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In the present paper, we study the application of time series forecasting
methods to massive datasets of financial short time series. In our exam-
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points), which does not allow us to use classical exponential smoothing meth-
ods. However, this shortcoming is compensated by the size of our dataset:
millions of time series. This allows us to tackle the problem of time series
prediction from a pattern recognition perspective. Specifically, we propose a
method for short time series prediction based on time series clustering and
distance-based regression. We experimentally show that this strategy leads
to improved accuracy compared to exponential smoothing methods. In ad-
dition, we describe the underlying big data platform developed to carry out
the efficient forecasting, since we perform millions of item comparisons in
near real-time.
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1 Introduction

This study deals with the forecasting of monthly outgoings and incomings personal
financial records. Here, the input is a time series where each point represents an expense
or incoming in a particular financial category, aggregated over a predefined time interval.
We aim to output the most likely value of that expense or income for the subsequent
time interval. Examples of categories include fine-grained expense type indicators such
as “utility bill”, “salary” or “ATM withdrawal”. The chosen unit of aggregation in the
month, as this is a natural unit of personal financial planning. One potential application
of this functionality is that of personal finance management APPS. In this example,
customers of a financial institution would benefit from digital tools to anticipate future
expenses and hence better plan their budgets.

There are many statistical techniques available for time series forecasting that can
be used to deal with the aforementioned problem. De Gooijer and Hyndman (2006)
provide a survey paper on the topic. However, particular time series display some unique
properties.

Firstly, since the selected time unit is the month, while the history of the series spans
a period 2 years, our time series contain 24 points, which can be considered relatively
short. Second, the distribution of expenses in categories follows a long tail distribution
where a few categories concentrate the most common expenses and a high number of
categories appear occasionally. Thus, the dataset contains many sparse series. These
two properties represent a challenge for time series forecasting since methods such as
exponential smoothing typically work with longer series.

Finally, a third outstanding property of our dataset is its size. As our dataset contains
thousands of customers and hundreds of categories, we work with millions of time series.
We see this as an advantage rather than as a limitation, as it allows us to pose the
problem of time series prediction as a pattern recognition. We can interpret series as
“patterns” and use similar patterns to inform the inference of the following value of the
series.

In this paper, we compare a classical times series forecasting approach against a
methodology based on pattern recognition for the problem of short time series prediction.
More specifically, we study the application of the well-known Holt-Winters exponential
smoothing method, and of an approach based on nearest-neighbor regression. In the
latter, the forecast is considered a missing variable to be inferred, and is extrapolated
using the (known) values of that variable in the most similar series in the training set.
Experiments show that, in a situation with a large number of short time series, the
pattern-based approach outperforms that of the classical time series. A possible expla-
nation is that exponential smoothing methods cast a prediction by only using intra-series
information. Therefore, using a mere 24 data points may be insufficient. In contrast,
nearest-neighbor exploits inter-series information and propagates prediction using simi-
larity patterns between pairs of millions of time series. The underlying assumption that
similar series tend to exhibit a similar value of the variable make predictions seems to be
validated by our experiments. As a consequence of our study, we have obtained a robust
method for predicting expenses and incomings a real-world financial application. For
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comprehensive reviews on time series forecasting, the reader is referred to De Gooijer
and Hyndman (2006). Exponential smoothing is discussed in depth in Hyndman et al.
(2008).

The remainder of the paper is organized as follows: a brief introduction of the problem
is given in section 1. Section 2 describes the time series dataset. The methodology and
procedures applied can be found in section 3. Finally, the paper is concluded in section
4 providing the main results.

2 Dataset and notation

The dataset used in this paper was built from the BBVA account transaction records. As
a financial institution, BBVA maintains an exhaustive record of all account transactions
executed by its clients. Each transaction record is composed of a set of fields including the
contract id of the account, transaction type, transaction date and transaction amount.
Transaction type is a code that describes the different actions that clients can carry out
with their accounts. There are more than 1,000 transaction types such as ATM disposal,
Salary income, Utilities, Money Transfer, Credit card bill, among others.

