human health.
For example, tropospheric ozone (O3) remains in the atmosphere for a long time and
irritates the respiratory system. The O3 can increase the severity of chronic respiratory
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Table 3: Comparison of averages and SDs of the log-likelihood maxima, AIC and BIC for dif-
ferent models, and frequencies supported by Criteria

n = 500 n = 1000

Criterion EBS SN-BS SMSN-BS EBS SN-BS SMSN-BS

`max Mean -513.52 -511.07 -468.50 -1030.88 -1025.97 -932.33

SD 15.97 16.07 27.29 21.11 21.29 40.12

Freq 0 31 269 0 15 285

AIC Mean 1033.04 1028.14 945.00 2067.76 2057.95 1872.66

SD 31.94 32.15 54.58 42.23 42.59 80.25

Freq 0 45 255 0 24 276

BIC Mean 1045.74 1040.84 961.93 2082.54 2072.74 1892.37

SD 31.94 32.15 54.58 42.23 42.59 80.25

Freq 0 47 253 0 29 271

Table 4: Descriptive statistics for the ozone data

Sample Standard
D’Agostino Anscombe

size
Mean

deviation
Skewness Kurtosis test Glynn test

(p-value) (p–value)

116 42.12 32.98 1.22 4.18
4.65 2.20

(< 1e− 4) (0.027)

diseases including bronchitis, and emphysema (WHO, 2006). Therefore modelling and
analysis of air pollution quantities can be helpful to decrease their effects.

Usually, air contaminant concentrations are considered as continuous positive random
variables. These random variables often show asymmetric PDF’s and present positive
skewness and high kurtosis. So symmetric models such as normal distribution are not
good choices for describing the environmental random variables. The BS distribution
and its generalizations have been largely applied to environmental data. For example,
see Leiva et al. (2008), Leiva et al. (2010), Balakrishnan et al. (2009), Vilca et al. (2010),
Vilca et al. (2011), and Ferreira et al. (2012).

To illustrate applicability of the SMSN-BS model and computational methods pro-
posed in this paper, we study the daily ozone concentrations in New York during May-
September 1973, used by Nadarajah (2008), provided by the New York State Department
of Conservation. Vilca et al. (2011) fitted the SN-BS distribution to these data and com-
pare it with the BS model. Table 4 contains descriptive statistics of these data. Results of
D’Agostino test (D’Agostino, 1970) for skewness, and Anscombe-Glynn test (Anscombe
and Glynn, 1983) for kurtosis suggest that the observed data could be more adequately
modelled by some specific skew distributions rather than the normal distribution.

We implemented the ECM algorithm described in Section 3 for fitting the SMSN-BS
distribution to the data set. For the sake of comparison, the BS, EBS, SN-BS, BS-logistic
(BS-LOG) and BS-t student (BS-T) distributions were are also fitted. For details of the
last two models see Leiva et al. (2008). The models are compared based on the `(θ̂), AIC
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Table 5: The ML estimates and information criteria for the ozone data. Here, ε refers
to additional shape parameters in the EBS, BS-T and SN-BS distributions.

Model α β ε γ δ `(θ̂) AIC SABIC

BS
0.9823 28.0234

– – –
–549.09 1102.19 1101.38

(0.064) (2.261)

BS-LOG
0.5292 30.4946

– – –
–544.35 1092.70 1091.89

(0.040) (2.459)

BS-T
0.8101 30.878 7.241

– –
–543.39 1092.78 1091.56

(0.073) (2.48) (3.38)

EBS
1.0308 75.402 0.669

– –
–545.11 1096.23 1091.89

(0.073) (11.83) (0.098)

SN-BS
1.2702 14.8351 1.0667

– –
–545.60 1097.21 1095.98

(0.236) (4.028) (0.534)

SMSN-BS
1.5224 11.2994

–
3.4067 2.4188 –540.84 1089.46 1087.83

(0.117) (0.972) (1.148) (2.222)

and sample size adjusted BIC (SABIC) criteria. When the sample size is not big enough
or distinguishing between two models is difficult, the BIC criterion is not suggested for
model selection. Dziak (2012) showed that in these cases, the SABIC is better than BIC
criterion. The SABIC is defined as

SABIC = m log

(
n+ 2

24

)
− 2`max,

where n is the sample size, m is the number of parameters, and `max is the maximized log-
likelihood, (Sclove, 1987). The above quantities along with the parameters’ estimates are
given in Table 5. The standard errors (SEs) of the ML estimates appear in parentheses.

