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To reduce the effects of multicollinearity, the ridge regression model has
been efficiently demonstrated to be an attractive shrinkage method. The
gamma regression model is a widely used model in application when the
response variable is a positively skewed. However, it is known that the vari-
ance of maximum likelihood estimator of the gamma regression coefficients
can negatively affects when the multicollinearity exists. To deal with this
problem, a gamma ridge regression model (GRRM) has been proposed. The
performance of GRRM is fully depending on the shrinkage parameter. In this
paper, numerous selection methods of the shrinkage parameter are explored
and investigated. In addition, their predictive performances are considered.
Our Monte Carlo simulation results suggest that some estimators can bring
significant improvement relative to others, in terms of mean squared error
and prediction mean squared error.

keywords: Multicollinearity; ridge estimator; gamma regression model;
shrinkage; Monte Carlo simulation.

1 Introduction

In studying several real data problems, such as health-care economics, automobile insur-
ance claims, and medical science, gamma regression model (GRM) is a widely applied
model (De Jong and Heller, 2008; Dunder et al., 2018; Malehi et al., 2015). In specific,
GRM is used when the response variable under the study is not following the normal
distribution or the response variable is positively skewed. Consequently, the GRM as-
sumes that the response variable has a gamma distribution (Al-Abood and Young, 1986;
Wasef Hattab, 2016).
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In dealing with the GRM, it is assumed that there is no correlation among the re-
gressors. In practice, however, this assumption often does not holds, which leads to the
problem of multicollinearity. In the existence of multicollinearity, when estimating the
regression coefficients for GRM using the maximum likelihood (ML) method, the esti-
mated coefficients are usually become unstable with a high variance, and therefore low
statistical significance (Asar and Genç, 2015; Kurtoğlu and Özkale, 2016). Numerous
remedial methods have been proposed to overcome the problem of multicollinearity. The
ridge regression method (Hoerl and Kennard, 1970) has been consistently demonstrated
to be an attractive and alternative to the ML estimation method.

In classical linear regression models the following relationship is usually adopted

y = Xβ + ε, (1)

where y is an n × 1 vector of observations of the response variable, X = (x1, ...,xp) is
an n× p known design matrix of explanatory variables, β = (β1, ..., βp) is a p× 1 vector
of unknown regression coefficients, and ε is an n× 1 vector of random errors with mean
0 and variance σ2.

Ridge regression is a shrinkage method that shrinks all regression coefficients toward
zero to reduce the large variance (Asar and Genç, 2015; Batah et al., 2008). This is done
by adding a positive amount to the diagonal of XTX. As a result, the ridge estimator is
biased, but it guarantees a smaller mean squared error than the ML estimator. In linear
regression, the ridge estimator is defined as

β̂Ridge = (XTX + kI)−1XTy, (2)

where I is the identity matrix with dimension p × p and k ≥ 0 represents the ridge
parameter (shrinkage parameter). The ridge parameter, k, controls the shrinkage of
β toward zero. For larger value of k, the β̂Ridge estimator yields greater shrinkage
approaching zero (Hoerl and Kennard, 1970).

2 Statistical methodology

2.1 Gamma ridge regression model

Positively skewed data often arise in epidemiology, social, and economic studies. This
type of data consists of nonnegative values. Gamma distribution is a well-known distri-
bution that fits to such type of data. Gamma regression model (GRM) is used to model
the relationship between the positively skewed response variable and potentially regres-
sors (Uusipaikka, 2009; Algamal and Lee, 2017a,b; Algamal and Ali, 2017b,a; Kahya
et al., 2017a; Algamal, 2008; Algamal and Lee, 2015a,b,c; Algamal et al., 2017b; Kahya
et al., 2017b; Al-Fakih et al., 2015; Algamal et al., 2017a, 2016b, 2015, 2016a; Algamal,
2011; Algamal and Allyas, 2017; Al-Fakih et al., 2016; Algamal, 2017).

