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The purpose of this paper is to provide a semi parametric approach namely
hybrid method combining the Partial Least Squares and the Bayesian ap-
proaches to estimate the Structural Equation Models. The aim advantage of
this new method is to overcome the assumption of normality that is required
in Bayesian approach. The results obtained from an application on simulated
and on real data show that our proposed method outperforms both PLS and
Bayesian approaches in terms of standard errors.
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1 Introduction

Structural Equation Models (SEMs) are growing family of statistical methods for mod-
eling the relations between endogenous and exogenous variables . These variables can be
observed or unobserved (latent) (Hoyle, 2012). Thus, SEM is a collection of statistical
techniques that provide a set of tools for researchers in social sciences, behavioral and
other disciplines (Yanuar, 2014). The traditional methods in estimating SEM parame-
ters can be divided into three families: parametric, nonparametric and semiparametric
methods.

Concerning the parametric family methods, we find the LISREL (LInear Structural
RELationships) (Jöreskog, 1970), which is considered the first method used in the context
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of estimating SEM parameters. It is based essentially on the estimation of the covariance
matrix using often the likelihood function that imposes the assumption of normality and
the independence of observations. This method requires a large sample size (Reinartz
et al., 2009) and a non complex model. Further, the model identification is always
problematic.

Another estimation method in this family is the Bayesian approach (Lee and Song,
2004; Dunson, 2000) that is dedicated to the explanation of the model. This approach is
based on the prior and posterior distributions in the estimation phase, and it has several
advantages such as: use of prior information that is available in the data, can give more
reliable results for small samples and also for complex models (Lee and Song, 2004).
However, this method requires the fixation of some parameters to achieve the goal of
model identification. Furthermore, the latent variables are assumed to be independent
and normally distributed.

For the non parametric methods, we refer to the Partial Least Squares (PLS) approach
(Wold, 1982, 1985) which has been considered as an approach oriented toward prediction
(Jöreskog and Wold, 1982). Unlike the parametric methods, PLS requires no assumption
on the distribution of data and on model identification. Additionally, the PLS can be a
powerful estimation method in case of small samples and models with high complexity
(Sarstedt et al., 2014). A review of applications of PLS approach is given by Hair et al.
(2012) and Nitzl (2016).

To overcome some assumptions required in parametric methods, different semipara-
metric approaches have been presented in the literature. We cite for example the Gen-
eralized Maximum Entropy (GME) for the SEM proposed by Ciavolino and Al-Nasser
(2009), this method is oriented to maximize the expected self information using the
maximum entropy. For more details on the GME method and its applications, see Pa-
palia and Ciavolino (2011), Ciavolino et al. (2015), Ciavolino and Dahlgaard (2009) and
Ciavolino and Carpita (2015). Another approach, in this context, proposed by Yang and
Dunson (2010) namely Bayesian semiparametric SEM, based on the Dirichlet Process.
The aim advantage of this method is that it allows the latent variables to have unknown
distributions.

In this paper, we will present another solution to the normality problem of latent
variables by constructing a semiparametric approach based on combination of the PLS
and the Bayesian approaches.

In the following, we will first present the basic concepts of SEM. Then, we recall
briefly the PLS and Bayesian methods and we present a new hybrid method to estimate
the SEMs. We also highlight its advantages compared with the classical Bayesian one.
Finally, an application on simulated and on real data will be discussed. The proofs of
posterior distributions used in the proposed method are reported in the Appendix.
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2 Basic concepts of SEM

Let J blocks of manifest variables (MVs) decomposed into Xi
k = (xik1, ..., x

i
kpk

), k =

1, ..., q and Y i
j = (yij1, ..., y

i
jpj

), j = q + 1, ..., J with i = 1, ..., n and n is the sample size,

where Xi
k constitutes the observable expression of a standardized exogenous latent vari-

able (LV) ξk = (ξ1k, ξ
2
k, ..., ξ

n
k ), k = 1, ..., q and Y i

j constitutes the observable expression

of a standardized endogenous LV ηj = (η1j , η
2
j , ..., η

n
j ), j = q + 1, ..., J .

In the following, we denote by:

- p = p1 + p2 + ...+ pq + pq+1 + ...+ pJ the number of MVs,

- Zi = [Xi
1,X

i
2, ...,X

i
q, Y

i
q+1, Y

i
q+2, ..., Y

i
J ]

′
, i = 1, ..., n the matrix of observed data,

- Ω = [ξ
′
1, ξ

′
2, ..., ξ

′
q, η

′
q+1, η

′
q+2, ..., η

′
J ]

′

= [ω1, ω2, ..., ωn] the set of LVs in the SEM,

where ωi = (ξi1, ξ
i
2, ..., ξ

i
q, η

i
q+1, ..., η

i
J)
′
, i = 1, ..., n .

Commonly, the SEM is presented by two submodels, the measurement (outer) and
the structural (inner) models.

2.1 Measurement model

The measurement model is the part of the SEM that examines relationship between the
LVs and their MVs.

We will adopt two different formulas for this model, (1) and (2); one will be used for
the PLS approach and the other for the Bayesian one.

Each block of MVs is related to its LV by a simple regression equation as following,

{
(Xi

k)
′

= Λxkξ
i
k + εik

k = 1, · · · , q , i = 1, · · · , n
and

{
(Y i
j )

′
= Λyj η

i
j + εij

j = q + 1, · · · , J , i = 1, · · · , n
(1)

where

- Λxk = (λxk1, λ
x
k2, ..., λ

x
kpk

)
′

, k = 1, · · · , q and Λyj = (λyj1, λ
y
j2, ..., λ

y
jpj

)
′

, j = q+ 1, · · · , J
are the vectors of regression parameters (loadings),

- εik and εij are the error terms assumed to be uncorrelated with ξk and ηj respectively,
and are normally distributed.

The formulas (1) can be presented as follows,

Zi = Λωi + εi , i = 1, ..., n , (2)

where
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- Zi is a (p× 1) observed random vector,

- Λ is a (p× J) factor loading matrix,

- ωi is a (J × 1) random vector of LVs,

- εi is a (p× 1) random vector of the measurement errors which is independent of ωi ,

- It is assumed that εi ∼ N (0,Ψε) .

In the measurement model, we should assess the reliability of any constructs. Three
reliability measures are used in this paper: Cronbach’s alpha, Composite reliability and
Average variance extracted; for more details see, for example, Fornell and Larcker (1981)
and Chin (1998).

The formulas of these measures are presented in the following only for the MVs asso-
ciated with exogenous LVs. The same procedure is applied to calculate these coefficients
for the MVs associated with endogenous LVs.

