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We propose a logistic regression model to predict the win probability in a
tennis match in the context of the betting market. The variables included in
the model are ATP points and rankings, the players’ ages, the home factor
and the information derived from bookmaker odds. The model is estimated
using data related to 2012 tournaments, and it is then used in an out-of-
sample betting experiment where the odds implied by the model are used,
following a specific procedure, for betting against bookmakers. The algo-
rithm is applied to all matches of the four Grand Slam Championships 2013,
and the whole procedure is evaluated with respect to the global return of the
strategy. After 501 matches, the total cumulative return is 16.3%.
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1 Introduction

The use of sports analytics has quickly increased in recent years. As a result, several
authors have proposed models and methods to analyse and forecast sporting events, as
published in the many papers of the Journal of Quantitative Analysis and Sports and,
more specific to tennis, in Klaassen and Magnus (2014), who summarise the results they
obtained in many previous papers, Chitnis and Vaidya (2014), Koning (2011), Clarke
and Dyte (2000), Forrest and McHale (2007), Nadimpalli and Hasenbein (2013), Knight
and O’Donoghue (2012).
Two main approaches were used in the literature to forecast the outcome of a match: one
based on expert evaluations and one based on more formalised, i.e. statistical, models.
The number of works considering models for tennis matches and forecasting outcomes
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is few with respect to other sports, and works showing applications of these models to
the betting market are even rarer.
In the context of tennis win predictions, according to Kovalchik (2016), three categories
of statistical models can be identified: regression, point-based and paired comparison
models. Regression models directly model the winner of the match; most are logit or
probit models (del Corral and Prieto-Rodŕıguez, 2010; Gilsdorf and Sukhatme, 2008;
Klaassen and Magnus, 2003; Boulier and Stekler, 2003). Point-based approaches model
the win probability as the probability of winning a single point, often on serve (Knot-
tenbelt et al., 2012; Spanias and Knottenbelt, 2012; Barnett and Clarke, 2005). Paired
comparison models account for the players’ abilities (McHale and Morton, 2011). Differ-
ent approaches not based on statistical models include that of Scheibehenne and Bröder
(2007), which predicts the outcomes of matches by mere player name recognition, that
of Leitner et al. (2009), which is based on bookmaker consensus, and that of Easton and
Uylangco (2010), which uses probabilities implied by betting odds.
In this paper, we build a model for predicting the probability that a player wins a match
using several sources of information. The focus, however, in not on the prediction of the
final outcome itself but on the possibility to use it in a rewarding way in the betting
market. Our approach is based on a logistic regression model, which is not new. The
distinguishing features of this work are i) the variables entering the model and ii) the
use of the model in a betting procedure and the evaluation of its economical impact.
In the first part of the work we will build the model step-by-step considering different
variables: ATP points and ranking, the players’ ages, the surface of the courts, the home
factor and the information derived from the bookmaker odds.
In the second part of the paper, the identified model will be used in an out-of-sample
betting experiment, where the odds implied by the model enter an algorithm for betting
against bookmakers. We apply our algorithm to the four Grand Slam 2013 matches and
the whole procedure is then evaluated with respect to the global return of the strat-
egy. Thus, the emphasis here is not on the percentage of correct predictions of match
outcomes but rather on the return obtained from betting using the model. Of course,
these two aspects are not independent; however, because in betting there is often an
asymmetry between the amount of money one can win or lose, a crucial issue is to avoid
betting on matches that are too uncertain. Similarly, it is important to find a strategy
requiring the investment of as little money as possible, that is, to bet on a few matches
as possible.
The rest of paper is organised as follows: Section 2 describes the odds and the logistic
regression model for odds computation. Section 3 analyses data and regressors variables
and identifies the model that will be successively used. Section 4 compares the proba-
bilities and the odds produced by the model with those quoted in the betting market.
Section 5 contains the betting procedure will be applied to the Grand Slam 2013 matches
and analyses the obtained results. Section 6 provides the conclusions.



