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In this paper, estimation for the generalized autoregressive conditional
heteroscedasticity (GARCH) model is conducted. The Quasi likelihood (QL)
and Asymptotic Quasi-likelihood (AQL) estimation methods are suggested
in this paper. The QL approach relaxes the distributional assumptions of
GARCH processes. The AQL technique obtains out the QL method when
the conditional variance of process is unknown. The AQL methodology,
merging the kernel technique used for parameter estimation of the GARCH
model. This AQL methodology enables a substitute technique for parameter
estimation when the conditional variance of process is unknown. Application
of the QL and AQL methods to weekly prices changes of crude oil modelled
by GARCH model is considered.
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1 Introduction

The generalized autoregressive conditional heteroscedasticity GARCH(p,q) process y; is
defined by
yt:,u—{—ft, t:1,2,3,"',T. (11)

and

o7 =ap+aréf ettt BoT e+ Beot g+ e t=1,2,3,---,7. (1.2)
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& are iid with E(§) = 0 and V(&) = of; and (; are ii.d with £(¢) = 0 and V((;) = 0.
The GARCH model are developed by Bollerslev (1986) to extend the earlier work on
ARCH models by Engle (1982). For estimation and applications of (GARCH) models
( See, Bollerslev et al. (1992); Engle (2001); Diebold and Lopez (1995); Pagan (1996);
Palm (1996); Andersen and Bollerslev (1998); Engle and Patton (2001) and Andersen
et al. (2006)). Moreover, GARCH models have now become standard textbook material
in econometrics and finance as exemplified by, e.g., Alexander (2001), Enders (2004),
and Taylor (2004).

Weiss (1986) and Bollerslev and Wooldridge (1992) obtained Quasi-maximum likeli-
hood (QML) estimator to GARCH models. They also shows that the estimators of the
parameters obtained by maximizing a likelihood function constructed under the normal-
ity assumption can still be consistent even if the true density is not normal. In many
cases, there is evidence that the standardized residuals from estimated GARCH models
are not normally distributed, especially for high-frequency financial time. Anyfantaki
and Demos (2011) suggests employing a Markov chain Monte Carlo algorithm which al-
lows the calculation of a classical estimator via the simulated EM algorithm. They also
outline the issues that the recursive nature of the conditional variance makes exact likeli-
hood analysis of these models computationally infeasible. Moreover, for semi-parametric
and nonparametric estimation of the GARCH models (see, Linton and Yan (2011); Yang
(2006); Linton et al. (2010); Jianging et al. (2014)).

Existing techniques for parameter estimation in GARCH models are mainly maximum
likelihood based. This means that the probability structure of {y;} has to be known.
Usually it assume {y;} has conditional Gaussian distribution. This concern is very valid
in finance as empirical data reveal fat-tailness and skewness which contradicts to the
conditional normality. Therefore, it might lead estimation procedure to be exposed to
modelling errors.

This paper applies the Quasi-likelihood (QL) and Asymptotic Quasi-likelihood (AQL)
approaches to (GARCH) model. The QL approach relaxes the distributional assump-
tions but has a restriction that assumes the conditional variance process is known. To
overcome this limitation, we suggest a substitute technique, the AQL methodology,
merging the kernel technique used for parameter estimation of the GARCH model. This
AQL methodology enables a substitute technique for parameter estimation when the
conditional variance of process is unknown.

This paper is structured as follows. The QL and AQL approaches are introduced and
the GARCH model estimation using the QL and AQL methods are developed in Section
2. Reports of simulation outcomes, and numerical cases are presented in Section 3. The
QL and AQL techniques are applied to weekly prices changes of crude oil modeled by
GARCH in Section 4. Section 5 summarizes and concludes the paper.
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2 Parameter estimation of GARCH(p,q) model using the
QL and AQL methods

In the following, parameter estimation for GARCH(p,q) model, which include non-linear
and non-Gaussian models is given. We propose QL and AQL approaches for estimation
of GARCH(p,q) model. The estimations of unknown parameters are considered without
any distribution assumptions concerning the processes involved and the estimation is
based on different scenarios in which the conditional covariance of the error’s terms are
assumed to be known or unknown.