• Cronbach’s alpha

For each block of standardized MVs, the formula of Cronbach’s alpha can be written
as, 

αk =

∑
h6=h′

cor(xkh, xkh′ )

pk +
∑
h6=h′

cor(xkh, xkh′ )

pk
pk − 1

k = 1, · · · , q , h, h
′ ∈ {1, 2, ..., pk}

(3)

• Composite Reliability

Let us suppose that all the MVs and the LVs are standardized, the Composite Relia-
bility CR for each block is then defined by,

CRk =

(

pk∑
h=1

λxkh)2

(

pk∑
h=1

λxkh)2 +

pk∑
h=1

var(εkh)

k = 1, · · · , q

(4)

• Average Variance Extracted

Assuming standardized manifest and latent variables, the Average Variance Extracted
AVE for each block is calculated as follows,

AV Ek =

pk∑
h=1

(λxkh)2

pk∑
h=1

(λxkh)2 +

pk∑
h=1

var(εkh)

k = 1, · · · , q

(5)
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2.2 Structural model

The structural model allows to examine the relationships between endogenous and ex-
ogenous LVs by the following equation,

ηi = Bηi + Γξi + δi or ηi = Λωωi + δi , i = 1, ..., n , (6)

where

- ξi = (ξi1, ..., ξ
i
q)
′

, ηi = (ηiq+1, ..., η
i
J)
′

, i = 1, ..., n ,

- Λω = (B,Γ),

- ωi = (ξi, ηi)
′

= (ξi1, ξ
i
2, ..., ξ

i
q, η

i
q+1, ..., η

i
J)
′
,

- B is a ((J − q)× (J − q)) matrix of structural parameters governing the relationship
among the endogenous LVs,

- Γ is ((J − q) × q) a regression parameter matrix relating the endogenous LVs and
exogenous LVs,

- δi ∼ N (0,Ψδ) is a vector of the measurement errors.

In the following sections, we are interested in the estimation of LVs Ω and the un-
knowns parameters θ = (Λ,Λω,Ψε,Ψδ) .

3 PLS approch

PLS approach is one of the tools used to estimate the parameters of Structural Equation
Models, which was proposed by Wold (1982, 1985). A detailed theoretical presentation
of this approach is given by Tenenhaus et al. (2005).

The PLS model is decomposed into two submodels, measurement and structural mod-
els as defined in (1) and (6) respectively. The estimation of LVs Ω contained in these
models is based on the following iterative PLS algorithm composed by two steps:

•Step 1: outer estimate of LVs.

The standardized LVs ξk and ηj are estimated as linear combinations of their centered
MVs, as follows:

{
ξ̂ik
out

= Xi
kπk

k = 1, · · · , q , i = 1, · · · , n
and

{
η̂ij
out

= Y i
j πj

j = q + 1, · · · , J , i = 1, · · · , n
(7)

where πk = (πk1, πk2, ..., πkpk)
′

, k = 1, · · · , q and πj = (πj1, πj2, ..., πjpj )
′

, j =
q + 1, · · · , J are the external weights.

The external weights πk and πj require initial values and to update these weights we
use either Mode A or Mode B as described follows,
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Mode A:{
πkl = Cov(xkl, ξ̂k

int
)

k = 1, · · · , q , l = 1, ..., pk
and

{
πjh = Cov(yjh, η̂j

int)

j = q + 1, · · · , J , h = 1, ..., pj
(8)

Mode B: {
πk = (X

′
kXk)

−1X
′
kξ̂k

int

k = 1, · · · , q
and

{
πj = (Y

′
j Yj)

−1Y
′
j η̂j

int

j = q + 1, · · · , J
(9)

where ξ̂k
int

and η̂j
int are the inner estimates of LVs given below.

Note that the Mode A is appropriate for a block with a reflective measurement model
and mode B for a formative one.

• Step 2: inner estimate of LVs.

- The inner estimate of the standardized LV ξk is defined by:

{
ξ̂ik
int

=
∑J

j=q+1 ckjekj η̂
i
j

out

k = 1, · · · , q , i = 1, · · · , n
(10)

where ckj = 1 if ξk is connected with ηj and ckj = 0 otherwise. And ekj is an internal
weight.

- The inner estimate of the standardized LV ηj is given by:

{
η̂ij
int

=
∑q

k=1 cjkejkξ̂
i
k

out
+
∑

h6=j cjhejhη̂
i
h

out

j, h ∈ {q + 1, · · · , J} , i = 1, · · · , n
(11)

where cjk = 1 if ηj is connected with ξk and cjk = 0 otherwise; and cjh = 1 if ηj is
connected with ηh and cjh = 0 otherwise. ejk and ejh are internal weights.

The internal weights can be selected using one of the schemes as defined in Tenenhaus
et al. (2005), namely centroid scheme, factorial scheme and structural scheme.

Afterwards, the parameters θ are estimated by simple and multiple regressions.

3.1 Model validation

The SEM, in case of PLS approach, can be validated at three levels: the quality of the
measurement model, the quality of the structural model, and the quality of the global
model. Usually, these qualities are quantified with the following coefficients.

Note that these coefficients can be calculated also for Bayesian and hybrid approaches
presented in the next sections.

• Communality
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The communality H2 (Vinzi et al., 2010) evaluates the quality of the measurement
model for each block. For each block, it is defined by the following formula:

{
H2
k = 1

pk

∑pk
l=1 cor

2(xkl, ξ̂k
out

)

k = 1, · · · , q
and

{
H2
j = 1

pj

∑pj
h=1 cor

2(yjh, η̂j
out)

j = q + 1, · · · , J
(12)

where ξ̂k
out

= (ξ̂1k
out
, ξ̂2k

out
, ..., ξ̂nk

out
) and η̂j

out = (η̂1j
out
, η̂2j

out
, ..., η̂nj

out
) .

This index represents the variance proportion of MVs explained by their associated
LVs.

• Redundancy

The redundancy F 2 (Vinzi et al., 2010) evaluates the quality of the structural model
for each endogenous block, taking into account the measurement model. It is defined as:

F 2
j = H2

j ×R2
j , j = q + 1, ..., J , (13)

where R2
j is the coefficient of determination between the endogenous variable η̂j

out and

all LVs that explain η̂j
out.

• GoF index

A global index of Goodness-of-Fit (GoF)(Tenenhaus et al., 2004), can be proposed as
the geometric mean of the average communality (H2) and the average of the determi-
nation coefficient (R2) associated to the endogenous LVs :

GoF =

√
H2 ×R2 (14)

The GoF designed as an index for validating the PLS model globally. According to
Wetzels et al. (2009), a PLS model is considered as valid when the GoF is greater than
0.36 .

