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In this study, we consider the estimation of the location parameter µ and
the scale parameter σ of the shifted Gompertz distribution. We obtain the
closed form estimators of these parameters by using the modified maximum
likelihood methodology. We also compare the efficiencies of these estimators
with the well-known and widely used least squares and maximum likelihood
estimators via Monte-Carlo simulation study in terms of bias, mean square
error and deficiency criteria. In addition, we evaluate the performances of the
proposed estimators when the data set contains outliers or is contaminated.
In other words, the robustness properties of the estimators are investigated.
A real data set is analyzed to demonstrate the implementation of the esti-
mation methods at the end of the study.

Keywords: Shifted Gompertz distribution, Modified likelihood, Maximum
likelihood, Least squares, Monte-Carlo simulation, Robustness.

1 Introduction

The Bass model consists of a simple linear function that describes the process how new
products or technologies get adopted in a population, see Bass (1969). The alternatives
and the extensions of this model were proposed by several other authors, see for example
Mahajan et al. (1990), Meade and Islam (2006).
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Bemmaor (1994) brought a new perspective to the Bass model and showed an alter-
native derivation of the first purchase density. The Shifted Gompertz (SG) distribution
was used to model the propensity of buying the new product or technology, see also
Bemmaor and Lee (2002).

In literature, the distributional properties (such as expectation, variance and limit
distributions) and the closed-form expression for the quantile function of SG distribution
was considered by Jiménez and Jodrá (2009). Torres (2014) obtained the estimators of
the scale and the shape parameters of SG distribution by using the least squares (LS),
maximum likelihood (ML) and the method of moments (MM) methodologies.

In this paper, our aim is to estimate the location and the scale parameters of the
SG distribution. For this purpose, firstly, we obtain the estimators of the unknown
parameters by using the LS methodology. Then, we use the well-known and widely used
ML methodology. However, the likelihood equations can not be solved explicitly. For
solving these equations, we use two different approaches. The first approach is iterative
and other one is non-iterative. We use Tiku’s modified maximum likelihood (MML)
method which is a non-iterative approach, see Tiku (1967, 1968).

The rest of the paper is organized as follows. In section 2, we give some brief descrip-
tion about the SG distribution. The estimation methods for estimating the location
and the scale parameters of the SG distribution are examined in Section 3. The per-
formances of the LS, ML and MML estimators are compared by using Monte-Carlo
simulation study in the following section. The robustness properties of the estimators
are evaluated in Section 5. In Section 6, a real data set is analyzed by using the SG
distribution. Comments and conclusions are given in final section.

2 The Shifted Gompertz Distribution

The probability density function (pdf) and the cumulative density function (cdf) of the
SG distribution are given as follows

f(z) =
1

σ
e−(z+ηe−z) (1 + η

(
1− e−z

))
, z > 0, µ ∈ R, σ > 0, η > 0 (1)

and

F (z) = e−η e
−z (

1− e−z
)

, z > 0, η > 0, (2)

respectively. Here, z = (x− µ) /σ, µ is the location parameter, σ is the scale parameter
and η is the shape parameter. If the random variable X has the SG distribution with µ,
σ and η parameters, then it is denoted by X ∼SG(µ,σ,η). It should be noted that the
shape parameter η is assumed to be known throughout the estimation process.

The SG distribution reduces to the well-known exponential distribution when η → 0.
For better understanding the shape of the SG distribution, see Figure 1.
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Figure 1: Plots of the SG distribution for different values of the shape parameter η.

Jiménez and Jodrá (2009) provided the explicit expressions for the expectation and
the variance of SG distribution. However, the third and the fourth moments of the SG
distribution cannot be obtained analytically because of the computational difficulties.
Therefore, they tabulated the skewness (

√
β1) and the kurtosis (β2) values of SG distri-

bution under different values of the shape parameter η numerically. For some selected
values of η, the skewness and the kurtosis values of SG distribution are given in the
following Table 1.

Table 1: The skewness and the kurtosis values for different values of η.

η 0.01 0.5 1 5 10

√
β1 1.99 1.71 1.54 1.19 1.15

β2 5.96 4.45 3.67 2.51 2.43

It is clear from Table 1 and Figure 1 that the SG distribution is positively skewed. In
addition, it is long tailed when η → 0 and short tailed when η → ∞, see Jiménez and
Jodrá (2009) for more detailed information about the shape of the SG distribution.