792 Lisi, Zanella

2 The odds and the model for odds

An odd o is the amount of money paid for a winning unitary bet. It is clear that the
lower the ex-ante probability of winning the bet, the higher the odd itself. The implied
probability associated with an odd o is simply p=1/o. On the other hand, if one starts
from the ex-ante probability p of winning the bet, the fair odd is o=1/p. Thus, when
two players are equally likely to win (p = (1− p) = 0.5), the fair odds would be o = 2.00
for both players. However, to make an overall profit regardless of the result of the match,
bookmakers usually overround the win probabilities for both players, and this translates
to odds that are not completely fair, such that their sum is greater than one. If, in the
previous example, the overround is 8%, the probability p = 0.5 would become p = 0.54
and the odds o = 1.85. When the probability of a player winning is high, i.e p > 0.92, an
8% overround would imply an odd less than one, which is not reasonable, because a win
would receive less than the invested money. In these cases, bookmakers quote a small
and unattractive odd, such as o = 1.01. To be cautious, they usually also put an upper
threshold on odds. Indeed, even if a player has a low win probability, say p = 0.05, the
implied odd (o = 20) would be unsafe for bookmakers, because the possibility of a defeat
or an injury to the favorite player always exists. Therefore, they quote an interesting
but not too high odd (Graham and Stott, 2008; Skiena, 2004).
The models used for forecasting the win probability, as described in the Introduction, are
also used to fix odds. Here, we consider a simple logistic regression model that allows us
to estimate the win probability as a function of a set of variables related to the features
of a match.
Given a match, we define as ‘favorite’ the player with the highest ATP ranking and
as ‘unfavorite’ the other player, and we denote p as the win probability of the favorite
player and q = (1 − p) for the unfavorite player. Thus, the random variable describing
the outcome of the favorite player is distributed as a Bernoulli, with probability p. To
model p conditionally to a (sub)set x = (x1, ..., xk)′ of k explicative variables, we refer
to a logistic regression model, implying a linear logit

log

(
p(x)

1− p(x)

)
= β0 +

k∑
i=1

βixi, (1)

where p(x), the conditional probability, is such that

p(x) =
exp(β0 +

∑k
i=1 βixi)

1 + exp(β0 +
∑k

i=1 βixi)
(2)

with β = β0, β1, ..., βk
′ vector of constant parameters that can be estimated by a maxi-

mum likelihood procedure.
Given p(x), the implied fair conditional odd is o(x) = p(x)−1. However, in our experi-
ment, to make the odds comparable to those of the bookmakers, we apply to the model’s
probability a 6%-overround1, so the odd actually used becomes o(x) = (1.06 ∗ p(x))−1.

1This value is based on the mean overround of some bookmakers. For example, in 2012 the mean
overround was 6.2% for Bet365, 6.6% for Expekt, 6.7% for Ladbrokers, 2.3% for Pinnacles Sports
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3 Building the models

To find the most appropriate model for quoting odds, we consider a data set consisting of
1081 matches played in 2012 and referring to four Grand Slam championships (Australian
Open, Roland Garros, Wimbledon and US Open), nine ATP World Tour Masters 1000
(Indian Wells, Miami, Monte Carlo, Madrid, Rome, Toronto, Cincinnati, Shanghai and
Paris-Bercy) and the ATP World Tour Final, also known as the Masters Cup. The ATP
500 and 250 tournaments, as well as Challenges, the Davis Cup and the Olympic Games,
were not considered.
Data, provided by www.tennis-data.co.uk2 include the name and the location of the
tournament, the game surface, the ATP ranking and the ATP points of both players the
week before the match and the ages of the players for each match. They also include
the pre-match odds of seven bookmakers.
These pieces of information can be thought of as primitive variables, and they will be
considered individually to build the variables to be used as regressors in model (1).

3.1 ATP points

The ATP ranking includes the players that participated in at least one international
tournament in the last year, and it is updated weekly to include the most recent out-
comes. Indeed, each tournament assigns points to players depending on the qualification
round reached and on the kind of tournament3. Points last for a year, so that in each
moment the ATP points of a player are the sum of the points won in the last 52 weeks.
ATP scores then produce the ATP ranking.
Although several models in the literature consider the ATP raking the most important
covariate (see references in the next subsection), in our analyses we follow the approach
of Clarke and Dyte (2000), who use ATP points instead of ranking. This variable was
also considered in McHale and Morton (2011). As ATP points define the ranking, they
include all the information contained in the ranking, but they also establish a sort of
distance among players that is more accurate than ranks.
Actually, we do not use ATP points directly, but we consider the variable ∆Points given
by the difference4 between the points of the favorite player (PF ) and those of the un-
favorite player (PU) the week before the match, namely ∆Points = PF − PU . Row
‘Mod1’ of Table 2 lists the output of the estimation step. Both the constant and ∆P
are highly significant. As expected, the coefficient of ∆Points is positive.

and 6.7% for Stan James
2It is the same source of data of several other papers, such as Kovalchik (2016), McHale and Morton

(2011) and Scheibehenne and Bröder (2007), among others.
3Grand Slam tournaments assign 2000 points to the winner, the so-called Master 1000 tournaments

assign 1000 points, the 500 Series 500 points and the 250 Series 250 points
4We also considered the absolute values of the two ATP scores, but this proved less efficient.
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3.2 The ATP ranking intervals