4 Bayesian approach of SEM

The Bayesian approach of SEM has been proposed , especially using a Markov Chain
Monte Carlo (MCMC), by a number of authors; for example, Lee and Song (2003, 2004),
Ansari et al. (2000), Dunson (2000), Jedidi and Ansari (2001). In this approach, the set
of unknown parameters in the SEM model are regarded as random, and the Bayesian
solution is obtained via the analysis of the posterior density of these parameters.

Similarly to the other methods, the Bayesian approach is decomposed into two sub-
models, measurement and structural models as defined in (2) and (6) respectively.
The main hypothesis of the Bayesian approach is to assume that the LVs ωi are mu-
tually independent and normally distributed N (0,Φ). The expression of θ becomes
θ = (Λ,Λω,Ψε,Ψδ,Φ).
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In the Bayesian approach procedure, all LVs Ω in the model are treated as hypothetical
missing data, then using the posterior analysis on the basis of the augmented complete
dataset (Z,Ω) (Lee and Song, 2004), where
Z = (Z1, Z2, ..., Zn)

′
.

To obtain the estimation of θ from Bayesian approach, we apply firstly the Gibbs sam-
pler then we check the convergence of this algorithm, afterward the Bayesian estimates
are given by the mean of the posterior density of θ given Z.

4.1 Gibbs sampler

The Gibbs sampler is a Markov Chain algorithm used to generate a sequence of random
observations from the joint posterior distribution p(θ,Ω/Z) of θ and Ω given Z. It is
implemented as follows,

- Initialization:
The algorithm begins with arbitrary initial values Ω(0) and θ(0) ,

- At the (j + 1)th iteration, by using the current values Ω(j) and θ(j) ,

• Step 1 : Generate a random variable Ω(j+1) from the conditional distribution
p(Ω/θ(j),Z)

• Step 2 : Generate a random variable θ(j+1) from the conditional distribution
p(θ/Ω(j+1),Z)

In this algorithm, we need to select the prior distribution of θ. In this article, we
choose the prior distribution for θ via the following conjugate type distribution; more
details for the prior information are given by Lee (2007). We denote by,

- ψεk: the kth diagonal elements of Ψε ,

- Λ
′
k : the kth row of Λ ,

- ψδk: the kth diagonal elements of Ψδ and Λ
′
ωk be the kth row of Λω .

The prior distributions for all parameters in θ are given by:



ψ−1εk ∼ Γ(α0εk, β0εk) ,

ψ−1δk ∼ Γ(α0ωk, β0ωk) ,

(Λk/ψεk) ∼ N (Λ0k, ψεkH0zk) ,

(Λωk/ψδk) ∼ N (Λ0ωk, ψδkH0ωk) ,

Φ ∼ Wq(R
−1
0 , ρ0) ,

(15)

where Γ(., .), N (., .) and W(., .) denote respectively Gamma, Normal and Wishart
distributions, and α0εk, α0ωk, β0εk, β0ωk, H0zk, H0ωk, R0 and ρ0 are the associated
hyperparameters.
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The derivation of the conditional distribution that is required in the Gibbs sampler
process is discussed by Lee (2007) and Song and Lee (2012). And these posterior distri-
butions are given by:



(ωi/Z
i,Λ,Ψε,Φ) ∼ N ((Φ−1 + Λ

′
Ψ−1

ε Λ)−1Λ
′
Ψ−1

ε Zi, (Φ−1 + Λ
′
Ψ−1

ε Λ)−1) ,

(Φ/Z,Ω) ∼ IW(ΩΩ
′

+R−1
0 , ρ0 + n) ,

(ψ−1
εk /Z,Ω) ∼ Γ(n2 + α0εk, βεk) ,

(Λk/Z,Ω, ψ
−1
εk ) ∼ N (ak, ψεkAk) ,

(ψ−1
δk /Ω) ∼ Γ(n2 + α0δk, βδk) ,

(Λωk/Ω, ψ
−1
δk ) ∼ N (aωk, ψδkAωk) ,

(16)

where

- IW denotes the inverse Wishart distribution,

- Ak = (H−10zk + ΩΩ
′
)−1 ,

- ak = Ak(H
−1
0zkΛ0k + ΩZk) ; (with Z

′
k is the kth row of Z) ,

- βεk = β0εk + 1
2 [Z

′
kZk − a

′
kA
−1
k ak + Λ

′
0kH

−1
0zkΛ0k] ,

- Aωk = (H−10ωk + ΩΩ
′
)−1 ,

- aωk = Aωk(H
−1
0ωkΛ0ωk + ΩΩ1k) ,

- βδk = β0δk + 1
2 [Ω

′
1kΩ1k − a

′
ωkA

−1
ωkaωk + Λ

′
0ωkH

−1
0ωkΛ0ωk] .

4.2 Convergence of Gibbs sampler

Under mild regularity conditions (Song and Lee, 2012), the joint distribution
p(Ω(j),θ(j)/Z) of Ω(j) and θ(j) given Z converges to the desired posterior distribution
p(θ,Ω/Z) after a sufficiently large number of iterations J (Song and Lee, 2012). This
number J can be determined by:

1) Plots of the simulated sequences of the individual parameters. At convergence,
parallel sequences generated with different starting values should mix well together(Song
and Lee, 2012).

2) Generate several parallel sequences of observations with different starting values.
Then, computing the ”Estimated Potential Scale Reduction (EPSR)” values. The whole
simulation procedure is considered to be converged if all the EPSR values are less than
1.2. For more details on this index, see Lee and Song (2004) and Lee (2007).
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4.3 Bayesian estimate of θ

The Bayesian estimate of θ (or each unknown parameter in θ), denoted by θ̂B, is obtained
by the mean of the posterior density p(θ|Z) of θ given Z. Theoretically, this estimate
could be obtained through integration. However, it is often difficult to do it explicitly.
To avoid this problem, monte carlo simulation methods should be appealed. In fact,
a sufficiently large number of draws from p(θ|Z) are simulated using Gibbs sampler.
After that, the mean and/or other useful statistics can be approximated through the
simulated observations (Song and Lee, 2012).
The convergence of the Gibbs sampler allows us to collect T observations
(θ(1), · · · ,θ(T )). Thereby, the Bayesian estimate of θ is obtained by calculating the
average of these T simulated observations. The same procedure is applied to estimate
the set of LVs Ω.