Let yi be the response variable and follows a gamma distribution with nonnegative
shape parameter θ2 and nonnegative scale parameter θ1, i.e. yi ∼ Gamma(θ2, θ1), then
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the probability density function is defined as

f (yi) =
θ1

Γ(θ2)
(θ1yi)

θ2−1e−θ1yi , yi ≥ 0, (3)

with E(y) = θ2/θ1 = µ and var(y) = θ2/θ
2
1 = µ2/θ2. Given that θ1 = θ2/µ, Eq. (3)

can re-parameterized as a function of the mean (µ) and the shape (θ2) parameters and
written depending on the exponential function as

f (yi) = EXP

{
yi(−1/µ)− log(−1/µ)

1/θ2
+ c(yi, θ2)

}
, (4)

where the canonical link function is −1/µ, the dispersion parameter is φ = 1/θ2 and
c(yi, θ2) = θ2 log(θ2) + θ2 log(yi) − log(yi) − log(Γ(θ2)). Gamma regression model is
usually modeled using the canonical link function (reciprocal), µi = −1/xTi β which is
expressed as a linear combination of regressors xi = (xi1, ..., xip)

T . The log link function,
µi = exp(xTi β), is alternatively used rather than the reciprocal link function because it
ensures that µi > 0.

The most common method of estimating the coefficients of GRM is to use the max-
imum likelihood method of Eq. (4). Given the assumption that the observations are
independent and µi = −1/xTi β, the log-likelihood function is given by

`(β) =
n∑
i=1

{
yix

T
i β − log(xTi β)

1/θ2
+ c(yi, θ2)

}
, (5)

the ML estimator is then obtained by computing the first derivative of the Eq. (5) and
setting it equal to zero, as

∂`(β)

∂β
=

1

θ2

n∑
i=1

[
yi −

1

xTi β

]
xi = 0. (6)

Unfortunately, the first derivative cannot be solved analytically because Eq. (6) is
nonlinear in β (Algamal and Lee, 2017a, 2015b; Algamal, 2012). The iteratively weighted
least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to obtain the
ML estimators of the gamma regression parameters. In each iteration, the parameters
are updated by

β(r+1) = β(r) + I−1(β(r))S(β(r)), (7)

where

S(β) = ∂`(β)/∂β

and

I−1(β) =
(
−E

(
∂2`(β)/∂β∂βT

))−1

. The final step of the estimated coefficients is defined as

β̂GRM = (XTŴX)−1XTŴû, (8)
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where Ŵ = diag(µ̂2i ) and û is a vector where ith element equals to ûi = µ̂i+((yi−µ̂i)/µ̂2i ).
The ML estimator is asymptotically normally distributed with a covariance matrix

that corresponds to the inverse of the Hessian matrix

cov(β̂GRM ) =

[
−E

(
∂2`(β)

∂βi ∂βk

)]−1

= φ (XTŴX)−1, (9)

where the dispersion parameter φ = 1/θ2 is estimated by (Uusipaikka, 2009)

φ̂ =
1

(n− p)

n∑
i=1

(
yi − µ̂i
µ̂i

)2

. (10)

The mean squared error (MSE) of Eq. (8) can be obtained as

MSE (β̂GRM ) = E(β̂GRM − β̂)T (β̂GRM − β̂)

= φ tr[(XTŴX)−1]

= φ
p∑
j=1

1
λj
,

(11)

where λj is the eigenvalue of the XTŴX matrix. In the presence of multicollinearity,
the matrix XTŴX becomes ill-conditioned leading to high variance and instability of
the ML estimator of the gamma regression parameters. As a remedy, the gamma ridge
regression model (GRRM) can be defined as

β̂GRRM = (XTŴX + kI)−1XTŴXβ̂GRM

= (XTŴX + kI)−1XTŴû,
(12)

where k ≥ 0. The ML estimator can be considered as a special estimator from Eq. (11)
with k = 0.

2.2 Estimating the shrinkage parameter k

The efficiency of ridge estimator is fully depending on k which controls the amount of
the shrinkage. For k = 0, the ML estimates are obtained. On the contrary, when k
takes large values, the influence of the shrinkage amount increases on the coefficient
estimates. In practice, it is better to estimate the value of k. Numerous methods are
available for estimating a ridge parameter, especially in linear regression. In this paper,
several methods are considered and extended to estimate the value of k in gamma ridge
regression model. The idea behind these used methods is obtained from the work by
Hoerl and Kennard (1970), Dorugade and Kashid (2010), Asar et al. (2014), and Bhat
(2016).