2.1 The QL method

Let the observation equation be given by

yt:ft(0)+g}, t=1,2,3---,T, (211)

(; is a sequence of martingale difference with respect to JF;, F; denotes the o-field
generated by y¢,yi—1,- -+ ,y1 for t > 1; that is, E((|Fi—1)= Ei—1(¢;) = 0; where £,(0) is
an JF;_; measurable; and € is parameter vector, which belongs to an open subset © € R%.
Note that 6 is a parameter of interest. We assume that Et_l(CtCt’) = 3 is known. Now,
the liner class Gr of the estimating function (EF) can be defined by

T
Or = {Z Wi (y: — £:(0))}

and the quasi-likelihood estimation function (QLEF) can be defined by
T .
Gi(0) =) £(0)%; (vt — £(0)) (2.1.2)
t=1

where W is F;_j-measureable and f;(6) = 0f;(0)/80. Then, the estimation of 6 by
the QL method is the solution of the QL equation G.(§) = 0 (see Hedye (1997)).
If the sub-estimating function spaces of Gr are considered as follows,

Gr = {Wi(y: — £:(0))}
then the QLEF can be defined by

G{,)(6) = 1(0)= (v — £(6)) (213)

and the estimation of § by the QL method is the solution of the QL equation G’("t) (#) = 0.

A limitation of the QL method is that the nature of 3; may not be obtainable. A
misidentified ¥, could result in a deceptive inference about parameter 6. In the next
subsection, we introduce the AQL method, which is basically the QL estimation assuming
that the covariance matrix X; is unknown.
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2.2 The AQL method

The QLEF (see 2.1.2 and 2.1.3) relies on the information of ¥;. Such information is not
always accessible. To find the QL when F;_1(¢;{;’) is not accessible, Lin (2000) proposed
the AQL method.

Definition 2.2.1: Let G*Tm be a sequence of the EF in G. For all Gy € G, if

(EGr) Y (EGrGr) (EGy) ' — (EGr,,) Y(EGY,,GH)(EGT,,) !

is asymptotically non-negative definite, Gi},n can be denoted as the asymptotic quasi-
likelihood estimation function (AQLEF) sequence in G, and the AQL sequence estimates
07, by the AQL method is the solution of the AQL equation G%., = 0.

Suppose, in probability, 3, is converging to E;_1((;(;'). Then,

T
Grn(0) => £(0)Z; 1 (ye — £(0)) (2.2.1)
t=1

expresses an AQLEF sequence. The solution of G}}n(ﬁ) = 0 expresses the AQL
sequence estimate {G}W}, which converges to € under certain regular conditions.

In this paper, the kernel smoothing estimator of 3; is suggested to find 3, in the
AQLEF (2.2.1). A wide-ranging appraisal of the Nadaraya—Watson (NW) estimator-
type kernel estimator is available in Hérdle (1990) and Wand and Jones (1995). By
using these kernel estimators, the AQL equation becomes

T

GT,(0) = > £(0)Z, 1 (0 (y: — £.(0)) = 0. (2.2.2)
t=1

The estimation of # by the AQL method is the solution to (2.2.2). Iterative techniques
are suggested to solve the AQL equation (2.2.2). Such techniques start with the ordinary
least squares (OLS) estimator #) and use 3;,(A) in the AQL equation (2.2.2) to
obtain the AQL estimator o). Repeat this a few times until it converges.

The next subsections present the parameter estimation of GARCH model using the
QL and AQL methods.