The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests have been widely
used for goodness-of-fit tests. See Smirnov (1948) and Anderson and Darling (1954). The
latter test assigns more weights to the tails of a distribution, and thus it is preferable
for application in the case of the BS distribution and its generalizations. Values of these
statistics along with the corresponding p-values are reported in Table 6. Based on the
AIC and SABIC criteria, and the AD test, the SMSN-BS model provides the best fit for
the ozone data. Figure 2 shows the histogram for data, and density of the fitted models.
One can see that the SMSN-BS distribution has a good fit to data. Also in this figure,
profile log-likelihood of the shape parameters for the SMSN-BS model is plotted for
ozone data, where red triangle indicates the location of maximum of the log-likelihood
function. As it can be seen in this figure, the ML estimates for γ and δ are numerically
stable for these data, since there is a sharp peak in the perspective surface surrounding
the stationary point.

Moreover, for testing the null hypothesis H0 : γ = 0 against the alternative hypothesis
H1 : γ 6= 0, we calculate the likelihood ratio test (LRT) statistic as Λ = −2(`0 − `1),
where `0 (`1) is the maximum value of the log-likelihood function under H0 (H1). For the
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Table 6: Goodness of fit tests and corresponding p-values for the ozone data.

Test BS BS-LOG BS-T EBS SN-BS SMSN-BS

K-S test 0.08 0.065 0.063 0.068 0.062 0.064

(0.40) (0.70) (0.73) (0.63) (0.715) (0.70)

A-D test 1.34 0.51 0.49 0.68 0.819 0.47

(0.22) (0.73) (0.77) (0.57) (0.443) (0.78)
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Figure 2: Profile log-likelihood of the shape parameters for the SMSN-BS model. (Left)
Histograms of the data. The lines represent fitted densities using different
models (Right).

enough large sample size n, H0 is rejected at the significance level of 0.05 if Λ > χ2
1,0.05,

where χ2
1,0.05 = 3.84 is 95th percentile of chi-square distribution with one degree of

freedom. Under H0, the model is reduced to BS distribution for which `0 = −549.09.
Under H1, we have the SMSN-BS distribution for which `1 = −540.84. Thus Λ = 16.5,
and the null hypothesis is rejected at the significance level of 0.05.

Testing H0 : δ = 0 against H1 : δ 6= 0 can be done similarly. Under H0, the model is
reduced to SN-BS distribution for which `0 = −545.60. In this case, Λ = 9.52 and the
null hypothesis is again rejected at the significance level of 0.05. These results indicate
that both shape parameters γ and δ are significant for these data.

6 Conclusion

This article deals with a new extension of the BS distribution based on a shape mixture
of skew normal model. The main strength of this new distribution lies in the fact
that it offers additional flexibility in modelling data with varying degrees of peakedness
and tail heaviness. The likelihood function associated with the new model turns out
to be complicated. An EM-type algorithm is therefore presented to facilitate the ML



Electronic Journal of Applied Statistical Analysis 41

estimation method. Practical issues regarding specification of the starting values, the
stopping rule, and the provision of estimates’ SEs are also addressed. Properties of
the ML estimators, and flexibility of the proposed distribution are investigated using
numerical results. Application of the new model is illustrated using an environmental
data set. The proposed distribution can be generalized to multivariate setup. This will
be considered in a subsequent work.
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