3 Parameter Estimation

In this section, we describe the methodologies used for estimating the location and the
scale parameters of the SG distribution.

3.1 Least squares estimators

The LS estimators of the location parameter µ and the scale parameter σ of the SG
distribution are obtained by minimizing the following equation
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A (µ,σ) =

n∑
i=1

(
F
(
z(i)

)
− i

n+ 1

)2

(3)

with respect to these parameters, see Swain et al. (1988). Here, z(i) =
(
x(i) − µ

)
/σ

are the standardized ordered observations. F
(
z(i)

)
, (i = 1, 2, . . . , n) is the cdf for the

ith ordered observation and i
n+1 is the expected value of F

(
z(i)

)
. By incorporating the

distribution function of the SG distribution into the equation (3), A (µ,σ) is obtained as
given below

A (µ,σ) =
n∑
i=1

(
e−η e

−z(i) (
1− e−z(i)

)
− ui

)2
, (4)

where ui = i
n+1 . The derivatives of the A (µ,σ) with respect to the unknown parameters

µ and σ are obtained as follows

∂A (µ,σ)

∂µ
=

n∑
i=1

e
−
(
z(i)+η e

−z(i)
) (

1 + η
(
1− e−z(i)

)) (
e−η e

−z(i) (
1− e−z(i)

)
− ui

)
= 0

(5)

∂A (µ,σ)

∂σ
=

n∑
i=1

z(i)e
−
(
z(i)+η e

−z(i)
) (

1 + η
(
1− e−z(i)

)) (
e−η e

−z(i) (
1− e−z(i)

)
− ui

)
= 0,

(6)
respectively. The solutions of these equations cannot be obtained explicitly. Therefore,
we resort to numerical methods to solve them.

3.2 Maximum Likelihood Estimators

Let X1, X2, . . . , Xn be a random sample from the SG distribution. The log-likelihood
function (lnL) is obtained as follows

lnL (µ,σ) = −n lnσ −
n∑
i=1

(
zi + ηe−zi

)
+

n∑
i=1

ln
(
1 + η

(
1− e−zi

))
, (7)

where, zi = (xi − µ) /σ. Likelihood equations are obtained by taking the derivatives of
the lnL function with respect to the parameters of interest and equating them to zero.
The likelihood equations for parameters µ and σ are given as shown below

∂ lnL (µ,σ)

∂µ
= n− η

n∑
i=1

g1 (zi)− η
n∑
i=1

g2 (zi) = 0 (8)

∂ lnL (µ,σ)

∂σ
= n−

n∑
i=1

zi + η
n∑
i=1

zig1 (zi) + η

n∑
i=1

zig2 (zi) = 0, (9)
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respectively. The simultaneous solution of the equations (8) and (9) gives the ML esti-
mates of the µ and σ, respectively. However is clear that these equations do not have ex-
plicit solutions because of the nonlinear functions g1 (zi) = e−zi and g2 (zi) = e−zi

1+η(1−e−zi)
in (8) and (9). Similar to the LS methodology, we resort to iterative methods to solve
them, see Luceño (2008).

3.3 Modified Maximum Likelihood Estimators

In the previous subsection, we do not obtain the ML estimators of the location and the
scale parameters in explicit form. Therefore, we use MML methodology originated by
Tiku (1967, 1968) for deriving the estimators of the unknown parameters in non-iterative
ways. This methodology is based on the idea of linearization of the nonlinear terms in
the likelihood equations.

Let Z(1) < Z(2) < . . . < Z(n) be the order statistics obtained by arranging Z(i)

(i = 1, 2, . . . , n) in ascending order of magnitude and z(1) < z(2) < . . . < z(n) be observed
values of Z(1) < Z(2) < . . . < Z(n). Then, the likelihood equations in (8) and (9) are
written in terms of the order statistics, since complete sums are invariant to ordering,
i.e.,

∑n
i=1 zi =

∑n
i=1 z(i). The nonlinear functions g1

(
z(i)

)
and g2

(
z(i)

)
are linearized by

using the first two terms of the Taylor series expansion around the expected values of
the order statistics, i.e., t(i) = E

(
z(i)

)
. Then, we get

g1

(
z(i)

)
≡ α1i − β1iz(i) and g2

(
z(i)

)
≡ α2i − β2iz(i), (10)

where

α1i = e−t(i) + t(i)β1i, β1i = e−t(i) , α2i = e
−t(i)

1+η
(

1−e−t(i)
) + t(i)β2i, β2i = (1+η)e

−t(i)(
1+η

(
1−e−t(i)

))2

and t(i) = − log
(

1− 1
ηW0

(
ηeη

(
i

n+1

)))
.