In the literature, almost all models consider, directly or indirectly, the ATP rankings of
the two players, and this appears quite natural (del Corral and Prieto-Rodŕıguez, 2010;
Klaassen and Magnus, 2003; Clarke and Dyte, 2000; Boulier and Stekler, 2003, among
others). This variable is highly correlated with ATP points, but the variables given by
the difference in points and in ranking are much less correlated. To further reduce the
correlation, we suppose the existence of zones or intervals in the ATP ranking within
which there is some kind of homogeneity among the players. The underlying idea is that
the technical difference is larger among high-ranked players than among medium-ranked,
or even more low-ranked, players. This issue was considered, in a different way, also by
Klaassen and Magnus (2003).
This raises the issue of how to choose intervals. One possibility is to choose them arbi-
trarily, exploiting the considerations of sports analysts and the knowledge of tennis. In
this context, a reasonable classification could be given by the following five intervals of
the ranking: 1–10, 11–30, 31–100, 101–300, >300.
This kind of classification, however, could be questionable and it is completely indepen-
dent of the data. To have a classification based on sample data we analyse the empirical
distribution of ATP points. The left panel of Figure 1 shows the histogram of the ATP
points for the first 200 players in January 2014. It can be seen that only a few players (15)
have more than 2000 points, whereas most (185) have less than this threshold. The right
panel shows the histogram limited to players with less than 2000 points. A reasonable
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Figure 1: Left: distribution of ATP points for the first 200 players of the ATP ranking,
in January 2014; Right: the same for points< 2000.

classification, obtained by looking at Figure 1, is shown in the ‘histogram’ row of Table
1. Despite its good sense for people knowing tennis, it is yet a subjective clustering. To
find a more objective classification, we used the cluster analysis to fix the intervals. In
particular, we applied a hierarchical cluster analysis to the data, where the classification
variable was the number of points, and we fixed the number of clusters equal to five,
maintaining the threshold of 2000 points for the last class. The ranking intervals we
derived are shown in the ‘Clusters’ row of Table 1: one can see they are not so different
from those obtained by a subjective interpretation of the histogram. Once the ranking
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Table 1: Ranking classifications, based on the histogram and on the cluster analysis.

Method I interval II interval III interval IV interval V interval

Histogram 0-400pt 400-800pt 800-1200pt 1200-2000pt >2000pt

Clusters 0-560pt 560-920pt 9200-1460pt 1460-2000pt >2000pt

intervals have been defined, and denoting by FI and UI the intervals corresponding to
the favorite and unfavorite players, we considered the variable ∆Int = FI − UI. In
our case, ∆Int assumes values 0, 1, 2, 3 and 4 and, when included in the model, it has a
positive coefficient and is largely significant (column ‘Mod2’ of Tab. 2). A comparison
of this model with the previous one by means of the Akaike criterion (AIC) suggests the
inclusion of ∆Int improves performance.

3.3 Age

A professional player’s career usually begins around age 10–12, typically entering the in-
ternational ranking around age 17–20, and it usually ends around age 34–355. Especially
in singles, age can be an important factor. A younger player usually has a better physical
performance and more resistance, but more mature players often are more experienced
and have better strategic views. To try to understand the relationship between age and
performance (measured by the ranking), we analysed the ranking positions of the first
150 players and their (rounded) ages. Figure 2 shows the scatterplot of these two vari-
ables. The full line represents the fitted curve of a quadratic regression6 of position over
the age, and it shows that players have, on average, the best rank at around age 27.
The (difference of) age was considered also by del Corral and Prieto-Rodŕıguez (2010)
who also find a quadratic relationship. Accounting for age, however, is not so simple.
Indeed, using several forms and transformations of this variable was not significant or
led to very marginal improvements. In particular, we considered the ages of both players
(AIC: 1182.8), the difference between their ages (AIC: 1183.4), the squared ages of both
players (AIC: 1185.3), both ages and squared ages (AIC: 1183.1), the age of the favorite
player and its square (AIC: 1182.8), the age of the unfavorite player and its square (AIC:
1182.2), the age of the favorite player (AIC:1181.1). Apart from the last case, all these
attempts showed the lack of significance of the variable.
Row ‘Mod3’ of Table 2 shows the estimated model when the age of the favorite player
(FAge) is included. The estimated coefficient of FAge is negative, meaning that in-
creasing the age reduces the win probability. Also the AIC improves.

5Of course, there are some exceptions; for example Rafael Nadal entered the international ranking at
15 and Jimmy Connors played a semi-final of the US Open at 41.

6A nonparametric regression led basically to the same parabolic relation.
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Figure 2: Scatterplot of the age vs the ranking position. The full line represents the
estimated relation, using a quadratic polynomial of the age.