1. Hoerl et al. (1975); Hoerl and Kennard (1970) (HK1 and HK2), which are, respec-
tively, defined as

HK1 =
pσ̂2

α̂T α̂
, j = 1, 2, ..., p, (13)
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HK2 =
σ̂2

α̂2
max

, (14)

Where α̂ is defined as the jth element of γ β̂GRMand γ is the eigenvector of the

XTŴX matrix, α̂maxis the maximum value of α̂, and σ̂2 = (yi− µ̂i)/µ̂i
√
φ̂ (scaled

Pearson residual (Uusipaikka, 2009)).

2. Kibria et al. (2015) used several methods which were proposed by Kibria et al.
(2012) and Muniz and Kibria (2009)(K1-K12). They are, respectively, defined as

K1 = max

{
1

mj

}
, (15)

K2 = max {mj} , (16)

K3 =

p∏
j=1

{
1

mj

} 1
p

, (17)

K4 =

p∏
j=1

{mj}
1
p , (18)

K5 = median

{
1

mj

}
, (19)

K6 = median {mj} , (20)

K7 = max

{
1

qj

}
, (21)

K8 = max {qj} , (22)

K9 =

p∏
j=1

{
1

qj

} 1
p

, (23)

K10 =

p∏
j=1

{qj}
1
p , (24)

K11 = median

{
1

qj

}
, (25)

K12 = median {qj} , (26)

where mj =
√
σ̂2/α̂2

j and qj = λmax/(n− p)σ̂2 + λmaxα̂
2
j .

3. Dorugade and Kashid (2010) proposed to use variance inflation factor (VIF) by
adding it to the HK1. This method defined as

DK =
pσ̂2

α̂T α̂
− 1

n (VIFj)max

, (27)

where VIFj= 1/(1− R2
j ).
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4. Asar et al. (2014) proposed five modifications of ridge parameter. They are defined
as, respectively

A1 =
p2

λ2max

σ̂2

p∑
j=1

α̂2
j

, (28)

A2 =
p3

λ3max

σ̂2

p∑
j=1

α̂2
j

, (29)

A3 =
p

(λmax)1/3
σ̂2

p∑
j=1

α̂2
j

, (30)

A4 =
p

(
p∑
j=1

√
λi)

1/3

σ̂2

p∑
j=1

α̂2
j

, (31)

A5 =
2p√
λmax

σ̂2

p∑
j=1

α̂2
j

, (32)

5. Bhat (2016) proposed two modifications of HK1. They are defined as, respectively

B1 =
pσ̂2

α̂T α̂
+

1

λmaxα̂T α̂
, (33)

B2 =
pσ̂2

α̂T α̂
+

1

2
(√

λmax/λmax

)2 , (34)

3 Simulation study

In this section, a Monte Carlo simulation experiment is used to examine the performance
of these methods in GRRM with different degrees of multicollinearity.

3.1 Simulation design

The response variable of n observations from gamma regression model is generated by
Kurtoğlu and Özkale (2016)

yi ∼ Gamma(θ2/var, var/θ) (35)
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where θ = exp(XTβ), var denotes θ2, β = (β1, ..., βp) with
p∑
j=1

β2j = 1 and β1 = β2 = ... =

βp (Kibria, 2003). The explanatory variables xTi = (xi1, xi2, ..., xin) have been generated
from the following formula

xij = (1− ρ2)1l2wij + ρwip, i = 1, 2, ..., n, j = 1, 2, ..., p, (36)

where ρ represents the correlation between the explanatory variables and wijs are inde-
pendent standard normal pseudo-random numbers. Because the sample size has direct
impact on the prediction accuracy, three representative values of the sample size are
considered: 30, 50 and 100. In addition, the number of the explanatory variables is
considered as p = 4 and p = 8 because increasing the number of explanatory variables
can lead to increase the MSE. Further, because we are interested in the effect of multi-
collinearity, in which the degrees of correlation considered more important, three values
of the pairwise correlation are considered with ρ = {0.90, 0.95, 0.99}. For a combination
of these different values of n, p, and ρ the generated data is repeated 1000 times and the
averaged mean squared errors (MSE) is calculated as