5 A hybrid method for SEM

We present now our proposed hybrid method which combine the two methods previously
presented (PLS and Bayesian). The aim advantage is to overcome the assumptions on
normality and independence of LVs required in classical Bayesian approach. For this
purpose, the PLS method is an efficient alternative especially because it also overcomes
the problem of model identification. Otherwise, we take advantage of the fact that the
Bayesian method allows the use of prior information. As a consequence of combination
of the two methods, our approach provides reliable results for small samples and complex
models. Finally, using the Gibbs sampler only for the estimation of unknown parameters
provides a gain in terms of algorithm complexity.

The process of this technique can be decomposed into two steps:
- The first step consists to obtain the scores of LVs by PLS technique, so the SEM can
be treated as familiar regression models (or simultaneous equation models) without LVs.
- The second step allows to obtain the estimates of unknown parameters by using
Bayesian approach.

In the following,

- ξplsk = (ξ1 plsk , ξ2 plsk , ..., ξn plsk ), k = 1, ..., q denote the exogenous LVs scores obtained by
the PLS approach.

- ηplsj = (η1 plsj , η2 plsj , ..., ηn plsj ), j = q + 1, ..., J denote the endogenous LVs scores ob-
tained by the PLS approach.
We note that ξplsk and ηplsj are treated as observed variables in this case.

- Ωpls = [(ξpls1 )
′
, (ξpls2 )

′
, ..., (ξplsq )

′
, (ηplsq+1)

′
, (ηplsq+2)

′
, ..., (ηplsJ )

′
]
′

= [ωpls1 ,ωpls2 , ...,ωplsn ] the set of LVs scores,

where ωplsi = (ξi pls1 , ξi pls2 , ..., ξi plsq , ηi plsq+1 , ..., η
i pls
J )

′
, i = 1, ..., n .

As previous approaches, SEM in the case of the hybrid method can be presented by
two submodels:
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5.1 Measurement model

The regression equation linking the scores of LVs and their observations is given as
follows:

Zi = Λωplsi + εi , i = 1, ..., n , (17)

or

Z = Σβ + ε , (18)

where

- Z = (Z1, Z2, ..., Zn)
′

is a (n× p) matrix of observed data,

- Σ = (Ωpls)
′

is a (n× J) matrix of LVs scores,

- β = Λ
′

is a (J × p) matrix of regression parameters,

- ε = (ε1, ..., εn)
′

is a (n× p) matrix of measurement error, assumed to be N(0,Ψε) .

5.2 Structural model

The scores of LVs are linked between them by the following equations:

ηi pls = Bηi pls + Γξi pls + δi or ηi pls = Λωω
pls
i + δi , i = 1, ..., n , (19)

or

ηpls = Σβω + δ , (20)

where

- ξi pls = (ξi pls1 , ξi pls2 , ..., ξi plsq )
′

, ηi pls = (ηi plsq+1 , ..., η
i pls
J )

′
,

- ηpls = (η1 pls,η2 pls, ...,ηn pls)
′

is a (n× (J − q)) matrix of endogenous LVs scores,

- βω = Λ
′
ω = (B,Γ)

′
is a (J × (J − q)) matrix of regression parameters,

- δ is a (n× (J − q)) matrix of measurement error, assumed to be N(0,Ψδ) .

We note, in the following, θ = (β,βω,Ψε,Ψδ) the unknown parameters contained in
the SEM. We will estimate these parameters θ by Bayesian method using Gibbs sampler.
In order to simplify the estimation of θ, the equations (18) and (20) will be separately
estimated; therefore θ will be decomposed into: θ1 = (β,Ψε) and θ2 = (βω,Ψδ).
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5.3 Estimation of the parameter θ1 in the regression model (18)

The Bayesian estimate of θ1 can be obtained by applying the ”Gibbs sampler” algorithm,

we generate a sufficiently large sample of θ1 noted (θ
(1)
1 , θ

(2)
1 , · · · , θ(T )1 ), from the

posterior density p(θ1/Z,Σ) of θ1 given Z and Σ , as follows,

- Initialization:
The algorithm begins with arbitrary initial values θ

(0)
1 = (β(0),Ψ

(0)
ε ) ,

- At the (j + 1)th iteration, with current values θ
(j)
1 = (β(j),Ψ

(j)
ε ) ,

• Step 1 : Generate a random variable Ψ
(j+1)
ε from the conditional distribution

p(Ψε/Z,Σ)

• Step 2 : Generate a random variable β(j+1) from the conditional distribution

p(β/Ψ
(j+1)
ε ,Z,Σ)

The conditional distributions p(Ψε/Z,Σ) and p(β/Ψε, Z,Σ) are required in the im-
plementation of Gibbs sampler.

Note that the distribution of Σ is independent of θ1, i.e p(Σ/θ1) = p(Σ). Then, the
expression of the posterior distribution p(θ1/Z,Σ) is written as:

p(θ1/Z,Σ) = p(β,Ψε/Z,Σ)

∝ p(Z/β,Ψε,Σ)p(β,Ψε)

= p(Z/β,Ψε,Σ)p(β/Ψε)p(Ψε) . (21)

The symbol ”∝” denotes proportional, and the density p(Z/β,Ψε,Σ) represents the
likelihood of Z. So,

p(Z/β,Ψε,Σ) ∝ |Ψε|−
n
2 exp{−1

2
Trace[(Z −Σβ)

′
(Z −Σβ)Ψ−1

ε ]} . (22)

Therefore, to derive p(θ1/Z,Σ), we need the prior distribution p(Ψε) and p(β/Ψε).
For that reason, we suggest the following conjugate prior distribution for Ψε and β:

{
Ψε ∼ IW(T0, ρ0) ,

vect(β/Ψε) ∼ N (vect(β0),Ψε ⊗ P−10 ) ,
(23)

where

- ”vect” denotes vectorization and ”⊗” is a symbol of the Kronecker product,

- IW(., .) and N (., .) are respectively the inverse Wishart and the normal distributions,

- T0, ρ0, β0 and P0 are the associated hyperparameters.
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We prove in Appendix that the posterior distributions of p(Ψε/Z,Σ) and p(β/Ψε, Z,Σ)
are written as follows:{

(Ψε/Z,Σ) ∼ IW(M , n+ ρ0) ,

vect(β/Ψε, Z,Σ) ∼ N (vect(βn),Ψε ⊗U) ,
(24)

where

- M = Z
′
Z − β′n(Σ

′
Σ + P0)βn + β

′
0P0β0 + T0 ,

- βn = (Σ
′
Σ + P0)

−1(Σ
′
Σβ̂ + P0β0) ,

- U = (Σ
′
Σ + P0)

−1 ,

- β̂ is the estimate of β obtained by the Ordinary Least Squares.