3.4 The surface

Tennis can be played on different courts. As each surface has specific characteristics,
tournaments can also be classified according to the surfaces of their courts. With some
level of approximation, we can say there are three main kinds of surfaces: clay, hard and
grass. Each of these surfaces tends to favor players with specific characteristics, and,
usually, each player has a preferred surface, that exalts his own technical characteristics.
Although the idea that the surface type can be an important factor in the final outcome,
finding a data-based criterion to identify the best surface for each player is not so sim-
ply. We could count the number of successful matches on different surfaces, but this is
influenced also by the number of tournaments on a specific surface. For example, there
are fewer championships on grass than on clay and fewer on clay than on hard surfaces.
Some authors indirectly consider the surface, building a model for each surface. In this
work, we considered only two surfaces: ‘fast’ including hard, grass, carpet and acrylic,
and ‘slow’, referring to clay. Then, for each player, we defined the preferred surface as
that with the higher percentage of winning matches along the entire career. This allows
us to consider the dummy variable Sx, assuming value 1 when the surface on which the
match is played is preferred by the player x and 0 otherwise. To account for the prefer-
ences of both players, we then build the variable Sur = SF −SU , where the subscripts F
and U refer to the favorite and unfavorite players, respectively. Sur assumes only three
values: 1 if only the favorite player plays on his favorite surface, -1 if the same is true
for the unfavorite player, and 0 when the surface is or is not preferred by both players.
As we are modeling the win probability of the favorite player, the expected coefficient
is positive. However, the variable Sur was not significant, and it did not lead to any
improvement (AIC=1186.1).
A possible explanation is that the surface might be important only when the technical
difference between the two players is not too big. To verify this hypothesis, we considered
a new variable Sur2, such that Sur2 = Sur if the difference between the two players in
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terms of ATP points is less than 4007 and 0 if otherwise. This new variable is significant
at 5% of significance level, but the AIC criterion does not improve (see column ‘Mod4’
in Tab. 2).

3.5 The home factor

In the context of international sports, home advantage assumes that competitors will
perform above their expected level when competing in events held in their own country.
For several sports, particularly for team sports, to play ‘at home’ represents a well-known
advantage (Dixon and Coles, 1997). In the field of tennis, this issue has been considered
by Holder and Nevill (1997), who find that the home factor is not important, and by
Koning (2011) who instead finds that a home advantage does exist for men but not for
women.
We tried to account also for home effect by considering dummy variables Hx assuming
value 1 if player x plays in his country and 0 otherwise. As for surface, the variable
Home is built as the difference of the two dummies Home = HF −HU , thus it assumes
only value 1, 0 and −1. The expected coefficient of Home is positive.
Unexpectedly, the home factor turns out to be highly significant and renders the variable
Sur2 barely significant (see column ‘Mod5’ of Tab. 2). The last point might be the
result of a collinearity between home and surface factors. The inclusion of the Home
variable improves the Akaike criterion (see Tab. 2), suggesting that the home factor is
not as negligible as previously thought. Furthermore, the exclusion of the Sur2 variable
improves the Akaike criterion (AIC=1166.3) further. Thus, Sur2 was discarded.

3.6 External information

All the previous variables measure specific aspects describing the balance of power be-
tween two players. It is clear there are many other factors that, in principle, could affect
the outcome. Examples include: the physical conditions, the psychological conditions in
a particular period, a particular sequence of wins or defeats, etc.
Whether to consider or not these factors is surely important, but it presents the prob-
lem of how to measure and include them in the model, because they generally require
a detailed and informed analysis of each match. We thought to derive this kind of in-
formation indirectly from the odds of bookmakers. Indeed, in defining the odds for a
match, they account for all available information and, for their job, they pay particular
attention to any news. An example of this situation is the match played by Fognini
and Bhambri at the ATP Chennay Tournament in 2014. In that moment, Fognini was
ranked 16th and Bhambri 195th, but the Italian player was returning from a physical
injury. Bookmakers, who were aware of this injury, quoted for Fognini an odd around
1.55 and for Bhambri around 2.2. It is probable that, without this piece of information,
the odds would have been quite different. The model described in column ‘Mod5’ of
Tab.2, for example, quotes 1.32 for Fognini and 2.94 for Bhambri. The match ended

7This threshold was fixed by considering a grid of values and choosing the value that maximises the
impact of the variable.
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with the withdrawl of Fognini in the second set.
To account for these situations and for others requiring updated information, we build
the variable Info. The idea is to exploit the bookmakers’ odds as they contain ‘non-
sample’ information. In particular, Info = 0 if oF ≤ 2, with oF being the odd offered
by the bookmakers for the favorite player, and Info = oF if oF > 2. This means that
Info activates when the bookmakers assigns to the favorite (in the sense of ranking)
player a win probability of less than 0.46. The greater the odd, the more the variable
weighs. The rationale is that if bookmakers give to the player that should be the favorite
a win probability of less than 0.5, they might know something that the model does not
see. When included in the model, the Info variable is largely significant (see column
‘Mod6’, Tab.2), and, as expected, its coefficient is negative. In addition, it improves the
AIC criterion that becomes AIC=1139.6.
In our analyses, over the 1081 matches that have been considered, the info variable is
not null for 132 matches, that is, 12.86% of times.