Here, W0 is the solution of the equation W (t) eW (t) = t and is the principal branch of
the Lambert W function. For more detailed information about the Lambert W function,
see Barry et al. (2000), Jiménez and Jodrá (2009) and Torres (2014). By incorporating
the linearized functions in equation (10) into the likelihood equations (8) and (9), we
obtain the following modified likelihood equations

∂ lnL∗ (µ,σ)

∂µ
= n− η

n∑
i=1

(
α1i − β1iz(i)

)
− η

n∑
i=1

(
α2i − β2iz(i)

)
= 0 (11)

∂ lnL∗ (µ,σ)

∂σ
= n−

n∑
i=1

z(i) +η

n∑
i=1

z(i)

(
α1i − β1iz(i)

)
−η

n∑
i=1

z(i)

(
α2i − β2iz(i)

)
= 0. (12)

The solutions of these equations are the MML estimators of the parameters µ and σ,
respectively They are given by

µ̂ = K +Dσ̂ and σ̂ =
−B +

√
B2 + 4nC

2
√
n (n− 1)

. (13)
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Here,

K = 1
m

n∑
i=1

δix(i), m =
n∑
i=1

δi, δi = η (β1i + β2i), D = ∆
m , ∆ =

n∑
i=1

∆i,

∆i = 1− η (α1i + α2i), B =
n∑
i=1

∆i

(
K − x(i)

)
and C =

n∑
i=1

δix
2
(i) −mK

2.

It is obvious that the MML estimators are easy to compute, since they are functions
of the sample observations and have closed from expressions. They have the following
properties:

(i) They are non-iterative and give us explicit estimators of the unknown parameters.

(ii) Asymptotically, they are fully efficient. They have high efficiency even for small
sample sizes, see Smith et al. (1973), Şenoğlu and Tiku (2001).

(iii) They are asymptotically equivalent to the ML estimators, see Tiku and Suresh
(1992), Vaughan (1992).

(iv) The MML methodology can be applied to all distributions belonging to the uni-
modal location-scale family, see Tiku et al. (1986) and Tiku and Akkaya (2004).

4 Simulation Study

In this section, we compare the performances of the LS, the ML and the MML estimators
of the location parameter µ and the scale parameters σ of the SG distribution via Monte
Carlo simulation study. Bias and the mean square error (MSE) criteria are used in the
comparisons. We also use the deficiency (Def) criterion for the natural measure of the
joint efficiencies of µ̂ and σ̂. It is defined as shown below

Def (µ̂,σ̂) = MSE (µ̂) +MSE (σ̂) , (14)

see Tiku and Akkaya (2004). The MSEs of µ̂ and σ̂ are calculated from the following
equalities

MSE (µ̂) = E (µ̂− µ)2 and MSE (σ̂) = E (σ̂ − σ)2 , (15)

respectively.

We use the following equality known as inverse transformation method

z = F−1
z (u) = − log

(
1− 1

η
W0 (ηeηu)

)
, 0 < u < 1 (16)

to generate the random numbers from the SG distribution.

The performances of the ML, the MML and the LS estimators of the parameters µ
and σ are compared for the different sample sizes and the different shape parameters.
We used the following settings n = 20, 30, 40, 50, 100, 500, 1000 and η = 2, 3.5, 5, 10,
throughout the simulation study.

The location parameter µ and the scale parameter σ are taken to be 0 and 1 without
loss of generality. All the simulations are conducted for [[100, 000/n]] Monte-Carlo runs
by using Matlab 2012b. Here, [[·]] denotes the integer value function. It should be noted
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that we use fminsearch function in the optimization toolbox of Matlab 2012b to obtain
the ML and LS estimates of the parameters. The results are reported in Tables 2 and 3.