2.3 Parameter estimation of GARCH(p,q) model using the QL method

The GARCH(p,q) process is defined by
y=p+ &, t=1,2,3,---,T. (2.3.1)
and
07 = ap+on&f 1+ A apll B0t e+ B0t s t=1,2,3,---,T. (2.3.2)

& are i.i.d with By _1(&) = 0 and V;_1(&) = 02; and (; are i.i.d with E;_1(;) = 0 and
Viei1(G) = ag. For this scenario, the martingale difference is
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& ) _ Yt — 1
Gt of —ag— i€l — =€l = Pro g — - = Byoi,

The (QLEF), to estimate o7, is given by

ai 0 B &t
G(t)(UtQ):(O>1)< Ot 2) (C )

=0 (0} — a0 — €y — = oy, = Prof g — o = Beoi ). (2.3.3)

Given & = 0, initial values g = (1o, @0y, Q1g, "+, Opys B1g, - - - ,qu,ago), 2, =
(ye—i — po)?, and &f_j is the QL estimation of af_j where i=1,2,---,p and j=1,2,--- ,q,
then the QL estimation of o7 is the solution of G(t)(af) =0,

&t2 = oo+ alég—l +-t OépétQ—p + 61&152—1 +oe Tt /Bqé—tz—q? t=1,23---,T. (234)
The QLEF, using {67} and {y;}, to estimate the parameters 8 = p, ap, a1, -+, ag,
B1, -+, By is given by
-1 0
0 -1
0 —&,
T : o2 0 - &
GT(H):Z 2 ( X 2> <t>
= | 0 Sy 0 g Gt
0 —of,
0 —af_q

The QL estimate of § = (p, a0, 1, , 04, b1, ,Bq) is the solution of Gr(0) = 0.

where ét = 6—t2 — Qo — &léwfz—l - dpth—p - /Bla—tz—l - Bqa—tz—qvt =1,2,3,---,T and
T (f \2
o 2a=1(G—¢)
o = =—=——"—"— - 2.3.5
¢ T 1 (2.3.5)
= (fu,60, 601, -+, G, By, ,Bq, JE) is an initial value in the iterative procedure.

2.4 Parameter estimation of GARCH(p,q) model using the AQL
method

For GARCH(p,q) model given by (2.3.1) and (2.3.2) and using the same argument listed
under (2.3.2). Firstly, to estimate o2, so the sequence of (AQLEF) is given by
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t

Gy (02) = (0, 1) ( i )

. o 0 :
leen 50 - 07 90 - (/‘LOJ Qpg, A1g, 7ap07 6107 T 7/qu)7 EEJ?, - 127 and 6152—2 = (yt—i_M0)27
and 6,52# is the AQL estimation of at{j where i=1,2,---,p and j=1,2,- - - ,q, then the AQL
estimation of o7 is the solution of G(;(07) = 0, that is,

of = antandl g+ ol F Bi167 g — = Beot,  t=1,2,3-- T (24
Secondly, by kernel estimation method, we find
gt,n (0(0)) _ A On (yt) &Ti(yta Ut) )
on(ot, Yt) on(ot)

Thirdly, to estimate the parameters 6y = (uo, a0, a1, ,p, B1,+ -+ , B4), using {67}
and {y;} and the sequence of (AQLEF)

-1 0
0 -1
0 —&,
T : é.
Gr(h) = ' 2-;( t).
; 0o -, |7\«
0 —of,
0 —Jt2_q

The AQL estimate of 8 = (i, g, 1, -+ ,aq, 51, -+, B¢) is the solution of G (#) = 0.
The estimation procedure will be iteratively repeated until it converges.