MSE(β̂) =
1

1000

1000∑
i=1

(β̂GRRM − β)T (β̂GRRM − β). (37)

Additionally, the predictive performance according to the prediction mean squared
error (PMSE) of the gamma ridge regression models depending on the type of selecting
k is calculated. The PMSE is defined by

PMSE(ŷGRRM) =
1

1000

1000∑
i=1

(exp(Xβ̂GRRM)− exp(Xβ))(exp(Xβ̂GRRM)− exp(Xβ))T .

(38)

3.2 Simulation results

The estimated MSE of Eq. (35) and PMSE of Eq. (36) for all the different selection
methods of k and the combination of n, p, and ρ, are respectively summarized in Tables
1-6. Several observations can be obtained as follows:

1. In terms of ρ values, there is increasing in the MSE and PMSE values when the
correlation degree increases regardless the value of n and p.

2. Regarding the number of regressors, it is easily seen that there is a negative impact
on both MSE and PMSE, where there are increasing in their values when the p
increasing from four regressors to eight regressors.

3. With respect to the value of n, The MSE and PMSE values decrease when n
increases, regardless the value of ρand p.

4. All the selection methods of k are superior to the ML estimator in terms of both
MSE and PMSE.
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5. Clearly, in terms of MSE, K2 and K8 improved the performance of the gamma ridge
regression compared to ML estimator in all the cases without any domination.
In contrast, A2 estimator attained poor results comparing with the other used
estimators in all cases.

6. For comparisons between the modification estimators of HK1, i.e. DK, B1 and B2,
it is seen that B2 achieves the lowest MSE and PMSE compared to DK and B1

whilst DK obtains the highest MSE and PMS among them.

7. In terms of PMSE, K8 noticeably shows large reduction amongst others. On the
other hand, A2 appears in the second position for all cases.

Table 1: MSE values when n = 30

Method p = 4 p = 8

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 1.376 2.737 3.386 9.479 12.306 13.323

HK1 1.244 2.804 2.977 4.361 4.761 5.791

HK2 1.295 2.897 3.044 4.157 9.687 10.704

K1 1.310 1.325 2.847 5.189 3.911 4.928

K2 1.022 2.222 2.901 1.111 1.149 2.166

K3 1.354 2.554 2.614 8.685 9.378 10.395

K4 1.196 2.396 2.640 2.843 2.883 3.907

K5 1.331 2.531 2.701 8.533 8.667 9.684

K6 1.238 2.438 2.876 3.114 3.595 4.612

K7 1.367 2.567 2.802 2.272 3.395 4.412

K8 1.014 2.214 2.981 1.642 1.718 2.735

K9 1.373 2.573 2.772 8.691 9.347 10.364

K10 1.047 2.247 2.664 2.834 2.856 3.873

K12 1.371 2.571 2.618 8.914 9.331 10.348

DK 1.241 2.444 2.480 4.358 4.751 5.768

A1 1.377 2.577 3.386 9.479 12.305 13.322

A2 1.379 2.579 3.388 9.482 12.306 13.323

A3 1.345 2.545 3.193 8.211 10.206 11.223

A4 1.317 2.517 2.972 7.031 8.244 9.261

A5 1.351 2.551 3.223 8.552 10.761 11.778

B1 1.243 2.443 2.469 4.360 4.749 5.766

B2 1.238 2.438 2.466 4.302 4.669 5.686
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Table 2: MSE values when n = 50

Method p = 4 p = 8

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 1.387 2.582 3.175 9.428 11.776 13.283