It is clear from Table 2 that the LS estimators of the parameters µ and σ have smaller
bias than the corresponding ML and the MML estimators when η = 2 for sample sizes
n ≤ 50. For the large sample sizes (n ≥ 100) all estimators have negligible bias. Similarly,
the LS estimator of µ performs better than the others in terms of MSEs in case of n ≤ 50.
The ML and the MML estimators of σ outperform the LS estimator when n ≤ 100.
However, when the sample sizes get larger, the LS estimator of σ is the most efficient
estimator among the others. The LS estimator shows the strongest performance with
the lowest deficiency for n ≥ 100.

In case of η = 3.5, the ML estimator of µ has the smallest bias among the others
when n ≤ 50. On the other hand, when n ≥ 100 the LS estimator of the location
parameter has smaller bias than the others. In terms of MSE of the estimators of µ,
the ML estimator shows superior performance for all sample sizes. It is followed by the
MML estimator.

However, when n ≥ 500 the MSEs of the all estimators are more or less the same. For
the estimator of σ, the MML estimator has the smallest bias when n ≤ 100. The LS
estimator has smaller bias than the ML and the MML estimators when n ≥ 500. The
efficiencies of the ML and the MML estimators of σ are more or less the same and they
show better performance than the corresponding LS estimator with respect to the MSE
criterion. Also, the performances of all the estimators are close to each other when the
sample size increases. The ML estimators demonstrate the strongest performance with
the lowest deficiency for all sample sizes.

The ML and the MML estimators of µ have smaller bias than the corresponding
LS estimator when η = 5 and η = 10. In addition to this, the ML estimator of µ
demonstrates the strongest performance among the others. It should be noted that the
performances of the ML and the MML estimators are close to each other when the
sample size n increases as expected. For σ̂, the MML estimator exhibits less bias for all
the sample sizes. The performances of the ML and the MML estimators are more or less
the same with respect to MSE criterion. The LS estimators of µ and σ show the worst
performances among the others. It is clear to say that the ML and the MML estimators
show the strongest performances with the lowest deficiencies.

It should be noted that the performances of the ML, the MML and the LS estimators
are also compared for η = 0.5. However, the MML estimators cannot be calculated for
this case, since the mode of the SG distribution does not exist, see Jiménez and Jodrá
(2009) and the property (iv) in subsection 3.3. We therefore did not reproduce the
simulation results corresponding to η = 0.5 for the sake of completeness.

It should be stated that the estimators of µ which are greater than the smallest order
statistics x(1), called as impermissible estimators, are replaced by x(1)− 10−4 during the
simulation study, see Dubey (1967) and Kantar and Senoglu (2008).



Electronic Journal of Applied Statistical Analysis 99

Table 2: Bias, MSE and Def values for the LS, the ML and the MML estimators of µ
and σ of the SG distribution based on η = 2 and η = 3.5.

η = 2

n Bias(µ̂) MSE(µ̂) Bias(σ̂) MSE(σ̂) Def(µ̂, σ̂)

