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In order to circumvent the effects of multicollinearity on the quality of
a multiple linear regression, a new strategy of analysis is proposed. It is
based on a biased estimation of the vector of coefficients. Properties of
this approach of analysis are shown. Moreover, the link between this new
strategy of analysis and existing strategies are discussed, particularly Ridge
and Generalized Ridge regression. Illustrations on the basis of two datasets
are also outlined and the outcomes are compared to those of Ridge regression.
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1. Introduction

Consider the problem of estimating the vector of parameters in a multiple linear regres-
sion model. It is well know that the presence of multicollinearity among the predictors
has a harmful impact on the quality and the stability of the fitted model. In such a
situation, the parameter estimates are likely to have a poor numerical accuracy and
large standard errors. This problem results from the ill conditioning of the variance-
covariance matrix associated with the predictors. Biased estimation provides a way to
circumvent this problem. The rationale behind this strategy of analysis is to trade the
high variability of the parameter estimates for some (hopefully) negligible bias (Draper
and Smith, 1998). In this context, a popular technique is Ridge regression (Hoerl and
Kennard, 1970). It consists in improving the conditioning of the variance-covariance
matrix associated with the predictors by augmenting its eigenvalues by a small quantity.
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We propose a new biased estimation procedure called biased power regression (or BP-
regression, for short) which consists in setting the eigenvalues of the variance-covariance
matrix of the predictors to the power 1−α, where α is a scalar which ranges between 0
and 1. We will show that this transformation improves the conditioning of the variance-
covariance matrix therefore leading to an improvement of the prediction model. The
paper is organized as follows. In section 2, we introduce BP-regression, and, in section
3, we investigate some of its properties. In section 4, we discuss a strategy for choosing
the tuning parameter α. In section 5, BP-regression is illustrated and compared to Ridge
regression on the basis of two datasets. We end the paper by sketching some concluding
remarks in section 6.

2. BP-regression

We assume the multiple linear regression model:

y = Xβ + ε

where y is an (n x 1 ) vector (dependant variable), X is an (n x p) matrix (predictors),
β is an (p x 1 ) vector of unknown regression coefficients and ε is an (n x 1 ) vector of
random errors. The ordinary least squares estimator is given by :

b0 = (XTX)−1XTy

It is well known that this estimator is likely to lead to an unstable model and poor
predictions in presence of quasi-collinearity among variables or in the case of a small
sample and high dimensional setting (i.e. large p, small n). Ridge regression was
proposed as a regularization procedure to cope with this problem (Hoerl and Kennard,
1970). The Ridge estimators are given by:

bκ = (XTX + κI)−1XTY (1)

where κ is a positive constant and I, the identity matrix. Several procedures have
been proposed to select an appropriate parameter κ (Hoerl et al., 1975; Golub et al.,
1979). One of the simplest and more efficient strategies is to perform a cross-validation
procedure (Stone and Brooks, 1990; Hastie et al., 2009) as sketched in section 4.

As an alternative to Ridge regression, we propose to estimate β as follows. Let X =

UΛ
1
2 VT be the singular value decomposition of X, where U and V are unitary matrices

and Λ is a diagonal matrix whose diagonal entries λ1, λ2, ..., λp are non-negative (Golub
and Reinsch, 1970). It is well known that these quantities are the eigenvalues of XTX.
From now on, we shall assume that they are arranged in a decreasing order of magnitude
and, for reasons that will be clear in subsequent sections, we shall assume that 0 < λj ≤ 1
(j = 1, ..., p). This can be obtained by applying a pre-treatment on the original dataset
consisting in dividing it by its largest singular value (i.e.

√
λ1). We consider a scalar α

between 0 and 1. The BP-regression estimator of β is given by:

bα = (XTX)α−1XTy (2)
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where (XTX)α−1 = VΛα−1VT . It is clear that for α = 0, b0 is the ordinary least
squares estimator. For α = 1, b1 is proportional to the PLS1 estimator based on the
first latent variable (de Jong, 1993).

3. Properties of BP-regression

3.1. Condition indices and an overall collinearity index

Belsley (1991) proposed to use the condition indices as collinearity diagnostics. These
indices are given by:

ηj =
(
λ1
λj

) 1
2

j = 1, ..., p

Obviously, ηj ≥ 1 for all j. Large ηj indicate the presence of near collinearity among the
predictors. By using Ridge regression, the condition indices become

ηj(κ) =
(
λ1+κ
λj+κ

) 1
2

j = 1, ..., p

by deriving (ηj(κ))2 with respect to κ it is easy to show that ηj(κ) is a decreasing function
of κ. The implication of this property is that Ridge regression improves the conditioning
of matrix XTX, which is likely to improve the stability of the regression model.