Using this data, we generated a dataset using the transactions executed from July 2013
to July 2015 by 5,000 randomly selected contracts. Their transactions were aggregated
month by month in each one of the top 20 most common transaction types among
BBVA clients. The result is a set of 32,479 monthly time series, each one representing
accumulated income/outgoing for an account and transaction type during the course of
25 consecutive months. Therefore, our dataset is composed of the following fields:

e Contract id: id of the account where the transaction is executed. This contract id
has been encrypted in order to preserve the privacy of the account holder.

e Transaction type: Code that represents the type of transaction executed on the
account. This dataset contains 20 different transaction types, table 1 shows the
distribution of transaction types in the dataset.

e The following 25 fields tg, t1, to, ...., to4 represent the accumulated income/outgoing
time series for the account id and transaction type month by month from July
2013 to July 2015.

The diversity of people’s economic behavior represented in the dataset, along with the
reduced size of the time series (24 values + one value to predict), make it an interesting
and challenging dataset for forecasting.

3 Prediction Procedures

This section highlights some improvements to the existing transaction value forecasting
methods used by the bank. The current methods for bank account transaction modelling
for monthly time series are:
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Transaction Type

# Time Series in Dataset

% of Dataset

ATM Disposal 3,500 10.78%
Direct debit 3,384 10.42%
Bank Transfer 3,150 9.70%
Pay checks 2,056 6.33%
Debit card payment in supermarket 1,729 5.32%
Credit card bill 1,590 4.90%
Retirement pay 1,568 4.83%
Deposit in office 1,551 4.78%
Disposal in office 1,410 4.34%
Debit card payment in fashion stores 1,363 4.20%
Debit card payment in gas stations 1,294 3.98%
Telephone bill 1,224 3.77%
Debit card payment in superstores 1,197 3.69%
Utilities payment 1,186 3.65%
Debit card payment in furniture stores 1,097 3.38%
Utilities payment (2) 1,088 3.35%
Telephone bill (2) 1,081 3.33%
Card payment fee 1,022 3.15%
Insurance bill 995 3.06%
Loan repayment 994 3.06%
Total 32,479 100%

Table 1: Transaction types in dataset
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e Procedure based on the time series average. Only applied to series with small
transaction frequency dispersion.

e Procedure based on cluster averages.

First, we will present a selection criterion for admissible time series. Thereafter, we
consider two years monthly time series. We consider three alternative criteria:

A. We use the observed times between transactions, that is, if we have a time series
(X1, X2,...,X24) and we observe non null values in the months (i1, 42, ..., %) then
we have the following observed k — 1 times between the transactions is — i1, i3 — 2,
..., 1 —ir_1. Hence, the procedure will provide a forecast only for series having
a coefficient of variation less than 0.2 for those times.

This criterion has the disadvantage of not detecting anomalous situations where
the series has few transactions at the beginning or at the end of the series. In this
criterion, A, we use only the observed times between transactions.

B. We add two estimated times between transactions to the previous criterion A, one
at the beginning of the series, 71, and other at the end, 25 — ¢;. This is equivalent
to assuming that there was an account transaction at month zero and there will be
a transaction at month 25. Therefore, the procedure will provide a forecast only
for series having a coefficient of variation less than 0.2 for these times.

We add a zero at the beginning and a 25 at the end in order to estimate the first
and the last time of a transaction, respectively. Therefore, we can have at most 23
observed times and two estimated times. This criterion solves the aforementioned
disadvantage since a series with few transactions at the beginning would have a
high dispersion since 25 — i would be high and a series with few transactions at
the end would have also a high dispersion since ¢; would be also high. On the other
hand, the number of transactions of the series included according to this criterion
are 8 (or 7), 12 (or 11) and 24 (or 23), in other words, series with quarterly,
bimonthly or monthly transactions.

C. An intermediate alternative is using criteria A’s observed times and the first esti-
mated time. Though this procedure solves the anomalous situations when trans-
actions are concentrated at the end of the series it fails when transactions are
concentrated at the beginning of the time series.

We add a zero at the beginning in order to estimate the first time for a transaction.
This means that, we can have at most 23 observed times and one estimated time.

The results of applying these three criteria to the 32479 series in the dataset reveals
the following conclusions:

e 11302, 9974 and 10878 series satisfy criteria A, B and C, respectively.

e The series that satisfy criteria B also satisfy criteria C.
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e The series that satisfy criteria C or B do not necessarily satisfy criteria A.

Given the previous results, it is difficult to compare the prediction results when ap-
plying criterion A versus B/C. For case B versus C, it appears that the 904 additional
series do not deteriorate the prediction performance. For the three criteria we will show
the results of improvement proposals in the procedure of prediction based on the mean,
although in some cases we focus on criteria C.