3 Simulation study

In this section we report results from simulation studies which design to evaluate the
empirical performance of the proposed QL and AQL approaches for parameter estima-
tion. One specific example of model (1.1) and (1.2) are considered in the simulation,
which is related to a heteroscedastic model GARCH(1,1)

yt=M+§t, t:1,2,3,"',T. (31)

and

ol = ag+ a1& | + froi-1 + G, t=1,2,3,---,T. (3.2)
& are i.i.d with By _1(&) = 0 and V;_1(&) = 02; and (; are i.i.d with E;_1(;) = 0 and
Vie1(G) = of.
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3.1 Parameter estimation of GARCH(1,1) model using the QL method
For GARCH(1,1) given by (3.1) and (3.2), the martingale difference is

&t _ Yt — 1 ‘
Gt of —ag — a1£t2—1 - 51‘71:2—1

The (QLEF), to estimate o7, is given by

-1
o? 0 Yt — 1
G (0'2) = (07 1) !
UG 0 O'? Ut2 — g — a1§t2_1 - 5103—1

= O'C_Q(UtQ — o — 041&271 - 610'15271). (3.1.1)

Given & = 0, initial values 1 = (1o, ooy, alo,ﬁlo,ogo) € = (y-1— po)?, and 67,
is the QL estimation of 02 ;, then the QL estimation of o7 is the solution of Gul(o 2) =0,
62 = apg+ &2 | + 162 4, t=1,2,3---,T. (3.1.2)

To estimate the parameters j, ag, aj and B31, using {62} and {y;}, The QLEF is given
by

-1 0
-1
0 -1 o2 0
GT(:UaOZOaalaﬁl) :Z ) ( ¢ 2 )
t=1 0 =& 0 O¢
0 —of,

" Yo — 1
Ut2 — oo — a15t271 - 510371

The solution of G (u, ag, 1, f1) = 0 is the QL estimate of p, ag, o3 and B1. Therefore

T y T
R t
= ZQ/Z&— (3.1.3)
t=1 't ¢=1
Al SUtQ 1§t 1S"t2§t 1 Sft 15t 1SUt‘7t2 1 (3 14)
- 2 R . . .
SO't 1ét 1 502 1Ut2 1S§t lft 1
55252 L B15&2 &
G = — tiS Pl (3.1.4)
& &,
T . N T 2 5 T =
A P Ut2 — Q1) 4y £t2—1 — B Ut2—1 315
Qg = T . (3.1.5)

and let
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o (G- &)

o¢ T_1 (3.1.6)
where
o Atzﬁtg—do—éllf?_1_glf7?_1a t:172737"'5Ta
T .9 T 2o
T - " —1 07— —1&i
° S&g—lé?ﬂ = Zt:l Ut—1§t2—1 =16 1TZt 15i-1

T ~o~T £2
— T ~2 A2 Zt:l 0% Et:l Etfl
Ssae2 =241 0781 — T )

T & (=L, &)
Sep @2 = 2=~ T

[ J
T ~2 T ~2
_ T 2242 2o=10: 2 i=1 6P
° S&f&t{l =2 1=1 01071 — T )
g T a4 (ZEe2)’
® D52 52 = Dm10p —

~

v = (i1, &, A1, B, Ug) is an initial value in the iterative procedure.

The initial values might be affected the estimation results. For extensive discussion on
assigning initial values in the (QL) estimation procedures (see Alzghool and Lin (2008,
2011), Alzghool (2016) and Alzghool and Al-Zubi (2016)).

3.2 Parameter estimation of GARCH(1,1) model using the AQL
method

For GARCH(1,1) model given by (3.1) and (3.2) and using the same argument listed
under (3.1) and (3.2). Firstly, to estimate o7, so the sequence of (AQLEF) is given by

- Yt — M
Gpy(of) = (0, 1),

O T\ of —ao - &l — proj
Given go =0, 0y = (Mo,o&oo,alo,ﬁlo), 2&2 = Iy, é?,l = (yt—l - M0)2 and &?,1 is the
AQL estimation of 7_;, then the AQL estimation of o7 is the solution of G(;)(07) = 0,
that is,

62 = ag+ &2 | + 162 4, t=1,2,3---,T. (3.2.1)
Secondly, by kernel estimation method, we find
2tn(@(o)) = Onltk) N ’ :
’ 0 Gn (o)