4 The final model for odds

The in-sample selected model for the win probability of the favorite player is Mod6,
corresponding to the logistic model (2) with

x′β = 2.30 + 0.0002∆Points+ 0.187∆Int− 0.064FAge+ 0.497Home− 0.446Info. (3)

For this model, Table 2 lists the pseduo-R2 and the Brier score8 both for the model and
for bookmakers9.
This model is simple and uses only easily available information. Moreover, through
expression (2), it allows us to estimate the win probability of the favorite and the un-
favorite players p and q = 1− p, respectively. Starting from p and q, we built the odds
by applying a 6%-overround, so that the odds for the favorite and the unfavorite players
are of = (1.06p)−1 and oU = (1.06q)−1, respectively.
It is not strange that between the odds quoted by bookmakers and those implied by the
model, there is a spread. There are several possible motivations for this difference. For
example, bookmakers fix the odds match by match, while the model fixes them strictly
following some rules; once the odds have been quoted, bookmakers can adjust them to
follow the betting flows while the model cannot; finally, among the possible reasons,
there is also the possibility that the model and the bookmakers estimate the odds with
different views and accuracy.
To understand better the relationship between quoted odds and those implied by the
model, we first compare the win probabilities produced by the model with those implied
by the bookmakers’ odds. We consider probabilities instead of odds because the book-
makers’ overround is not constant over the matches and, thus, comparing probabilities

8The Bries score is defined as B =
∑N

i=1(Pi − Xi)
2/N , where P is the predicted probability that

the favorite (higher-ranked) player wins, while X = 1 if the favorite player wins and 0 otherwise.
0 ≤ B ≤ 1 and small values of B indicate good prediction accuracy.

9For bookmakers we used normalised implied probabilities
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Table 2: Estimated model’s coefficients and statistics of (in-sample) predictive accuracy.
In brackets the corresponding p−values.

Model Mod1 Mod2 Mod3 Mod4 Mod5 Mod6

Const 0.438 1.469 1.805 1.876 1.929 2.297

(4.9e-07) (4.2e-05) (7.0e-03) (6.9e-03) (4.3e-03) (9.6e-04)

∆Points 2.9e-04 2.4e-04 2.3e-04 2.1e-04 2.34e-04 2.01e-04

(1.1e-12) (6.6e-10) (1.3e-09) (2.9e-09) (3.02e-09) (3.03e-07)

∆Int – 0.280 0.3454 0.273 0.288 0.187

– (3.7e-06) (4.5e-06) (9.0e-05) (4.0e-05) (0.010)

FAge – – -0.062 -0.059 -0.064 -0.064

– – (0.009 ) (0.013 ) (0.008 ) (0.009)

Sur2 – – – 0.405 0.352 –

– – – (0.022) (0.049) –

Home – – – – -0.561 0.497

– – – – (4.5e-04) (0.002)

Info – – – – – -0.446

– – – – – (5.3e-09)