The rest of the section is organized in two parts: the first one deals with procedures
based on the average, an AR-benchmark and three possible improvements (conditional
mean; conditional mean with selected lags and Holt-Winters approach, Holt, 2004), the
second part is based on neighbours—cluster and two possible improvements (weighted
mean and weighted mean with blocks).

3.1 Procedures based on the time series average
3.1.1 Procedure based on the conditional mean (CM)

The idea of this procedure is to use a kernel estimator where in the mean computa-
tion observations are weighted by factors that depend on the distance between the last
available observation and the previous observations. The procedure can be described as
follows Bosq (2012):

1. Given a time series (X1, Xo, ..., X24) we construct pairs of values (X1, X»), (X2, X3),
ceey (X23,X24).

2. We compute the difference between Xs4 and the initial values of the pairs con-
structed in step 1.

3. Weights are proportional to K (X; — X24), that is to the Gaussian kernel K eval-

uated in the previous differences. !

4. Finally, the forecast is calculated using the expression:

23

Xos = ZWijH,

j=1

where K(X: — Xai)

i 24
W= .
> K(X; — Xao)

j=1

This procedure can be implemented considering the latest observations for obtaining
the weights. This can be advantageous in series that have a bimonthly or quarterly
behavior.

!Note that the kernel used is a symmetric function with respect to zero, i.e., K(z) = K(—z). Similarly,
it can be interpreted as weights proportional to K(z).
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3.1.2 Procedure based on the conditional mean with lag selection (CM-lag)

A more general implementation of the conditional mean procedure allows us to include
a simple criterion to select the number of observations to condition the prediction or
number of lags used for forecasting. As a preliminary step the autocorrelation function is
calculated. The number of lags will be selected as the order of the greater autocorrelation
in absolute value. The underlying idea is that, for example, in a series of quarterly
transactions we can observe a significant correlation of order three greater than the two
previous ones. In such cases, the prediction is made conditional to the value observed
in (Xa2, X3, Xo4).

Table 2 presents the results of the simulations of previous procedures and the procedure
based on the mean for the three inclusion criteria. Errorl and Error2, Error3 terms
correspond to the absolute errors of the procedure based on the mean, CM and CM-
Lag, respectively. Also in the table, in order to have a benchmark, we will consider the
forecasting results using autoregressive models estimated by the Yule-Walker procedure.
The order of the autoregressive model was selected by the Akaike Information Criterion
(AIC, see Akaike, 1969) and the maximum considered order was twelve. Similar results
were obtained by using the Bayesian Information Criterion (BIC, see Schwarz et al.,
1978).

In the three criteria (A, B and C), the absolute errors statistics obtained with the
AR-benchmark are better than the results with the mean procedure, our proposals, CM
and CM-Lag, outperforms both the mean procedure and the benchmark. In the three
criteria is observed that the CM and CM-lag procedures improve substantially the mean
procedure in all the considered statistics with reductions nearby or top to the 50% in
the median of the absolute errors. The differences between CM and CM-Lag are not
noticeable and there is even some deterioration in the third quartile of the absolute
errors.

On the other hand, the previous results point out the need for an ex-ante criterion
to determine if we can expect a reasonable low forecast error for a given time series.
A preliminary graphical analysis reveals that there are some atypical series among the
series with the same code. There are at least two possible types of atypical series:

1. Due to level shift in the complete period of observation.
2. Due to some atypical behavior at some point of the period of observation.

Some examples of both types appear in time series corresponding to code 80. The
first type of atypical series can be dealt with by standardizing the series (see Figure 1)
but the second type could be masked by this procedure. That is, series that are far away
from the data cloud could be inside the cloud of standardized points. We labeled the
atypical series in a multivariate approach and we classify a time series as an outlier if it
has less than IV neighbors. We have considered N=100 neighbors.

As we can see in Table 3, the exclusion of 396 atypical series detected by the neigh-
bors procedure improves the absolute errors statistics, and especially the higher errors
attached in the third quartile and the maximum error. The results are shown with the
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Criteria A
min 1st Q@  median 3rd Q max
Errorl 0 25.6667  80.3625 225.2083 4.0644e+05
Error2 0 4.7260  32.3756 147.3149 3.0750e+05
FError3 0 3.3834 29.6796 151.4523 3.0750e+05
AR benchmark 0 10.6880  63.9570 202.0800 4.0644e+05
Criteria B
min 1st Q@  median 3rd Q max
Errorl 0 33.7983 110.6183 270.9983 4.0644e+05
Error2 0 13.0026 60.6834 228.7785 3.0750e+05
Error3 0 10.6190  59.9367 238.2817 3.0750e+05
AR benchmark 0 26.6730 103.2500 263.1400 4.0644e+05
Criteria C
min 1st Q@  median 3rd Q max
Errorl 28.9667 103.2500 265.6583 4.0644e+05