20 LS 0.0711 0.0464 -0.0580 0.0600 0.1064

ML -0.1690 0.0579 0.0906 0.0352 0.0931

MML -0.1817 0.0622 0.0741 0.0344 0.0966

30 LS 0.0525 0.0260 -0.0455 0.0386 0.0647

ML -0.1349 0.0358 0.0810 0.0238 0.0596

MML -0.1431 0.0379 0.0733 0.0235 0.0614

40 LS 0.0424 0.0161 -0.0384 0.0285 0.0446

ML -0.1157 0.0250 0.0756 0.0193 0.0444

MML -0.1212 0.0262 0.0722 0.0195 0.0457

50 LS 0.0371 0.0113 -0.0332 0.0221 0.0334

ML -0.0981 0.0175 0.0749 0.0157 0.0332

MML -0.1021 0.0182 0.0739 0.0161 0.0343

100 LS 0.0212 0.0037 -0.0241 0.0109 0.0146

ML -0.0593 0.0061 0.0693 0.0105 0.0166

MML -0.0600 0.0062 0.0728 0.0113 0.0174

500 LS 0.0063 0.0002 -0.0101 0.0022 0.0025

ML -0.0140 0.0003 0.0629 0.0050 0.0054

MML -0.0140 0.0003 0.0689 0.0058 0.0062

1000 LS 0.0037 0.0001 -0.0048 0.0013 0.0014

ML -0.0068 0.0001 0.0599 0.0041 0.0042

MML -0.0068 0.0001 0.0661 0.0049 0.0050

η = 3.5

20 LS 0.1399 0.1215 -0.0869 0.0685 0.1900

ML -0.1184 0.0782 0.0538 0.0310 0.1092

MML -0.1205 0.0805 0.0295 0.0311 0.1115

30 LS 0.1108 0.0752 -0.0730 0.0439 0.1190

ML -0.0924 0.0515 0.0415 0.0197 0.0712

MML -0.0962 0.0532 0.0273 0.0198 0.0729

40 LS 0.0922 0.0503 -0.0635 0.0318 0.0821

ML -0.0804 0.0375 0.0357 0.0156 0.0530

MML -0.0844 0.0388 0.0258 0.0156 0.0544

50 LS 0.0812 0.0376 -0.0556 0.0248 0.0624

ML -0.0710 0.0287 0.0336 0.0117 0.0404

MML -0.0753 0.0298 0.0266 0.0118 0.0416

100 LS 0.0508 0.0151 -0.0404 0.0122 0.0273

ML -0.0549 0.0132 0.0265 0.0066 0.0198

MML -0.0579 0.0136 0.0242 0.0067 0.0203

500 LS 0.0186 0.0021 -0.0181 0.0023 0.0044

ML -0.0277 0.0022 0.0182 0.0014 0.0037

MML -0.0287 0.0023 0.0184 0.0015 0.0038

1000 LS 0.0136 0.0008 -0.0126 0.0011 0.0019

ML -0.0195 0.0008 0.0145 0.0006 0.0016

MML -0.0200 0.0008 0.0149 0.0007 0.0016



100 Aydin, Akgul, Senoglu

Table 3: Bias, MSE and Def values for the LS, the ML and the MML estimators of µ
and σ of the SG distribution based on η = 5 and η = 10.

η = 5

n Bias(µ̂) MSE(µ̂) Bias(σ̂) MSE(σ̂) Def(µ̂, σ̂)