So, we can conclude that each element in the matrix β is normally distributed.
Finally, to obtain the estimate θ̂1 of θ1, we ensure firstly the convergence of the Gibbs

sampler. Then we collect T observations (θ
(1)
1 ,θ

(2)
1 , · · · ,θ(T )1 ) obtained by this algorithm.

Hence, the estimate of each unknown parameter is obtained by calculating the average
of these T simulated observations.

We follow the same reasoning for the other regression model (20), and we suggest the
following conjugate prior distribution of θ2 .

• Prior distributions of θ2 = (βω,Ψδ) :{
Ψδ ∼ IW(S0, σ0) ,

vect(βω/Ψδ) ∼ N (vect(βω0),Ψδ ⊗R−10 ) ,
(25)

where S0, σ0, βω0, and R0 are the associated hyperparameters.

In the same way, the posterior distributions of θ2 is given by:

• Posterior distributions of θ2 :{
(Ψδ/η

pls,Σ) ∼ IW(F , n+ σ0) ,

vect(βω/Ψδ,η
pls,Σ) ∼ N (vect(βωn),Ψδ ⊗D) ,

(26)

where

- F = (ηpls)
′
ηpls −Λ

′
n(Σ

′
Σ +R0)βωn + β

′
ω0R0A0 + S0 ,

- βωn = (Σ
′
Σ +R0)

−1(Σ
′
Σβ̂ω +R0Λ0) ,

- D = (Σ
′
Σ +R0)

−1 ,

- β̂ω is the estimate of βω obtained by the ordinary least squares.
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6 Application

6.1 Simulation study

In this section, we present a simulation study to compare the performance of the hybrid
method with the PLS approach and the Bayesian one. We consider a SEM with three
LVs (ξ1, η2, η3) and nine observed variables (x11, x12, x13, y24, y25, · · ·, y39), as shown
in the Figure 1a. The data set is obtained on the basis of the models defined by (1) and
(6) with q = 1, J = 3, p1 = p2 = p3 = 3, p = 9 and the sample size n = 50. Hence, the
measurement and structural equations associated to this model are defined as follows:

x1l = λxl ξ1 + εl , l = 1, 2, 3

y2h = λyh η2 + εh , h = 4, 5, 6

y3h = λyh η3 + εh , h = 7, 8, 9

(27)

{
η2 = γ1 ξ1 + δ1

η3 = γ2 ξ1 + γ3 ∗ η2 + δ2
(28)

where the true values of λxl , l = 1, 2, 3 ; λxh, h = 4, 5, ..., 9 and γj , j = 1, 2, 3 are given
in the Table 1a. The error terms εl, l = 1, 2, 3 and εh, h = 4, 5, ..., 9 are drawn from
N (0, 1).

Figure 1a: Path diagram corresponding to the simulation model

As underlined, one of contributions of our method is the absence of the normality
assumption contrary to the Bayesian approach; the data are simulated in a manner to
have non normal distribution for the LVs scores. For this reason, the LV ξ1 is drawn
from the continuous uniform distribution U [−3, 3]. Then η2 and η3 are obtained directly
from the equations defined in (28), where δ1 and δ2 are drawn from N (0, 1).

The stability of the proposed method is proved by varying the values of the parameters.
For this purpose, we consider three simulation cases as presented in the Table 1a.
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Table 1a: Simulation plan

True values

γ1 γ2 γ3 λx1 λx2 λx3 λy4 λy5 λy6 λy7 λy8 λy9

Simulation 1 0.7 0.5 0.3 0.9 0.9 0.9 0.7 0.7 0.7 0.8 0.8 0.8

Simulation 2 0.6 0.5 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Simulation 3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

We use the R software with plspm package to realize the PLS, whereas the WinBUGS
software (Lunn et al., 2000) is used to execute the Bayesian one and the hybrid method.
Note that in the Bayesian approach, we fixed some parameters to one (λx1 = λy4 = λy7 = 1)
to identify the model.

To ensure that the scores obtained from the PLS approach are not normally dis-
tributed, we have plotted the densities of these scores for each simulation as shown in
the Figures 1, 2 and 3. From which we conclude that the LVs scores are not necessarily
all normally distributed.

Per each simulation the following outcomes are measured:

• Reliability measures.

• The validation indices.

• The loadings λxl , l = 1, 2, 3 ; λyh, h = 4, 5, ..., 9 and the inner coefficients γj , j = 1, 2, 3;
with the standard errors SE, using the three approaches.

• The correlations between the estimated LVs scores obtained from hybrid method
and the true LVs.

• Reliability measures

Before comparing the parameters estimation and the performance of the three meth-
ods, we should check the reliability of any constructs using Cronbach’s alpha, Composite
reliability CR and AVE (note that these measures are the same for the three methods).
The values of these indices are presented in the Table 11 for simulation 1, in the Table
21 for simulation 2 and in the Table 31 for simulation 3. These tables show that all LVs
in the model are reliable since Cronbach’s alpha, CR and AVE coefficients are above the
conventionally accepted threshold (Cronbach’s alpha and CR are larger than 0.7, and
AVE is larger than 0.5).

• The validation indices

In order to compare the empirical performance of the three approaches, we compute
the communality, the Redundancy, the R-square and GoF index for all the three sim-
ulations. The measures of these indices are reported in the Table 12 for simulation 1,
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in the Table 22 for simulation 2 and in the Table 32 for simulation 3 (note that the
Redundancy and the R2 may not be computed for the exogenous LV ξ1 and the values
of communality are common for the three approaches, see column 2 of the Tables 12,
22 and 32). According to the results in these tables, we see that the communalities are
always greater than the conventionally accepted threshold (all communalities are larger
than 0.5), these results reflect the validity of the measurement models in each simulation.

Moreover, from the values of F 2, R2 and GoF index, we conclude that the both
approaches hybrid and PLS provide globally better performance of structural and global
models compared to the Bayesian approach.

Additionally, when the values of loadings are not large, particularly in the simulations
2 and 3, the hybrid method outperforms both PLS and Bayesian approaches in term of
the validity of the global model (see the Tables 22 and 32).

• Estimation of model parameters

The Tables 13, 23 and 33 summarize the simulation results about the coefficients
λxl , l = 1, 2, 3 ; λyh, h = 4, 5, ..., 9 ; γj , j = 1, 2, 3 and the standard errors (SE) for each
simulation. From these tables, it seems that always the estimates obtained by the hybrid
method are very close to the true values. Moreover, these estimates seem more significant
in terms of standard errors.