0
Error2 0 9.0909 49.7885 205.9539 3.0750e+05
Error3 0 6.2268  47.9425 214.4715 3.0750e+05

AR benchmark 0 20.0220 93.3570 248.0000 4.0644e-+05

Table 2: Absolute prediction error statistics for series satisfying A, B and C. The terms
Errorl, Error2, Error3 and AR-benchmark correspond to the absolute errors of
the procedure based on the mean, CM, CM-Lag and AR models, respectively.
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Figure 1: Time series for all customers with account transactions in code 80.
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Criteria C
min 1st Q@  median 3rd Q max
Errorl 0 27.5400 100.8100 247.9200 6.0636e+04
Error2 0 83238 46.2410 189.6000 6.0596e+04
Error3 0 5.5612  44.5340 196.9300 6.0596e+04

AR benchmark 0 18.7500  87.7270 233.5300 6.0636e+04

Table 3: Absolute prediction error statistics for series satisfying C and excluding atypical
series. The terms Errorl, Error2, Error3 and AR-benchmark correspond to the
absolute errors of the procedure based on the mean, CM, CM-Lag and AR
models, respectively.

set of series that satisfy criterion C but the conclusion is extensible to the rest of the
criteria. In table 3, we also include the results with the AR-benchmark. Again, the
AR-benchmark is superior to the mean procedure but it is outperformed by CM and
CM-Lag. These results suggest that CM and CM-Lag take advantage of the flexibility
of kernel estimators to approximate non-linear relationships.

3.1.3 Holt Winters procedure (HW)

Holt (2004) and Winters (1960) extended Holt’s method to capture seasonality. The
Holt-Winters seasonal method comprises the forecast equation and three smoothing
equations; one for the level, one for trend, and one for the seasonal component with
smoothing parameters. We have implemented the Holt-Winters seasonal method in the
following ways:

(a) HW1: Implements the Holt-Winters procedure with trend and seasonality, gives as
output the absolute mean values errors and the forecast a month view, for annual
series. It performs the optimal selection of the parameters alpha, beta and gamma
within the interval [0.1, 1] with increments of 0.1, according to the criterion of
minimizing absolute mean errors of all series.

(b) HW2: Implements the Holt-Winters procedure without trend and seasonality
(c) HW3: Implements the Holt-Winters procedure with trend

(d) HW4: Implements exponential smoothing procedure, i.e. without trend and sea-
sonality. The simple exponential smoothing is a compromise between predictions
by the latest data and predicted by the mean; It makes a prediction based on
a weighted average of the current values and the last value. When calculating
this mean, a higher weight is assigned to the most recent observation, lowering
gradually for the preceding observations.
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Criteria C
min 1st Q  median 3rd Q max NaN
AFE1 0.0069  47.142 140.73 348.36  7.2995e+05 2102
AE2 0 87744 60.5065 255.7845 9.4932e+15 2102
AE3 0 17.2804 121.4202 572.0091 7.5852e+05 -
AE4 0 13.1245 106.3291  571.001 6.5081e+05 -
AE5 0 3.1140  52.5458 256.5759 7.5852e+05 -

Table 4: Absolute prediction error statistics for series satisfying C. The terms AE1, AE2,
AE3, AE4 and AE5 correspond to the absolute prediction errors of procedures
HW1, HW2, HW3, HW4 and HW5, respectively.

(e) HWS5: Calculates for all the series that satisfy criterion C, the optimal parameters
and selects the procedure of prediction in the four previous variants based on the
absolute error prediction of the last observation available in the sample

Table 4 shows the results for all time series in the dataset, when implementing the
above procedures based on the mean for the criterion inclusion C. The AE1l, AE2,
AE3, AE4 and AE5 terms correspond to the absolute errors prediction of the HW1
procedure with seasonality and trend, HW?2 seasonality and trend, HW3 no seasonality
and trend, HW4 exponential smoothing and HW5 that selects the procedure with the
lowest absolute prediction error of the last observation.

HW1 and HW2 procedures that consider seasonality are not applicable to all the series,
particularly when there is a high frequency of zeros (in this data set we can detect 2102
series). This inconvenience is not presented in HW3 and HW4 procedures, and therefore
would be eligible procedures for such cases.