Likewise, by using BP-regression, matrix XTX is transformed into (XTX)1−α. There-
fore, the associated condition indices are given by:

ηj(α) =
(
λ1
λj

) 1−α
2

j = 1, ..., p

The derivative of this quantity with respect to α is:

η
′
j(α) = 1

2 × ln(
λj
λ1

)× (λ1λj )
1−α
2

which is negative since λj ≤ λ1. This indicates that ηj(α) is a decreasing function of
α. This entails that by increasing α, we achieve a better conditioning of the regression
problem.

It is clear that the purpose of the condition indices is to assess the relative importance
of the eigenvalues λj (j = 1, ..., p). Another way to assess this phenomenon is to compute
the coefficient of variation (i.e. ratio of the standard deviation to the mean) of these
quantities and examine their evolution as a function of the regularization parameter.

Regarding BP-regression, the coefficient of variation associated with (λ1−αj ) (j =
1, ..., p) is given by:

CV (α) =

√
p
∑p

j=1 λ
2(1−α)
j − (

∑p
j=1 λ

1−α
j )2∑p

j=1 λ
1−α
j

(3)

We can show that this index decreases as α increases (see appendix A). This means
that the regularization operated by BP-regression reduces the discrepancy among the
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eigenvalues λj (j = 1, ..., p) and thus reduces the effect of multicollinearity. It is also
worth noting that:

CV (α) =

√
p

ψ(α)
− 1

where ψ(α) =
(
∑p
j=1 λ

1−α
j )2∑p

j=1 λ
2(1−α)
j

is known as the sphericity index and used to determine the

degree of freedom for multivariate tests (Worsley and Friston, 1995; Abdi, 2010). It was
also advocated using this index as a measure of the dimensionality or the complexity of
the dataset at hand (Kazi-Aoual et al., 1995). We have ψ(α) = 1⇔ CV (α) =

√
p− 1⇔

only λ1 is different from 0 (extreme situation of collinearity). ψ(α) = p ⇔ CV (α) =
0⇔ λ1 = λ2 = ... = λp (orthogonal design). ψ(α) increases ⇔ CV (α) decreases.

By comparison, for Ridge regression, we have:

CV (κ) =

√
p
∑p
j=1 λ

2
j−(

∑p
j=1 λj)

2∑p
j=1(λj+κ)

.

Obviously, this is a decreasing function of κ. It is also easy to check that

CV (κ) =

√
p

ψ(κ)
− 1

Where ψ(κ) =
(
∑p
j=1(λj+κ))

2∑p
j=1(λj+κ)

2 .

3.2. BP-regression shrinks

An interesting property shared by several biased estimators is that they shrink the
vector of regression coefficients. This is the case for Ridge regression which is defined as
a shrinking procedure since the Ridge estimator is defined as a least squared estimator
under the contraint that the length of the vector of regression coefficient is smaller
than a prespecified quantity. PLS regression also shrinks (de Jong, 1995). In order
to prove that BP-regression shrinks the vector of regression coefficients, let us consider

the squared length of bα. From equation (2) and recalling that X = UΛ
1
2 VT , with

UTU = VTV = I (identity matrix), it follows:

l(α) = ||bα||2 = ||(XTX)α−1XTy||2

= ||VΛα− 1
2 UTy||2

= (yTUΛα− 1
2 VT )(VΛα− 1

2 UTy)

= yTUΛ2α−1UTy

=

p∑
j=1

(uTj y)2λ2α−1j



164 Qannari, El Ghaziri

Where uj is the jth column of matrix U. By deriving l(α) with respect to α, it follows:

l
′
(α) = 2

p∑
j=1

(uTj y)2ln(λj)λ
2α−1
j

Since we have assumed that for j = 1 to p, λj ≤ 1, we have l
′
(α) ≤ 0. This implies that

the length of bα decreases with α.

3.3. Biased estimator and Mean Squared Error

From equation (2) which introduces bα, it readily follows that bα = (XTX)αb0. Thus,
bα is a linear transform of the ordinary least squares estimator, b0. It also follows that
for α 6= 0, bα is a biased estimator since E(bα) = (XTX)αE(b0) = (XTX)αβ. The
mean squared error associated with bα reflects how, on average, bα is far removed from
the true parameter, β. We have:

MSE(α) = E(‖ bα − β ‖2)
= E(||(XTX)αb0 − β||2)
= E(||VΛαVTb0 − β||2)
= E((VΛαVTb0 − β)T (VΛαVTb0 − β))

= E(bT0 VΛ2αVTb0)− 2E(bT0 VΛαVTβ) + E(βTβ)

= E(bT0 VΛ2αVTb0)− 2βTVΛαVTβ + βTβ (4)

Let us recall that for a quadratic form, zTAz, associated with a random variable z, we
have E(zTAz) = trace(AΣ) + µTAµ where µ and Σ are respectively the mean and
variance-covariance matrix of z (Draper and Smith, 1998).