20 LS 0.1794 0.1959 -0.0979 0.0729 0.2688

ML -0.1161 0.1100 0.0489 0.0309 0.1409

MML -0.1068 0.1112 0.0230 0.0312 0.1423

30 LS 0.1519 0.1287 -0.0853 0.0507 0.1794

ML -0.0746 0.0694 0.0304 0.0213 0.0907

MML -0.0714 0.0707 0.0141 0.0216 0.0923

40 LS 0.1370 0.0919 -0.0787 0.0375 0.1294

ML -0.0598 0.0497 0.0263 0.0146 0.0642

MML -0.0604 0.0510 0.0153 0.0147 0.0657

50 LS 0.1206 0.0728 -0.0699 0.0300 0.1028

ML -0.0453 0.0396 0.0186 0.0120 0.0516

MML -0.0463 0.0406 0.0102 0.0122 0.0528

100 LS 0.0861 0.0341 -0.0552 0.0144 0.0484

ML -0.0285 0.0187 0.0112 0.0055 0.0242

MML -0.0312 0.0192 0.0084 0.0057 0.0249

500 LS 0.0350 0.0063 -0.0207 0.0030 0.0093

ML -0.0100 0.0034 0.0070 0.0012 0.0046

MML -0.0114 0.0035 0.0069 0.0012 0.0047

1000 LS 0.0232 0.0030 -0.0169 0.0015 0.0045

ML -0.0078 0.0022 0.0046 0.0005 0.0027

MML -0.0086 0.0022 0.0047 0.0005 0.0028

η = 10

20 LS 0.2813 0.4174 -0.1140 0.0834 0.5008

ML -0.1108 0.1769 0.0382 0.0314 0.2083

MML -0.0770 0.1758 0.0097 0.0320 0.2078

30 LS 0.2339 0.2726 -0.0977 0.0566 0.3292

ML -0.0742 0.1141 0.0256 0.0204 0.1345

MML -0.0547 0.1139 0.0074 0.0206 0.1346

40 LS 0.2085 0.2084 -0.0898 0.0438 0.2521

ML -0.0557 0.0867 0.0190 0.0146 0.1013

MML -0.0433 0.0871 0.0061 0.0148 0.1019

50 LS 0.1812 0.1587 -0.0799 0.0350 0.1937

ML -0.0484 0.0693 0.0163 0.0124 0.0817

MML -0.0388 0.0693 0.0060 0.0125 0.0817

100 LS 0.1269 0.0768 -0.0577 0.0179 0.0947

ML -0.0263 0.0334 0.0100 0.0060 0.0394

MML -0.0232 0.0336 0.0054 0.0060 0.0396

500 LS 0.0461 0.0119 -0.0249 0.0031 0.0150

ML -0.0140 0.0067 0.0044 0.0013 0.0079

MML -0.0142 0.0067 0.0038 0.0013 0.0080

1000 LS 0.0362 0.0106 -0.0199 0.0029 0.0135

ML -0.0024 0.0039 -0.0005 0.0007 0.0046

MML -0.0031 0.0039 -0.0006 0.0007 0.0046
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Figure 2: Plots of the LS, the ML and the MML estimates of µ for
n = 20, 30, 40, 50, 100, 500 and 1000 and η = 2, 3.5, 5 and 10.
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Figure 3: Plots of the LS, the ML and the MML estimates of σ for
n = 20, 30, 40, 50, 100, 500 and 1000 and η = 2, 3.5, 5 and 10.
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Figure 4: Plots of the deficiencies of the LS, the ML and the MML estimators for
n = 20, 30, 40, 50, 100, 500 and 1000 and η = 2, 3.5, 5 and 10.

For better understanding the simulation results, we draw the plots of the LS, the ML
and the MML estimates of µ and σ according to the different sample sizes when the
shape parameter is equal to 2, 3.5, 5 and 10, see Figures 2 and 3.

In Figure 4, the plots of the deficiencies of the LS, the ML and the MML estimators
are also given. It is obvious from Figures 2 and 3 that the bias of the ML and the MML
estimators of µ and σ are negligible when the sample size n and the shape parameter η
increase. Similarly, from Figure 4, the ML and the MML estimators yield the smallest
deficiency when the sample size n and the shape parameter η increase.

5 Robustness Properties

In this section, we compare the performances of the LS, the ML and the MML estimators
of the parameters when the data set contains outliers, or is contaminated. In other
words, the robustness of the estimators to the plausible deviations from the assumed
model is investigated.We assume that the underlying distribution is SG (µ,σ,η = 3.5),
this is called as true model, and consider the following alternative models:

(i) Model I: Misspecified model: SG (µ,σ,η = 2),

(ii) Model II : Contaminated model: 0.90SG (µ,σ,η) + 0.10U (0, 4.5),

(iii) Model III : Mixture model: 0.90SG (µ,σ,η) + 0.10SG (µ,2σ,η),

(iv) Model IV : Dixon Outlier model: (n− r)SG (µ,σ,η) + rSG (µ,2σ,η),
where r = [[0.5 + 0.1n]].
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For an illustrative purpose, the sample size n is taken to be equal 100. The simulated
bias, the MSE and the Def values of the proposed estimators of µ and σ are calculated by
using these alternative models. As in Section 4, we take µ and σ as 0 and 1, respectively.
The simulation results are reported in Table 4.

Table 4: Bias, MSE and Def values of the estimators of µ and σ under alternative models.

True model

Bias(µ̂) MSE(µ̂) Bias(σ̂) MSE(σ̂) Def(µ̂, σ̂)

LS 0.0596 0.0160 -0.0462 0.0124 0.0284

ML -0.0527 0.0133 0.0200 0.0055 0.0188

MML -0.0603 0.0150 0.0176 0.0056 0.0206

Model I

LS 0.1753 0.0367 0.1302 0.0235 0.0602

ML 0.1595 0.0338 0.0984 0.0145 0.0483

MML 0.1269 0.0235 0.0838 0.0119 0.0355

Model II

LS 0.0917 0.0214 -0.0669 0.0149 0.0363

ML -0.0193 0.0112 0.0007 0.0049 0.0162

MML -0.0230 0.0115 -0.0017 0.0051 0.0166

Model III

LS 0.0652 0.0181 -0.0994 0.0216 0.0397

ML 0.0164 0.0143 -0.0999 0.0193 0.0336

MML 0.0171 0.0147 -0.1073 0.0214 0.0362

Model IV

LS 0.0653 0.0193 -0.1013 0.0223 0.0417

ML 0.0155 0.0138 -0.1013 0.0177 0.0315

MML 0.0155 0.0142 -0.1086 0.0197 0.0338

It is clear from Table 4 that the LS estimators of the parameters are the most sensitive
to the deviations from the true model. However, the ML and the MML estimators are
robust to these alternative models. It is obvious that the ML estimators are the most
preferable among the others in terms of MSE and Def criteria.