Thirdly, to estimate the parameters § = (u, ag, a1, £1), using {62} and {y;} and the
sequence of (AQLEF)
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T

0 -1 s Yt —

P op —ap — a1y

~9
0 -0

The AQL estimate of u, ap, a1, and 3 is the solution of Gr(u,ap,a1,51) = 0
Therefore

T i T 1
=2 6n(yt)/z Gnlye) (322)

t=1 t=1
/31 SSU? 12&2 1586351527 Ssﬁt 152 85‘72‘73 1 (323)
— > ST 2.
SSUt @ SSU?_N? SSQ &
SSA2”2 6155 2
by = —t8 o Ly (3.2.4)
gt 1€t 1
2
ST — a1 YL ~ b Oit
P ¥ ) ) t=1 ani =1 7 DN (3.2.5)
Zt 1 o'n(o't
and let
T (A A2
52 = W (3.2.6)
where
o (=067 —do— €l — ot t=1,23-.T

°
nn
03

62 527 &2 E
O-tfl 2z (Zt 1 gvzl(;t)l)(zt 1 Un(Ut ) (Zt 1ant01t )(Zt 1 ant(alt )

°
nn
n

T 63 T T &_
e, = (T 2ENEL 5by) — (T 5) (C 2y

2
& &2
° Ssgt e = (Zt 15, gt))(Zt 1 o'nt Jlt ) — (Zt 1 o'nt alt))

Uzl

850'20’3 1 (Zt 1 O'n ot )Zt 1 o'tn ;t; Zt 1 Un(o't) Zt 1 O'n(O't)7

2
SS.2 .2 (Zt 13m0 )(Zt 1 ontgl, ) — (Zt 1 gnt(glt ) .

Or—10i—1
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Table 1: The QL and AQL estimates and The RMSE of each estimates is stated below
that estimate.

‘ ‘ M ap aq b1 ‘ % ap aq 5 ‘

true | 0.15 0.66 0.87 0.10 0.20 0.41 0.88 0.08

QL 0.149 0.779 0.865 0.074 | 0.199 0.461 0.912 0.057
0.040 0.353 0.011 0.029 | 0.031 0.155 0.033 0.025
AQL | 0.150 0.661 0.851 0.092 | 0.209 0.405 0.901 0.076
0.001 0.012 0.019 0.009 | 0.010 0.006 0.021 0.004
true | -0.10 048 089 0.08 0.16 0.37 0.9 0.08

QL -0.101  0.556 0.902 0.058 | 0.159 0.434 0.922 0.058
0.034 0.212 0.014 0.024 | 0.030 0.189 0.024 0.025
AQL | -0.110 0.486 0.891 0.0752 | 0.161 0.374 0.911 0.076
0.010 0.006 0.001 0.005 | 0.001 0.004 0.011 0.004
true | 0.18 0.39 0.88 0.08 0.09 050 0.89 0.05

QL 0.179 0.447 0.892 0.058 | 0.089 0.538 0.898 0.036
0.031 0.146 0.015 0.024 | 0.033 0.090 0.009 0.015
AQL | 0.180 0.395 0.882 0.076 | 0.091 0.504 0.892 0.046
0.001  0.005 0.002 0.005 | 0.002 0.004 0.002 0.004

The estimation procedure will be iteratively repeated until it converges.

For this simulation study, samples of size T = 500 are taken, and the mean and root
mean squared errors (RMSE) for [, &p, &1, and Bl are calculated, where N = 1000
independent samples. In Table 1, QL represents the QL estimate and AQL represents
the AQL estimate. The effect of the sample size on the estimation of parameters is
considered. Samples of sizes T = 20, 40, 60, 80, and 100 were generated. In Table
2, The results are revealed that the RMSE will be decreases when the sample size is
increase.