AIC 1206.3 1191.0 1181.1 1183.8 1173.3 1139.6

Pseudo–R2 0.064 0.077 0.082 0.084 0.093 0.122

Number of observations 1081

Brier Score (Mod6) 0.172

Brier Score (Bookmakers) 0.166

is more appropriate. However, as bookmakers do not offer fair odds, simple inverse odds
can not be used because, usually, their sum is not equal to one. In order to use inverse
odds as probability estimates, a normalization is required. Here, following Štrumbelj
(2014) we normalized the inverse odds according to Shin (1993, 1991) and, in this sec-
tion we will always refer to normalized (implied) probabilities.
Figure 3 shows the scatterplots of the model’s probabilities versus the bookmaker’s win
probabilities for the favorite (left) and for the unfavorite (right) player, over the 1081
matches of 2012 that represent our in-sample dataset. As expected, in both cases the
favorite player’s probability tends to assume high values and, on the contrary, the unfa-
vorite player’s probability lower values. There are some exceptions on which, however,
both bookmakers and the model seem to agree. The points tend also to place themselves
around the bisecting line, meaning that, on average, the two probabilities are similar and,
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indirectly, supporting the estimates of the model. Figure 4, shows the distributions of
the difference between the bookmaker’s normalized and the model’s probability for the
favorite player, d1 (left panel), and for the unfavorite player, d2 (right panel). The two
distributions have means equal to −0.0031, for d1, and 0.0031, for d2, while both of them
have standard deviation equal to 0.1. Jointly, Figures 3 and 4 point out that there are
matches on which the model and the bookmakers do not completely agree, at least in
terms of probability. Moreover, as P̂ (d1 > 0) ' 0.53 and P̂ (d2 > 0) ' 0.47, bookmakers
tend to be slightly more conservative and to evaluate as more likely the chances of the
player with the higher ATP ranking to win. Symmetrically, when unfavorite players
are involved, the model tends to assign higher win probability than the market. This
propensity is more pronounced for low levels of probability for the favorite player and
high levels of probability for the unfavorite player (see Figure 3). In terms of odds,
this translates in model-implied odds relatively higher that those of bookmakers for the
favorite player and relatively lower for the unfavorite player (see Fig.5).
Globally, these analyses point out that model-implied odds are in line with those quoted
in the market, but they are not mere replications of bookmakers’ odds.
Table 3 gives the percentages of correct and uncorrected winner’s predictions for the
model and for bookmakers. Also in this case, the final behaviour is very similar: over
the 1081 matches of the in-sample dataset, the model correctly predicts the winner 75.8%
of times while bookmakers guess the outcome 77.5% of times. Nevertheless, we want
to stress that, as noted also by Mchale and Morton (2011), obtaining a positive reward
from betting does not simply coincide with a good prediction of the final outcome. In
Section 5, indeed, we will use the spreads between model’s and the bookmakers’ odds to
identify situations that are worthy to be exploited.

Table 3: Percentage of in-sample correct and uncorrected predictions for model and
bookmakers. Fav.=favorite (higher rank) player, Unfav.=unfavorite palyer.

In-sample
Model’s bet Bookmakers’ bet

Fav. Unfav. Fav. Unfav.

Win Fav. 66.3 5.6 66.0 5.9

Win Unfav. 18.5 9.6 18.6 9.5

5 Out-of-sample prediction of the model for betting

In this section, we discuss the out-of-sample performance of our model. To this pur-
pose, we consider, as out-of-sample dataset, all the matches played in the four Grand
Slam Championships in 2013: the Australian Open 2013, Roland Garros 2013, Wim-
bledon 2013 and US Open 2013. The Australian Open and the US Open are played
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Figure 3: Left: scatterplot of the bookmaker normalized (implied) probabilities vs the
model probabilities, for the favorite player and for the 1081 matches of 2012 .
Right: the same for unfavorite players.

on hard courts, the Roland Garros on clay and Wimbledon on grass. The Grand Slam
tournaments have draws composed of 128 players and 127 matches. On the whole, we
considered 501 matches10.
Let us first consider the predictive performance, in terms of percentage of correct pre-
dicted outcomes. Table 4 gives the percentages of correct and uncorrected out-of-sample
predictions for the model and for bookmakers, as well as the out-of-sample Bries scores
over all the 501 matches of the out-of-sample dataset. The results are very similar: the
model correctly guesses the final outcome 77.2% of times against the 78% of bookmakers.
Also the Brier score is only slightly higher than that for the market.

However, in this work the the emphasis is not on the ability on predicting the final
outcome but on the economic performance, when the model is embedded in a strategy
for betting on matches of the ATP tour. Indeed, as noted also by (McHale and Mor-
ton, 2011), obtaining positive reward from betting has more profound than the simple
prediction of the final outcome. The idea is to bet ‘against’ the betting market, that
is, to bet that our statistical model will manage the information more efficiently than
the bookmakers will. To this end, once the models’ odds have been computed, we try
to find in the market the quoted odds that, with respect to the models’ odds, over- or
under-estimate the probability of a specific outcome.
As the market’s and model’s odds rarely coincide, the problem is to understand when is
worthy to exploit their difference. This, in turn, implies the definition of a strategy or
set of rules suggesting whether to bet on each match.
The theory behind this approach refers to the large numbers law, stating that when we
have an outcome with happening probability p, if the success is rewarded by w > 1/p,

10For the four tournaments, the total number of matches should be 508 but 7 of them were not played.
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Figure 4: Left: kernel density of the difference between bookmakers and model probabil-
ity for the favorite player (d1) for the 1081 matches of 2012 ; right: the same
for the unfavorite player (d2).