In addition, the estimates derived from our method are more accurate and more
significant when the values of the loadings are small (λxl = λyh = 0.5 or 0.6) (see the
Tables 23 and 33).

• LVs prediction accuracy

Another way to show the performance of the proposed approach is to evaluate the LVs
prediction accuracy (Ciavolino and Nitti, 2013). For this goal, the correlations between

the true LVs and the estimated scores (noted ξ̂hyb1 , η̂hyb2 and η̂hyb3 ) are reported in the
Tables 14, 24 and 34. It can be seen that all the correlation coefficients are larger than
0.838. These results bring us to the conclusion that, the proposed method provides nice
accuracy in the estimation of LVs.
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Table 11: Reliability measures for simulation 1

LV Cronbach’s alpha Composite reliability AVE

ξ1 0.902 0.939 0.837

η2 0.840 0.904 0.759

η3 0.825 0.896 0.742

Table 12: Communality H2, Redundancy F 2, R-square R2 and GoF for simulation 1

Hybrid Method Bayesian Approach PLS

LV H2 F 2 R2 F 2 R2 F 2 R2

ξ1 0.837 - - - - - -

η2 0.759 0.390 0.514 0.380 0.512 0.392 0.516

η3 0.742 0.406 0.547 0.401 0.541 0.414 0.558

GoF index 0.639 0.640 0.641
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Table 13: The estimates obtained by the three approaches and their SE for simulation 1

Hybrid Method Bayesian Approach PLS

Parameter True value Estimate SE Estimate SE Estimate SE

γ1 0.7 0.71 0.07 0.66 0.13 0.71 0.10

γ2 0.5 0.50 0.11 0.44 0.18 0.52 0.13

γ3 0.3 0.29 0.14 0.38 0.18 0.28 0.13

λx1 0.9 0.95 0.05 1 - 0.90 0.06

λx2 0.9 0.84 0.04 0.93 0.14 0.90 0.06

λx3 0.9 0.50 0.03 0.98 0.13 0.93 0.05

λy4 0.7 0.66 0.05 1 - 0.82 0.08

λy5 0.7 0.69 0.04 0.78 0.13 0.85 0.07

λy6 0.7 0.79 0.03 0.99 0.14 0.93 0.05

λy7 0.8 0.74 0.06 1 - 0.77 0.09

λy8 0.8 0.75 0.03 0.91 0.14 0.91 0.06

λy9 0.8 0.77 0.04 0.88 0.14 0.88 0.07

Table 14: Correlation between the estimated LV scores obtained from hybrid method
and the true LV for simulation 1

Corr(ξ̂1
hyb
, ξ1) Corr(η̂2

hyb,η2) Corr(η̂3
hyb,η3)

0.952 0.902 0.942

Figure 1: The densities of the three LVs scores for simulation 1
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Table 21: Reliability measures for simulation 2

LV Cronbach’s alpha Composite reliability AVE

ξ1 0.820 0.893 0.736

η2 0.816 0.891 0.730

η3 0.746 0.856 0.665

Table 22: Communality H2, Redundancy F 2, R-square R2 and GoF for simulation 2

Hybrid Method Bayesian Approach PLS

LV H2 F 2 R2 F 2 R2 F 2 R2

ξ1 0.736 - - - - - -

η2 0.730 0.240 0.318 0.233 0.319 0.235 0.322

η3 0.665 0.288 0.434 0.287 0.434 0.293 0.442

GoF index 0.601 0.517 0.520
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Table 23: The estimates obtained by the three approaches and their SE for simulation 2

Hybrid Method Bayesian Approach PLS

Parameter True value Estimate SE Estimate SE Estimate SE

γ1 0.6 0.59 0.08 0.61 0.17 0.56 0.11

γ2 0.5 0.45 0.10 0.34 0.18 0.35 0.13

γ3 0.3 0.29 0.10 0.43 0.19 0.39 0.13

λx1 0.6 0.70 0.04 1 - 0.89 0.06

λx2 0.6 0.68 0.05 0.95 0.17 0.84 0.07

λx3 0.6 0.62 0.04 0.82 0.16 0.82 0.08

λy4 0.6 0.64 0.04 1 - 0.83 0.08

λy5 0.6 0.59 0.04 0.76 0.14 0.86 0.07

λy6 0.6 0.54 0.03 0.72 0.14 0.86 0.07

λy7 0.6 0.56 0.05 1 - 0.75 0.09

λy8 0.6 0.66 0.04 0.87 0.18 0.84 0.07

λy9 0.6 0.54 0.03 0.66 0.14 0.84 0.07

Table 24: Correlation between the estimated LV scores obtained from hybrid method
and the true LV for simulation 2

Corr(ξ̂1
hyb
, ξ1) Corr(η̂2

hyb,η2) Corr(η̂3
hyb,η3)

0.896 0.877 0.873

Figure 2: The densities of the three LVs scores for simulation 2
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Table 31: Reliability measures for simulation 3

LV Cronbach’s alpha Composite reliability AVE

ξ1 0.807 0.886 0.722

η2 0.701 0.808 0.590

η3 0.705 0.836 0.629

Table 32: Communality H2, Redundancy F 2, R-square R2 and GoF for simulation 3

Hybrid Method Bayesian Approach PLS

LV H2 F 2 R2 F 2 R2 F 2 R2

ξ1 0.722 - - - - - -

η2 0.580 0.211 0.362 0.210 0.360 0.232 0.390

η3 0.629 0.324 0.515 0.326 0.510 0.332 0.534

GoF index 0.573 0.533 0.550
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Table 33: The estimates obtained by the three approaches and their SE for simulation 3

Hybrid Method Bayesian Approach PLS

Parameter True value Estimate SE Estimate SE Estimate SE

γ1 0.5 0.59 0.07 0.53 0.16 0.63 0.11

γ2 0.5 0.41 0.10 0.42 0.18 0.43 0.12

γ3 0.5 0.50 0.15 0.46 0.20 0.38 0.12

λx1 0.5 0.61 0.04 1 - 0.84 0.07

λx2 0.5 0.75 0.05 1.17 0.20 0.84 0.07

λx3 0.5 0.59 0.04 0.87 0.16 0.85 0.07

λy4 0.5 0.43 0.04 1 - 0.72 0.09

λy5 0.5 0.48 0.04 0.67 0.18 0.79 0.09

λy6 0.5 0.50 0.04 0.76 0.19 0.76 0.09

λy7 0.5 0.53 0.03 1 - 0.87 0.07

λy8 0.5 0.48 0.05 0.62 0.16 0.72 0.09

λy9 0.5 0.48 0.04 0.63 0.15 0.77 0.09

Table 34: Correlation between the estimated LV scores obtained from hybrid method
and the true LV for simulation 3

Corr(ξ̂1
hyb
, ξ1) Corr(η̂2

hyb,η2) Corr(η̂3
hyb,η3)

0.886 0.838 0.879

Figure 3: The densities of the three LVs scores for simulation 3
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6.2 Application on real data

In order to illustrate the performance of the estimation obtained by the hybrid method
in case of complex model and small sample size, we test a theoretical model describing
the effect of perceived justice on recovery satisfaction and relationship quality in the
case of airline overbooking problem (Zarrouk, 2008). The path diagram of this model is
given in Figure 4. Then, we apply the three previous approaches to estimate this model.