HK1 1.185 2.737 2.724 4.309 4.497 5.722

HK2 1.236 2.732 2.781 4.295 9.117 10.654

K1 1.251 1.158 2.584 5.127 5.341 4.878

K2 0.963 2.055 2.638 1.049 1.579 2.116

K3 1.295 2.387 2.351 8.623 8.808 10.345

K4 1.137 2.229 2.377 2.781 2.913 3.857

K5 1.272 2.364 2.438 8.471 8.597 9.634

K6 1.179 2.271 2.613 3.052 3.125 4.562

K7 1.308 2.404 2.539 2.212 2.825 4.362

K8 0.955 2.047 2.718 1.582 1.648 2.685

K9 1.314 2.406 2.509 8.629 8.777 10.314

K10 0.988 2.082 2.401 2.772 2.886 3.823

K11 1.312 2.404 2.355 8.852 8.861 10.298

DK 1.182 2.277 2.217 4.299 4.381 5.718

A1 1.318 2.411 3.123 9.417 11.735 13.272

A2 1.322 2.416 3.128 9.418 11.736 13.273

A3 1.286 2.378 2.931 8.149 9.636 11.173

A4 1.258 2.352 2.709 6.969 7.674 9.211

A5 1.292 2.384 2.961 8.491 10.191 11.728

B1 1.184 2.276 2.283 4.299 4.379 5.716

B2 1.179 2.271 2.236 4.243 4.369 5.636
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Table 3: MSE values when n = 100

Method p = 4 p = 8

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 3.358 4.445 5.962 9.395 11.266 13.241

HK1 1.136 2.441 2.651 4.277 4.678 5.768

HK2 1.177 1.565 2.518 4.233 8.547 10.604

K1 1.192 0.991 2.321 5.065 4.771 4.828

K2 0.904 1.888 2.375 0.987 1.009 2.066

K3 1.236 2.22 2.088 8.561 8.238 10.295

K4 1.078 2.062 2.114 2.719 2.343 3.807

K5 1.213 2.197 2.175 8.409 8.527 9.584

K6 1.12 2.104 2.35 2.99 2.555 4.512

K7 1.249 2.237 2.276 2.151 2.255 4.312

K8 0.896 1.881 2.455 1.521 1.678 2.635

K9 1.255 2.239 2.246 8.567 8.207 10.264

K10 0.929 1.913 2.138 2.711 2.816 3.773

K11 1.253 2.237 2.092 8.79 8.291 10.248

DK 1.126 2.111 1.954 4.237 4.811 5.668

A1 1.259 2.244 2.861 9.352 11.165 13.222

A2 1.261 2.247 2.866 9.357 11.169 13.231

A3 1.227 2.211 2.668 8.087 9.066 11.123

A4 1.199 2.185 2.446 6.907 7.104 9.161

A5 1.233 2.217 2.698 8.429 9.621 11.678

B1 1.125 2.109 2.481 4.237 4.829 5.686

B2 1.121 2.104 2.473 4.181 4.809 5.566
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Table 4: PMSE values when n = 30

Method p = 4 p = 8

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 8.663 8.875 9.026 8.871 8.986 9.255

HK1 4.112 4.238 4.489 4.329 4.457 4.798

HK2 4.323 4.432 4.686 4.532 4.646 4.915

K1 4.385 4.494 4.748 4.592 4.708 4.977

K2 3.096 3.205 3.459 3.303 3.419 3.688

K3 4.572 4.681 4.935 4.779 4.895 5.164

K4 3.894 4.003 4.257 4.101 4.217 4.486

K5 4.474 4.583 4.837 4.681 4.797 5.066

K6 4.079 4.188 4.442 4.286 4.402 4.671

K7 4.624 4.733 4.987 4.831 4.947 5.216

K8 3.059 3.168 3.422 3.266 3.382 3.651

K9 4.647 4.756 5.011 4.854 4.971 5.239

K10 3.209 3.318 3.572 3.416 3.532 3.801

K11 4.639 4.748 5.002 4.846 4.962 5.231

DK 4.106 4.215 4.469 4.313 4.429 4.698

A1 4.663 4.772 5.026 4.871 4.986 5.255

A2 4.691 4.801 5.102 4.886 4.989 5.257

A3 4.534 4.643 4.897 4.741 4.857 5.126

A4 4.417 4.526 4.781 4.624 4.741 5.009

A5 4.554 4.663 4.917 4.761 4.877 5.146

B1 4.081 4.212 4.464 4.308 4.424 4.693

B2 4.101 4.192 4.444 4.288 4.404 4.673



264 Algamal

Table 5: PMSE values when n = 50

Method p = 4 p = 8

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 8.367 8.415 8.808 8.771 9.086 9.138