Applying this property to bT0 VΛ2αVTb0 and recalling that the mean and the variance-
covariance matrix associated with b0 are respectively β and σ2(XTX)−1, it follows:

E(bT0 VΛ2αVTb0) = σ2trace(Λ2α−1) + βTVΛ2αVTβ

Replacing this expression in equation (4), we are led to:

MSE(α) = σ2trace(Λ2α−1) + βTVΛ2αVTβ − 2βTVΛαVTβ + βTβ

= σ2trace(Λ2α−1) + ||(Λα − I)VTβ||2

= σ2
p∑
j=1

λ2α−1j +

p∑
j=1

(λαj − 1)2γ2j (5)

Where γj is the jth element of vector VTβ. The first term in the expression of MSE(α)
(equation (5)) represents the variance associated with bα whereas the second term cor-
responds to the bias.
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Deriving MSE(α) with respect to α leads us to:

MSE′(α) = 2σ2
p∑
j=1

ln(λj)λ
2α−1
j − 2

p∑
j=1

(λαj − 1)ln(λj)(λ
α
j )γ2j (6)

Since we have assumed that λj ≤ 1, it follows that ln(λj) ≤ 0 and (λαj − 1) ≤ 0.
Therefore, the first term which corresponds to the derivative of the variance of bα is
negative. This means that the variance of bα decreases with α. Contrariwise, the second
term in equation (6), which corresponds to the derivative of the bias of bα is positive.
This indicates that the bias increases. All in all, we expect that the decrease of the
variance associated with bα more than compensates the increase of the bias, resulting
in a decrease of the mean squared error.

We can show that the BP-regression yields a family of regressors, bα, which is admis-
sible in that sense that there always exists a scalar α such that MSE(α) ≤ MSE(0);
MSE(0) = σ2

∑p
j=1

1
λj

being the mean squared error associated with the ordinary least

squares estimator, b0. We have:

MSE
′
(α) =

∑p
j=1 fj(α)

Where fj(α) = 2ln(λj)λ
α
j (σ2λα−1j + γ2j λ

α
j − γ2j ).

Because of the pre-treatment that we have applied, we have λ1 = 1 and λj < 1
(j = 2, ..., p). Thus :

MSE
′
(α) =

∑p
j=2 fj(α)

It is easy to check that for j = 2, ..., p, fj(α) ≤ 0 is equivalent to:

α ≤
ln

(
γ2j /(

σ2

λj
+γ2j )

)
ln(λj)

The quantity in the right side of this inequality is positive since both the numerator and

the denominator are negative. It follows that if we choose α0 = min
j=2,...,p

 ln

(
γ2j /(

σ2

λj
+γ2j )

)
ln(λj)

,

MSE
′
(α) will be negative, and therefore, MSE(α) will decrease. This indicates that

there exists a parameter α between 0 and α0 such that MSE(α) ≤MSE(0).

3.4. Correlation between the observed and the predicted y

For each tuning parameter α, the predicted variable ŷα is given by ŷα = X(XTX)α−1XTy.
The squared coefficient of correlation, R2(α), between y and ŷα reflects the quality of
the adjustmet as a function of α. We have:

R2(α) =
cov2(y, ŷα)

var(y)var(ŷα)

=
(yTX(XTX)α−1XTy)2

yTyyTX(XTX)α−1XTX(XTX)α−1XTy
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By expressing X in terms of its singular value decomposition: X = UΛ1/2VT , it is easy
to show that:

R2(α) =

(∑p
j=1 λ

α
j (uTj y)2

)2
yTy

∑p
j=1 λ

2α
j (uTj y)2

Where uj is the jth column of matrix U. We show that R2(α) is a decreasing function
of α (appendix B.1). By depicting the curve of R2(α) as a function of α, it is possible
to get some insight into how to customize the parameter α for the data at hand. The
general idea is that we may accept a loss in terms of R2(α) providing that this loss does
not exceed a reasonable threshold. By way of comparison, it is worth noting that the
squared coefficient of correlation associated to Ridge regression, R2(κ), can be written
as:

R2(κ) =

(∑p
j=1

λj
λj+κ

(uTj y)2
)2

yTy
∑p

j=1

(
λj

λj+κ

)2
(uTj y)2

We can show that R2(κ) is also a decreasing function of κ (appendix B.2)

3.5. Comparison of methods

The concept of continuum regression was firstly formalized by Stone and Brooks (1990)
and had since gained popularity. The rationale behind this strategy of analysis is to
consider a family of regression estimators depending on a parmater that needs to be
customized to the data at hand in order to improve the performance of the model in
terms of stability, prediction ability... Generally, the proposed continuum strategies
encompass ordinary least squares, PLS and Principal Components regression.