In this application, we use only a real small sample size (n = 50 passengers) picked
randomly from the complete database (n = 420 passengers).

Similar to the simulation study, we have firstly plotted the densities of all the LVs
scores (Figure 5), from which we conclude that the LVs are not necessarily all normally
distributed.

Then, we calculated the reliability measures (Table 41), from where we observe that
all LVs are reliable (Cronbach’s alpha ≥ 0.702, Composite reliability ≥ 0.819 and AVE
≥ 0.557).

Moreover, the validation indices of measurement, structural and global models are pre-
sented in the Table 42. According to this table, it can be seen that the three approaches
provide almost similar performances.

The two last tables (Tables 43 and 44) summarize the estimates of the path coefficients
γj and the loadings λk with the standard errors SE. Globally, the estimates obtained
from the hybrid method are more significant since they have the smallest SE. These
results confirm those obtained by simulation study.

Figure 4: Path diagram corresponding to recovery satisfaction model

where,

JD=Justice Distributive; JP=Justice Procédurale; JI=Justice Interactionnelle;
SRC=Satisfaction Recovery; SR=Satisfaction Relationnelle; CF=Confiance;
EN=Engagement; IN=Intention.
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The measurement and structural equations associated to this model are defined as
follows:

Di = λ1i ∗ JD + ε1i ; i = 1, · · · , 4
Pi = λ2i ∗ JP + ε2i ; i = 1, · · · , 3
Ii = λ3i ∗ JI + ε3i ; i = 1, · · · , 5
RSi = λ4i ∗ SRC + ε4i ; i = 1, · · · , 3
SGi = λ5i ∗ SR+ ε5i ; i = 1, · · · , 3
CFi = λ6i ∗ CF + ε6i ; i = 1, · · · , 3
ENi = λ7i ∗ EN + ε7i ; i = 1, · · · , 3
ITi = λ8i ∗ IN + ε8i ; i = 1, · · · , 3

and



SRC = γ1 ∗ JD + γ2 ∗ JP
+γ3 ∗ JI + δ1

SR = γ4 ∗ SRC + δ2

CF = γ5 ∗ SRC + γ6 ∗ SR+ δ3

EN = γ7 ∗ SRC + γ8 ∗ CF + δ4

IN = γ9 ∗ SRC + γ10 ∗ SR
+γ11 ∗ EN + δ5

Table 41: Reliability measures for real data

LV Cronbach’s alpha Composite reliability AVE

JD 0.702 0.819 0.557

JP 0.792 0.879 0.708

JI 0.917 0.938 0.751

SRC 0.933 0.957 0.882

SR 0.931 0.956 0.878

CF 0.896 0.936 0.829

EN 0.957 0.972 0.920

IN 0.875 0.924 0.802
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Table 42: Communality H2, Redundancy F 2, R-square R2 and GoF for real data

Hybrid Method Bayesian Approach PLS

LV H2 F 2 R2 F 2 R2 F 2 R2

JD 0.557 0 0 0 0 0 0

JP 0.708 0 0 0 0 0 0

JI 0.751 0 0 0 0 0 0

SRC 0.882 0.511 0.580 0.487 0.553 0.564 0.590

SR 0.878 0.152 0.174 0.151 0.172 0.154 0.175

CF 0.829 0.351 0.453 0.356 0.429 0.387 0.467

EN 0.920 0.644 0.700 0.635 0.690 0.657 0.714

IN 0.802 0.563 0.697 0.539 0.671 0.563 0.701

GoF index 0.640 0.630 0.648

Table 43: The estimates of γj obtained by the three approaches and their SE for real
data

Hybrid Method Bayesian Approach PLS

Parameter Estimate SE Estimate SE Estimate SE

γ1 0.439 0.031 0.517 0.151 0.451 0.098

γ2 0.380 0.038 0.435 0.212 0.374 0.113

γ3 0.176 0.040 0.231 0.176 0.169 0.114

γ4 0.445 0.055 0.429 0.138 0.419 0.131

γ5 0.504 0.115 0.436 0.137 0.409 0.117

γ6 0.447 0.238 0.520 0.143 0.402 0.117

γ7 0.193 0.107 0.143 0.133 0.181 0.095

γ8 0.706 0.145 0.836 0.140 0.727 0.095

γ9 0.010 0.137 -0.064 0.136 -0.085 0.100

γ10 0.549 0.204 0.679 0.166 0.539 0.113

γ11 0.370 0.168 0.401 0.154 0.416 0.128
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Table 44: The estimates of λk obtained by the three approaches and their SE for real
data