then the expected reward of the bet is positive. We make use of model (3) to estimate,
as best as possible, the probability p. Clearly, as this law is asymptotic, to produce
significant results we must consider a large number of matches.
In our case, for each of the 501 matches of the four Grand Slam tournaments, we com-
puted the odds using model (3) and we compared them with the best-quoted odd among
the seven reported on www.tennis-data.co.uk. Usually, there is not a large difference
among the quoted odds; nevertheless, we selected the higher one to try to exploit any
kind of opportunity.
Let us define by om,f and om,u the odd implied by the model for the favorite and the
unfavorite player and by ob,f and ob,u the analogous quantities for the best odds quoted
by bookmakers. To choose whether to bet we propose a betting strategy based on these
three conditions:
1. the model and the bookmakers must agree on the (un)favorite player:
2. the bookmakers’ odds must be such that:
• ob,f > omin,f and ob,u > omin,u;
3. the bookmakers and model’s odds must be such that:
• tinf,f ≤ (ob,f/om,f ) ≤ tsup,f if we are betting on the favorite player or
• tinf,u ≤ (ob,u/om,u) ≤ tsup,u if we are betting on the unfavorite player.
Condition 2 is independent of the model’s results, whereas conditions 1 and 3 are model-
related. More specifically, condition 1 is intended to prevent betting on matches that
are too uncertain, typically when both pf and pu belong to the range 0.45 − 0.55 or
when there are conditions or news able to change the natural favorite. These cases are
uncommon, because the variable Info usually prevents them.
Condition 2. prevents betting on matches with quoted odds less than the minimum
thresholds omin,f and omin,u . Note that, these thresholds are absolute limits, that are
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Figure 5: Left: scatterplot of the bookmaker vs the model-implied odds (6%-overround),
for the favorite player and for the 1081 matches of 2012 . Right: the same for
unfavorite players.

independent of the model’s odds. In practice, they ensure we wager only when the fa-
vorite and unfavorite’s odds belong to a moderately sized interval of values. For example,
with the thresholds chosen in this paper, we bet only on matches where ob,f belongs to
the range (1.30–1.70) and ob,u to the range (2.40–4.30). These ranges discard stakes with
a too low margin on the favorite or a too risky margin on the unfavorite. Avoiding too
high odds for the unfavorite player allows us to account for situations where it is highly
unlikely that he could win because of the technical difference between the two players.
For example, in 2012 over 220 matches for which the odds belonged to this category,
only in 11 (5% of times) cases the favorite player was defeated.
Finally, condition 3. fixes some thresholds, tinf,. and tsup,., beyond which we do not bet.
They are not based on the absolute value of the odds but on the relative value of the
bookmakers’ odds with respect to the model’s odds and are particularly important to
establish when it is worth to bet. As (ob,f/om,f ) = (pm,f/pb,f ), in practice, the limits
refer to the differential of the probabilities assigned by the model and by bookmakers.
The lower threshold selects matches where the win probability assigned by the model is
greater than that assigned by bookmakers of a minimum level tinf,f . The greater the
difference, the more convenient it is to bet. However, when the difference it is too large,
it is possible that bookmakers are accounting for some factor not included in the model.
Thus, we fix and upper threshold, tsup,f , beyond which, to be safe, we prefer not to bet.
Analogously, when we bet on the unfavorite player.
The quantities omin,f , omin,u, tinf,f , tsup,f , tinf,u and tsup,u are the parameters of the
procedure and were calibrated to maximise the in-sample cumulative return. In practice,
we ran the procedure in-sample over a grid of combinations of these parameters and we
chose the values that led to the higher cumulative return.
These three conditions limit considerably the number of matches on which to bet. This
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Table 4: Percentage of correct and uncorrected out-of-sample predictions for model
and bookmakers and Bries scores. Fav.=favorite (higher rank) player, Un-
fav.=unfavorite palyer.
Note that these results do not coincide with those of Tab.5 as they refer to all
the 501 matches of the out-of-sample dataset, while the latter refer only to the
matches on which we bet.

Out-of-sample
Model’s bet Bookmakers’ bet

Fav. Unfav. Fav. Unfav.