6 Real data application

In this section, we analyze a real data set taken from the literature to demonstrate the
implementation of the estimation methods given in Section 3. For this purpose, we use
the strength data which is originally reported by Bader and Priest (1982). The data set
is about the breaking strengths of the single carbon fibers of different lengths (i.e., 10,
20, 50). In this study, we only focus on single fibers tested under tension at gauge length
of 10mm. The data contains 64 observations and are given in Table 5.
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Table 5: The strength data set.

1.901 2.397 2.532 2.738 2.996 3.243 3.435 3.871

2.132 2.445 2.575 2.740 3.030 3.264 3.493 3.886

2.203 2.454 2.614 2.856 3.125 3.272 3.501 3.971

2.228 2.454 2.616 2.917 3.139 3.294 3.537 4.024

2.257 2.474 2.618 2.928 3.145 3.332 3.554 4.027

2.350 2.518 2.624 2.937 3.220 3.346 3.562 4.422

2.361 2.522 2.659 2.937 3.223 3.377 3.628 4.395

2.396 2.525 2.675 2.977 3.235 3.408 3.852 5.020

This data set is modeled by using several statistical distributions, such as Burr X,
Weibull and generalized logistic, see Raqab and Kundu (2005), Kundu and Gupta (2006)
and Gupta and Kundu (2010). Different than these studies, we use the SG distribution
for modeling the strength data.Before analyzing the data set, we identify the shape
parameter η by using the profile likelihood method, see for example Islam and Tiku
(2004) and Acitas et al. (2013)

The steps of this method are given as follows:

Step 1. For the given value of η, calculate µ̂ and σ̂.

Step 2. Calculate the log-likelihood value by incorporating µ̂ and σ̂ into (7).

Step 3. Repeat step 1 and step 2 for a serious values of η.

Step 4. Find η value maximizing the log-likelihood function among the others and
choose it as plausible value of the shape parameter.

Following these steps, we identify the shape parameter η as 3.4. In addition to profile
likelihood method for different values of η, we draw the Q-Q plots of the observations.
Then, we realized that the Q-Q plots of the SG distribution with η = 3.4 do not deviate
too much from the straight line for the strength data, see Figure 5.

It is clear that both the profile likelihood methodology and the Q-Q plot technique
are in agreement for identifying the shape parameter of the SG distribution. Based on
the shape parameter η = 3.4, the ML, the MML and the LS estimates of the parameters
µ and σ are obtained, see Table 6. Also, the bootstrap standard errors (SEs) of the
corresponding estimators are reported in Table 6.

It is clear from Table 6 that the ML and the MML estimates of µ and σ are very close to
each other. According to the bootstrap SEs of the LS, the ML and the MML estimates,
the MML estimates of the parameters µ and σ are the most reliable estimates among
the others with the smallest bootstrap SEs. The bootstrap SEs of the LS estimates are
larger than the others.
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Figure 5: Q-Q plot of the strength data (a) and the fitted pdfs (b).

Table 6: The LS, the ML and the MML estimates of µ and σ.

µ̂ σ̂

LS 1.8701 0.5839

(0.1351)∗ (0.1002)∗

ML 1.9009 0.5408

(0.0895)∗ (0.0537)∗

MML 1.9009 0.5342

(0.0878)∗ (0.0485)∗

*The values in parentheses are the bootstrap SEs.

7 Conclusion

In this study, we obtain the estimators of the location and the scale parameters of the
SG distribution. For this purpose, we use the LS, the ML and the MML methodologies.
Among these estimators, only the MML estimator provides the explicit estimators of
the parameters of interest. The performances of the estimators are compared via Monte
Carlo simulation study.

According to the simulation results, the usage of the LS estimator is preferable when
η = 2. When η = 3.5, the joint efficiencies of the ML estimator and the MML estimator
are better than the LS estimator for n ≤ 100, however n ≥ 500 vice versa. When
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η = 5 and η = 10, the ML and the MML estimators outperform the LS estimator. The
robustness properties of the estimators are also investigated. The LS estimators are
found to be non-robust to the data anomalies (such as outliers, misspecification of the
model etc.) as expected.
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