Hybrid Method Bayesian Approach PLS

Parameter Estimate SE Estimate SE Estimate SE

λ11 0.913 0.024 1 - 0.904 0.061

λ12 0.933 0.019 1.054 0.138 0.933 0.051

λ13 0.678 0.038 0.619 0.169 0.680 0.104

λ14 0.244 0.052 0.194 0.173 0.274 0.137

λ21 0.705 0.034 1 - 0.800 0.085

λ22 0.889 0.025 1.021 0.194 0.896 0.063

λ23 0.928 0.034 0.893 0.204 0.825 0.080

λ31 0.868 0.028 1 - 0.886 0.066

λ32 0.899 0.025 1.020 0.131 0.902 0.061

λ33 0.875 0.030 1.008 0.136 0.887 0.066

λ34 0.801 0.033 0.903 0.144 0.829 0.079

λ35 0.877 0.034 0.890 0.142 0.828 0.080

λ41 0.905 0.019 1 - 0.937 0.050

λ42 0.955 0.018 0.969 0.103 0.954 0.042

λ43 0.953 0.022 0.923 0.109 0.926 0.053

λ51 0.984 0.025 1 - 0.925 0.054

λ52 0.933 0.024 1.055 0.124 0.936 0.050

λ53 0.899 0.019 1.050 0.122 0.950 0.044

λ61 0.954 0.024 1 - 0.938 0.049

λ62 0.947 0.019 1.011 0.102 0.965 0.037

λ63 0.829 0.040 0.771 0.127 0.823 0.081

λ71 0.934 0.023 1 - 0.942 0.047

λ72 1.009 0.017 0.944 0.095 0.968 0.035

λ73 0.934 0.018 0.954 0.096 0.967 0.036

λ81 0.911 0.020 1 - 0.956 0.041

λ82 0.860 0.039 0.691 0.119 0.780 0.089

λ83 0.929 0.022 0.914 0.099 0.939 0.049



Electronic Journal of Applied Statistical Analysis 603

Figure 5: The densities of the three LVs scores in case of real data

7 Conclusion

This paper introduces a semiparametric approach based on combination of the PLS and
the Bayesian approaches. This new method presents several advantages such as, the
absence of identification problem and the assumption of normality of the LVs is not nec-
essary. It provides reliable results for small samples and complex models. Furthermore,
this technique uses a simpler Gibbs sampler. The results obtained from application on
simulated and on real data show the great performance of the estimates obtained in
case of hybrid method even when the LVs are not normally distributed. However, the
proposed method doesn’t take into account the non linearity that can exist in the mea-
surement and structural models. Also, the interactions between explanatory LVs are
not considered in our method. Further research is required to compare the performance
of different semiparametric approaches: hybrid method, Generalized Maximum Entropy
and Bayesian semiparametric SEM.
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Appendix:

Proof of the posterior distribution of p(Ψε/Z,Σ) and p(A/Ψε, Z,Σ)

First, we recall the expression of model (18): Z = Σβ + ε with θ1 = (β,Ψε). Then we
write,

p(θ1/Z,Σ) = p(β,Ψε/Z,Σ)

∝ p(Z/β,Ψε,Σ)p(β,Ψε)

= p(Z/β,Ψε,Σ)p(β/Ψε)p(Ψε) .

Now, we replace the densities p(Z/β,Ψε,Σ), p(Ψε) and p(β/Ψε) by their expressions
(22) and (23) given in section 5, then we obtain,

p(θ1/Z,Σ) ∝ |Ψε|−
n
2 exp{−1

2
Trace[(Z −Σβ)

′
(Z −Σβ)Ψ−1

ε ]}

×|Ψε|−
J
2 exp{−1

2
Trace[(β− β0)

′
P0(β − β0)Ψ

−1
ε ]}

×|Ψε|−
p+1+ρ0

2 exp{−1

2
Trace[T0Ψ

−1
ε ]}

= |Ψε|−
n
2 |Ψε|−

J
2 exp{−1

2
Trace[((Z −Σβ)

′
(Z −Σβ)

+(β − β0)
′
P0(β − β0))Ψ

−1
ε ]}

×|Ψε|−
p+1+ρ0

2 exp{−1

2
Trace[T0Ψ

−1
ε ]} .

Let βn = (Σ
′
Σ + P0)

−1(Σ
′
Σβ̂ + P0β0) ,

where β̂ is the estimate of β obtained by the Ordinary Least Squares method.
So,

(Z −Σβ)
′
(Z −Σβ) + (β− β0)

′
P0(β− β0) = (β− βn)

′
(Σ

′
Σ + P0)(β− βn)

+Z
′
Z − β′n(Σ

′
Σ + P0)βn

+β
′
0P0β0 .

Therefore,

p(β,Ψε/Z,Σ) ∝ |Ψε|−
n
2 |Ψε|−

J
2 exp{−1

2Tr[((β− βn)
′
(Σ

′
Σ + P0)(β− βn))Ψ−1

ε ]}
×exp{−1

2Tr[(Z
′
Z − β′n(Σ

′
Σ + P0)βn + β

′
0P0β0)Ψ

−1
ε ]}

×|Ψε|−
p+1+ρ0

2 exp{−1
2Tr[T0Ψ

−1
ε ]}

= |Ψε|−
J
2 exp{−1

2Tr[((β− βn)
′
(Σ

′
Σ + P0)(β− βn))Ψ−1

ε ]}
×|Ψε|−

p+1+n+ρ0
2 exp{−1

2Tr[(Z
′
Z − β′n(Σ

′
Σ + P0)βn

+β
′
0P0β0 + T0)Ψ

−1
ε ]}

= |Ψε|−
J
2 exp{−1

2Tr[((β−βn)
′
(Σ

′
Σ +P0)(β−βn))Ψ−1

ε ]} (A.1)

×|Ψε|−
p+1+n+ρ0

2 exp{−1
2Trace[MΨ−1

ε ]} , (A.2)
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with, M = Z
′
Z − β′n(Σ

′
Σ + P0)βn + β

′
0P0β0 + T0 .

And we know that:
p(β,Ψε/Z,Σ) = p(β/Ψε, Z,Σ)p(Ψε/Z,Σ) .

From (A.1) and (A.2), we can write,

p(Ψε/Z,Σ) ∝ |Ψε|−
p+1+n+ρ0

2 exp{−1
2Trace[MΨ−1

ε ]} ,
And
p(β/Ψε, Z,Σ) ∝ |Ψε|−

J
2 exp{−1

2Trace[(β− βn)
′
(Σ

′
Σ + P0)(β− βn)Ψ−1

ε ]} .

Let U−1 = (Σ
′
Σ + P0) , then the expression of p(β/Ψε, Z,Σ) becomes:

p(β/Ψε, Z,Σ) ∝ |Ψε|−
J
2 exp{−1

2
Trace[(β− βn)

′
U−1(β− βn)Ψ−1

ε ]}

= |Ψε|−
J
2 exp{−1

2
Trace[U−1(β− βn)Ψ−1

ε (β− βn)
′
]} .

Consequently, the posterior distributions of p(Ψε/Z,Σ) and p(β/Ψε, Z,Σ) are given
as follows:{

(Ψε/Z,Σ) ∼ IW(M , n+ ρ0) ,

(β/Ψε, Z,Σ) ∼MN Jp(βn,U ,Ψε) ,

where MN Jp(., ., .) denotes multivariate normal distribution, and J is the order of
the matrix U and p is the order of the matrix Ψε .

From where, we conclude that, vect(β/Ψε, Z,Σ) ∼ N (vect(βn),Ψε ⊗ U) . Then
each element in β is normally distributed.

We follow the same proof for the model (20).
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