4 Application to GARCH model

The QL and AQL methods developed in earlier section apply to real-life data where the
data are modeled by GARCH model (1.1) and (1.2). The data set contains the weekly
price changes of Crude oil prices P;. The P; of Cushing, OK West Texas Intermediate
(US Dollars per Barrel) for period from 7/1/2000 to 10/6/2016, 858 observations in
total. The data are obtained from the US Energy Information Administration (see,
http://www.eia.gov/dnav/pet). P, appear not to be stationary, as indicated in Fig. ?7.
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Table 2: The QL and AQL estimates and The RMSE of each estimates is stated below
that estimate.

‘ ‘ ‘ H o7y} aq B1 ‘ 12 Qg aq B1 ‘

true | 0.16 037 090 0.08 |-0.10 048 0.89 0.08
QL 0.17 042 089 0.07r |-0.09 051 090 0.06
T=20 0.176 0.511 0.008 0.016 | 0.169 0.451 0.018 0.022
AQL | 0.16 038 089 0.07 |-0.10 047 0.90 0.07
0.037 0.012 0.007 0.014 | 0.066 0.014 0.013 0.018
QL 0.16 042 0.89 0.07 |-0.09 0.51 091 0.06
0.149 0.422 0.007 0.016 | 0.137 0.326 0.018 0.021
T=40 | AQL |0.16 038 0.89 0.07 |-0.10 047 0.90 0.07
0.027 0.012 0.007 0.013 | 0.022 0.014 0.012 0.016
QL 0.16 042 0.89 0.07 |-0.09 052 091 0.06
0.121 0.289 0.007 0.018 | 0.119 0.307 0.018 0.021
T=60 | AQL |0.16 038 0.89 0.07 |-0.10 047 090 0.07
0.019 0.012 0.007 0.011 | 0.014 0.013 0.012 0.015
QL 0.16 042 0.89 0.07r |-0.10 0.51 090 0.06
0.100 0.159 0.007 0.017 | 0.108 0.248 0.018 0.021
T=80 | AQL |0.16 038 0.89 0.07 |-0.10 047 0.90 0.07
0.012 0.012 0.007 0.011 | 0.012 0.013 0.012 0.015
QL 0.16 042 0.89 0.07 |-0.10 0.51 090 0.06
0.100 0.159 0.007 0.018 | 0.101 0.242 0.018 0.021
T=100 | AQL | 0.16 038 0.89 0.07 |-0.10 047 0.90 0.07
0.012 0.011 0.007 0.011 | 0.011 0.013 0.012 0.015

The data are transformed into rates of change by taking the first difference of the logs.
Thus, y; = log(P;) — log(P;—1). The series of y; is presented in Fig. ?? and fit {y;} by
using GARCH (1,1):

yt:M+€ta t:1,2,3,"',T. (31)

and
0? =ag+ a1 | + froi1 + G, t=1,2,3,---,T. (3.2)

& are i.i.d with By _1(&) = 0 and V;_1(&) = 02; and (; are i.i.d with E;_1(;) = 0 and
Vie1(G) = of.
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Table 3: Estimation of i, ag, a1, 81 for the rates of change prices data

aq

3 ‘ & ‘
S.d(&)
| QL | 0.0008 | 0.566 | 0.912 | 0.0004 | 0.002 |

| AQL | 0.0089 | 0.630 | 0.972 [ 0.041 | 0.185 |

‘ ‘/10 ‘070

Table 3 Indications the estimates of u, ag, a1, and §1 achieves by two methods. QL
represents the estimate found by QL method, AQL represents the asymptotic quasi-
likelihood estimate.

We can see from the fourth column in Table 3 that QL gives smaller standardized
residuals. The QL method tends to be more efficient than AQL method.

5 Summary

In this paper, the estimation of the parameters in GARCH models has been presented
by two alternative approaches. The article has shown that the QL and AQL estimating
procedures are provided an efficient approach for estimating the unknown parameter
when the exactly probability structure of underlying model is unknown. It will provide a
robust tool for obtaining optimal point estimate of parameters in heteroscedastic models,
like GARCH model.
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