When comparing the above results with Errorl in Table 2, we note that HW5 outper-
forms the procedure based on the mean of the three quartiles but not in the maximum
error. On the other hand, HW5 improves CM and CM-Lag in the first quartile but not
in the rest of the statistics.

Table 5 shows the results when we exclude the 396 (less than 400) atypical series
detected by the neighbors procedure. As expected, the exclusion of these atypical series
improves the absolute errors statistics.

An important element of the HW5 procedure is the selection of the Holt-Winters
model used, that is, which criteria to select among the four variants HW1 - HW4. In the
present study we have used the minimum of ‘X24 — )?24’. It has also been considered
the lowest mean absolute error (MAE) in-sample as a selection criteria, however, the
results only improve the first and second quartiles to Errorl. On the other hand, the

good results of the conditional procedures CM and CM-Lag suggest that the selection
criteria should be conditional.
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Criteria C
min 1st Q@  median 3rd Q max Nans
AE1 0.0069 44.8823 135.1015 329.7792 3.2032e+05 2032
AE2 0 7.9617 56.7867 233.2105 9.4932e+15 2032
AE3 0 16.3420 116.5342 571.0001 6.0119e+04
AFE4 0 12.1082 102.6322 562.8992 5.9851e+04
AE5 0 29407  49.9687 234.5000 5.9449e+04

Table 5: Absolute prediction error statistics for series satisfying C and excluding atypical
series. The AE1l, AE2, AE3, AE4 and AE5 terms correspond to the absolute
prediction errors of procedures HW1, HW2, HW3, HW4 and HW5, respectively.

3.2 Procedure based on the neighbors (cluster) mean

This procedure can be considered within the family of conditional prediction proce-
dures, in the sense that we are trying to detect series with a pattern in the observations
(X1, Xo,...,X;2) similar to the pattern of the series to be predicted, Y, in the observa-
tions (Y33, Y14, ..., Yo4). The procedure can be described as:

1. Standardized series which belong to the same code. Denote them by (Zi, Zo,
ooy L),

2. Let Y = (Y1, Y5, ..., Ya) be the time series to be predicted and let Z = (Zy, Za, ..., Za24)
be its corresponding standardization.

3. We compute the Euclidean distances between the observations (Z13, Z14, ..., Z24)
of the series Z and the observations (Z;(1), Z;(2), ..., Z;(12) of the series Z; with
i=1,2,...,N.

4. We obtain the k nearest neighbors with respect to the distances calculated in the
previous step. Let’s denote the set of neighbors by K, = {i1,42,...,ix}

5. We compute the forecast as:
Xo5 =Y + Za5 x Sy,

where Y and Sy are the mean and the standard deviation of the series to be
forecast, respectively, and

PN 1
Zos = 1) Zi(13)
ZGKZ

i.e., the mean values of the thirteen months among the Y’s neighbors.
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All time series

min  1st Q median 3rd Q max

Clustererrorl 0 20.136 59.738 203.120 3.8207e+05

KernelClusterErrorl 0 16.843 55.941 190.530 3.6426e+05
Criteria C

min  1st @ median 3rd Q max

Clustererror2 0 14.171 67.810 248.590 4.0719e+05

KernelClusterError2 0 10.756 61.863 235.410 4.0197e+05
Criteria C

min  1st Q median 3rd Q max

Clustererror3 0 13.850 64.914 238.040 3.8207e+05

KernelClusterError3 0 10.120 60.022 225.080 3.6426e-+05

Table 6: Absolute prediction errors statistics for all series and for series satisfying cri-
terion C. The terms ClusterError and KernelClusterError correspond to the
absolute prediction errors of the cluster/neighbors mean and CMW mean, re-
spectively.

3.2.1 A proposal for improvement based on the weighted mean (CMW).

In the procedure based on the mean of the time series we noted that the weighting type
kernel improved the prediction results significantly. The first improvement is therefore
to consider

-1 ,
Zgs = k; W(i)Zi(13),

where

K (| Z:(1: 12) — Z(13 : 24)|))

TS K (12:(1:12) — 213 24)]))
€K,

W (4)

Other distances can be considered besides the Euclidean in both the original imple-
mentation and in the proposed CMW. The results using the distance of Mahalanobis
are similar to those obtained with the Euclidean distance.