Win Fav. 69.2 5.8 69.6 5.4

Win Unfav. 17.0 8.0 16.6 8.4

Number of observations 501

Brier Score (Mod6) 0.165

Brier Score (Bookmakers) 0.150

is a strong point of the proposed procedure. Indeed, it limits the needed amount of
money to invest and focuses on the matches whose outcomes are clearer. However, we
do not want to reduce too much the number of bets because on one hand, they represent
a risk and on the other, they are opportunities. Therefore, in the in-sample optimisation
we discarded the combination of parameters leading to a percentage of bets less than
10%. For the 2012 data, the optimised parameters were omin,f = 1.3, omin,u = 2.4,
tinf,f = 1.05, tsup,f = 1.20, tinf,u = 1.10 and tsup,u = 1.25
First of all, we consider the predictive performance of the model over the entire out-
of-sample dataset and we compare it with the analogous performance of bookmakers.
Table 4 lists the percentages of correct and uncorrected predictions over the 501 matches
of the four Grand Slam Championship 2013. The model guesses the final outcome 77.2%
of times whereas bookmakers 78% of times. Also the Brier scores are similar: 0.165 for
the model and 0.150 for bookmakers. Thus, in terms of outcome’s prediction, the model
and bookmakers behave similarly.
We then consider the results connected to the previous described strategy. It led us to
bet on 72 matches over 501. This means that we actually bet only on 14.4% of matches.
Of the 72 bets, 53 were successful, corresponding to 73.6% of times, a figure slightly
higher than that reported in Table 4 in Kovalchik (2016). Figure 6 shows the pattern
of the cumulative return (in Euro) of the betting sequence in chronological order. The
maximum drawdown is 30%, but it is important to note that this figure was reached after
only two stakes, meaning that in monetary terms it is not particularly relevant. After ten
stakes, the maximum drawdown is 0 and the cumulative return is always positive Table
5 lists the results for the whole sequence of bets and singularly for each tournament. We
can see the percentage of matches on which we bet ranges from 11.0% to 17.7%: these
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percentages largely reduce the amount of money required for the global investment. The
percentage of winning bets instead ranges from 64.3% to 81.8%, but it is interesting
to note that, because of the different odds, a higher percentage of winning bets does
not always translate to a larger reward. Indeed the overall profit heavily depends on
winning a few bets at long odds. It is these wins at long odds which make the difference
in the final return. Finally, Table 5 includes the percentage cumulative return of each
championship: it ranges from 6.5% to 31.5%. Thus, even if the reward for the US Open
2013 was moderate, all four tournaments have positive cumulative return.
To have some benchmark, we computed the cumulative return of a strategy based on
betting i) always on the favorite player and ii) randomly. In the first case, over the 501
matches, and with respect to the quoted bookmakers’ odds, the percentage cumulative
return was −14.6%. In the second case, we generated M = 10000 binary sequences
(1 =bet on the favorite, 0 =bet on the unfavorite) of length n = 501, each of which is
distributed as a Binomial(n = 501, p = 0.5). Thus, each sequence defines (randomly), for
each match, the player on which to bet. For each sequence, we computed the percentage
cumulative return, with respect to the quoted oddmandelP4, s. Finally, we took the av-
erage of the 10000 cumulative returns. This (unwise) strategy led to a mean percentage
cumulative return of −39.6%.
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Figure 6: Cumulative gain in Euro (left) an percentage (right). AO=Australian Open,
RG=Roland Garros, WB=Wimbledon, US=US Open. The dashed vertical
lines specify the end of each tournament. Amount of money invested in each
bet=10 Euro

6 Conclusions

We proposed a strategy to bet against bookmakers on the tennis market. First, we built
a model producing the win probability of a tennis match, then the outcome of the model
is used to fix the odds. Finally, we suggested some empirical rules, to choose whether
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Table 5: Out-of-sample results. n.B=number of bets; %B=% of matches on which we
bet; %W=% of wins over the bets; %Cum ret=% cumulative return over the
amount of invested money; %MaxD=% maximum drawdown.

AO13 RG13 WB13 US13 TOT

n.matches 127 124 125 125 501

n.B 14 22 20 16 72

%B 11.0 17.7 16.0 12.8 14.4

%W 64.3 81.8 70.0 75.0 73.6

%Cum ret 6.5 31.5 11.8 9.5 16.3

%MaxD 30.0 0.0 0.0 6.3 30.0

to bet. We calibrated all the parameters of the strategy in 1081 matches representing
our in-sample dataset, and we used it in an out-of-sample context over the 501 matches
of the four Grand Slam tournaments in 2013. After 501 matches we got a cumulative
return of 16.3%.
As the value of any empirical analysis is, in some way, limited to the data have been
considered, this result can not be conclusive and requires further evidences involving a
larger out-of-sample dataset, different periods and more in-depth analyses. In particular,
future research should include also the 500 and 250 ATP and/or WTA championships as
well as a larger number of matches. A rolling calibration of the model, and consequent
analyses of predictive results, are also important to study the stability of the estimated
procedure parameters and of the results.

Acknowledgement

The authors wish to thank two anonymous referees, whose comments greatly contributed
to improve the quality of this work.

References

Barnett, T. and Clarke, S. R. (2005). Combining player statistics to predict outcomes
of tennis matches. IMA Journal of Management Mathematics, 16:113–120.

Boulier, B. and Stekler, H. O. (2003). Predicting the outcomes of national football league
games. International Journal of Forecasting, 19:257–270.

Chitnis, A. and Vaidya, O. (2014). Performance assessment of tennis players: Application
of dea. Procedia - Social and Behavioral Sciences, 133:74–83.

Clarke, S. and Dyte, D. (2000). Using offcial ratings to simulate major tennis tourna-
ments. International Transaction in Operational Research, 7:585–594.



Electronic Journal of Applied Statistical Analysis 807
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