HK1 4.111 4.211 4.486 4.322 4.711 4.817

HK2 4.226 4.335 4.589 4.433 4.549 4.818

K1 4.288 4.397 4.651 4.495 4.611 4.881

K2 2.999 3.108 3.362 3.206 3.322 3.591

K3 4.475 4.584 4.838 4.682 4.798 5.067

K4 3.797 3.906 4.161 4.004 4.122 4.389

K5 4.377 4.486 4.741 4.584 4.701 4.969

K6 3.982 4.091 4.345 4.189 4.305 4.574

K7 4.527 4.636 4.892 4.734 4.852 5.119

K8 2.962 3.071 3.325 3.169 3.285 3.554

K9 4.552 4.659 4.913 4.757 4.873 5.142

K10 3.112 3.221 3.475 3.319 3.435 3.704

K11 4.542 4.651 4.905 4.749 4.865 5.134

DK 4.009 4.118 4.372 4.216 4.332 4.601

A1 4.566 4.675 4.929 4.773 4.888 5.154

A2 4.582 4.679 4.931 4.779 4.889 5.158

A3 4.437 4.546 4.802 4.644 4.762 5.029

A4 4.322 4.429 4.683 4.527 4.643 4.912

A5 4.457 4.566 4.822 4.664 4.782 5.049

B1 4.004 4.113 4.367 4.211 4.327 4.596

B2 3.984 4.093 4.347 4.191 4.307 4.576
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Table 6: PMSE values when n = 100

Method p = 4 p = 8

ρ = 0.90 ρ = 0.95 ρ = 0.99 ρ = 0.90 ρ = 0.95 ρ = 0.99

ML 8.173 8.509 8.773 8.608 8.882 9.107

HK1 4.023 4.132 4.386 4.231 4.346 4.615

HK2 4.241 4.349 4.603 4.447 4.563 4.832

K1 4.302 4.411 4.665 4.509 4.625 4.894

K2 3.013 3.122 3.376 3.221 3.336 3.605

K3 4.489 4.598 4.852 4.696 4.812 5.081

K4 3.811 3.922 4.174 4.018 4.134 4.403

K5 4.391 4.501 4.754 4.598 4.714 4.983

K6 3.996 4.105 4.359 4.203 4.319 4.588

K7 4.541 4.651 4.904 4.748 4.864 5.133

K8 2.976 3.085 3.339 3.183 3.299 3.568

K9 4.564 4.673 4.927 4.771 4.887 5.156

K10 3.126 3.235 3.489 3.333 3.449 3.718

K11 4.556 4.665 4.919 4.763 4.879 5.148

DK 4.013 4.103 4.354 4.212 4.329 4.601

A1 4.582 4.685 4.939 4.783 4.903 5.168

A2 4.586 4.6899 4.943 4.787 4.904 5.172

A3 4.451 4.562 4.814 4.658 4.774 5.043

A4 4.334 4.443 4.697 4.541 4.657 4.926

A5 4.471 4.581 4.834 4.678 4.794 5.063

B1 4.018 4.127 4.381 4.225 4.341 4.611

B2 3.998 4.107 4.361 4.205 4.321 4.591

4 Conclusion

In this paper, numerous selection methods of the shrinkage parameter are explored and
investigated of gamma ridge regression model. In addition, their predictive performances
are considered. According to Monte Carlo simulation studies, it has been seen that
some estimator can bring significant improvement relative to others, in terms of MSE
and PSEM. The K2 and K8 improved the performance of the gamma ridge regression
compared to ML estimator in all the cases without any domination but with superiority
of K8 in terms of PMSE. In contrast, A2 estimator showed poor results comparing with
others in all cases. Besides, B2 achieves the lowest MSE and PMSE compared to DK
and B1 whilst DK obtains the highest MSE and PMS among them. In conclusion, the
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use of these estimators is recommended when multicollinearity is present in the gamma
ridge regression model.
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