Table 6 shows the results when implementing the two above procedures and the one
based on the mean for all series and for those that satisfy the inclusion criterion C.
The terms ClusterErrorl and KernelClusterErrorl correspond to the absolute errors
prediction procedure based on the cluster/neighbors and CMW mean, respectively. The
terms ClusterError2 and KernelClusterError2 are similar but only use the series that
satisfy the criterion C in both the calculation and the prediction. While the terms
ClusterError3 and KernelClusterError3 refer to the series that satisfy the criterion C
but using all series in the same code for prediction.
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All the series

min  1st Q median 3rd Q max

KernelClusterErrorl 0 13.888 51.527 188.930 3.4391e+05
Criteria C

min  1st Q median 3rd Q max

KernelClusterError2 0 9.279 55.771 218.250  3.822e+405
Criteria C

min  1st Q median 3rd Q max

KernelClusterError3 0 9.275 56.812 216.740 3.4391e+05

Table 7: Absolute prediction errors statistics for all series and for series satisfying crite-
rion C and excluding atypical series. The terms KernelClusterError correspond
to the absolute prediction errors of the CMW? mean.

Both cluster procedures improve the forecast obtained with the time series mean. The
CMW procedure improves the procedure based on the neighbors mean both in the set
of all series as in the subset of the series that satisfy the criterion C. We observe a slight
improvement when considering all the sets of the same code for those time series that
satisfy the criteria C.

3.2.2 A proposal for improvement based on the weighted mean by blocks
(CMW?2).

The positive results obtained with the CM procedure where time series blocks are used,
lead us to consider other series blocks as possible neighbors. The search of neighbors or
similar patterns will be considered in the sets of vectors:

(X1, Xo, ..., X12)
(X27 X3a ceey X13)
(X11, X2 ..., Xo3)

This idea can be interpreted as a rigid time-warping where contractions or expansions
of the temporary index are allowed. On the other hand, a more exhaustive use of all
available information is made.

Table 7 shows the results of the CMW? procedure for all series and for those that
satisfy the criteria C.

As we can observe the incorporation of the blocks in CMW? with respect to CMW,
improves forecasting results in all the considered statistics. The procedures based on the
neighbors (cluster) mean and the CMW, CMW? procedures used two parameters that
should be chosen: (i) the number of neighbors to calculate the means (it was fixed to
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all the series

min  1st Q median 3rd Q max NaNs

ClusterErrorl 0 19.396 56.658 187.890 6.1222e404 1163

KernelClusterErrorl 0 16.277 53.699 177.780 6.1023e4+04 1163
Criteria C

min  1st Q median 3rd Q max NaNs

ClusterError2 0 13.408 62.888 230.630 6.1641e+04 396

KernelClusterError2 0 10.102 57.572 217.100 6.0501e+04 396
Criteria C

min  1st Q median 3rd Q max NaNs

ClusterError3 0 13.118 59.967 221.400 6.1222e+04 396

KernelClusterError3 0 9463 55.840 208.670 6.1023e+4-04 396

Table 8: Absolute prediction errors statistics for all series and for series satisfying cri-
terion C. The terms ClusterError and KernelClusterError correspond to the
absolute prediction errors of the cluster/neighbors mean and CMW mean, re-
spectively.

100 neighbors) and (ii) the size of the block to search for similar patterns/neighbors (it
was fixed to 12 months).

On the other hand, as in the procedures based on the mean of the series, it is interesting
to consider the exclusion of series that have an atypical behavior in the sense of having a
“small” number of neighbors. Table 8 includes this option and presents the corresponding
errors. As we expected, the exclusion of 1163 atypical series in the complete data set
(and 396 atypical series in the set that satisfies criterion C leads to improvements in the
forecast results.

4 Conclusions

In this paper we have selected two forecasting methods that are susceptible of improve-
ment with techniques of easy implementation that are scalable to Big data sets. For
each of the procedures we have proposed two or more alternatives for improvement. It
has been illustrated that they are effective in the data set forecast. The best results
are obtained with the CM and CMW? procedures. Some aspects that could be subject
of future research are: Development of an ex-ante selection series procedure whose pre-
diction has a correct behavior (in this way, we only offer the prediction services to the
contracts that satisfy these selection criteria); the combination of the predictions of the
best methods, CM with an univariate analysis (horizontal /intra-series) and CMW? with
a multivariate analysis (vertical/inter-series). Finally, other definitions of neighborhood
can be considered, and the combination with regression techniques may result in further
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improvements of the forecasting procedure.
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