BP-regression draws from a procedure of continuum regression called “Continuum
Power Partial Least Squares Regression” (Wise and Ricker, 1993; de Jong et al., 2001).
This consists in performing a PLS regression of y on Xα = UΛα/2VT with α varying
between 0 and 1. By comparison, our approach pertains to the biased regression frame-
work and does not involve the derivation of latent components as it is the case for PLS
regression.

From another stand point, we stated above that Ridge regression amounts to aug-
menting the eigenvalues, λj (j = 1, ..., p) of XTX by a positive constant, κ. This was
readily generalized to a strategy of analysis called Generalized Ridge regression where
each eigenvalue λj (j = 1, ..., p) is augmented by a specific constant, κj (Hoerl and
Kennard, 1970). This method of analysis seems to be more intuitively appealing than
Ridge regression since some directions in the space spanned by the predictors are more
in need of a cure from the effect of multicollinearity than others. However, the problem
of selecting the appropriate parameters κj (j = 1, ..., p) becomes even more acute than
when dealing with a single constant (i.e. Ridge regression). We show that BP-regression
stands at a mid-point between Ridge regression and Generalized Ridge regression since
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each eigenvalue is somehow augmented differentially; the smaller eigenvalues being aug-
mented by a quantity larger than those associated with larger eigenvalues. Yet, only one
regularization parameter is actually involved.

As noted above, by using BP-regression, each eigenvalue λj (j = 1, ..., p) is transformed
into λ1−αj (j = 1, ..., p). Because of the pretreatment that we have applied to X, we
have 0 < λj ≤ 1. Therefore, λj can be written as λj = 1 − hj where hj = 1 − λj .
We have 0 ≤ hj < 1 and h1 ≤ h2... ≤ hp. It follows that λ1−αj = (1 − hj)1−α can be
approximated by 1−(1−α)hj = λj+αhj . This amounts to augmenting each eigenvalue,
λj (j = 1, ..., p), by kj = αhj (j = 1, ..., p). The smaller an eigenvalue is, the larger is its
associated regularization quantity.

4. Choice of an appropriate α

BP-regression yields a family of estimators indexed by α ∈ [0, 1]. From a practical
point of view, the model that may be eventually retained can be obtained by means of
a validation technique such as cross-validation. This consists in scanning values of α
between 0 and 1 and selecting the parameter, α∗, that corresponds to the minimum of
predicted residual error sum of squares (PRESS) statistic or some connected statistic
such as the root mean squared error (RMSE). In the illustrations discussed below, we
performed a k fold cross-validation which consists in partitioning the dataset in k seg-
ments. Thereafter, each segment is left aside and the model parameters are estimated
using the remaining segments. Eventually, the segment that was left aside is used for the
validation of the model. This procedure is reiterated by setting aside each segment in
turn. The particular case where there are as many segments as observations is referred
to leave-one-out cross-validation. For more details regarding this strategy of selection of
the tuning parameter, we refer to Stone and Brooks (1990).

The plot of the PRESS or RMSE statistics against α is of paramount interest since it
may suggest a whole range of appropriate values, α. The general idea is that the global
minimum corresponding to α∗ often results in overfitting. A lower value of α than α∗

may be more appropriate providing that its associated PRESS or RMSE statistics are
not significantly larger than those of α∗. The common idea is to choose a regularization
parameter where the PRESS curve ‘flattens out’ (Varmuza and Filzmoser, 2009).

5. Illustration

5.1. Orange juice

The first example relates to an 1H NMR spectroscopy study on orange juice authentica-
tion (Vigneau and Thomas, 2012). The dataset X is composed of 480 variables and 150
observations. This is a situation where the number of variables exceeds the number of
observations. Some of the observations are a mix of pure orange juice and Clementine
juice. The response variable y to be predicted is the percentage of Clementine juice. The
dataset can be found in Vigneau and Chen (2014). We performed both BP-regression
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and Ridge regression on these data. Figure 1 shows the evolution of the coefficient of
variation associated with the eigenvalues of the matrices (XTX)1−α (left) and XTX+κI
(right).
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Figure 1: Orange juice: Evolution of the coefficient of variation associated with the eigen-
values of the matrix (XTX)1−α (left) and XTX +κI (right) with α between 0
and 1, and κ between 0 and 300.

For BP-regression, the coefficient of variation decreases steadily with α. It is equal to
1 for α around 0.9. With Ridge regression, the coefficient of variation decreases abruptly
with κ: it starts with a value around 8.6 for κ equal to 0 and reaches the value 1 with
κ around 0.4.

Figure 2 shows the decrease of the squared correlation coefficient between y and ŷα
in function of α. This curve decreases almost linearly with α, starting with a value of 1
with α = 0 and becomes as small as 0.5 for α = 1. By way of comparison, figure 2 also
depicts the decrease of the correlation coefficient between y and ŷκ obtained by means
of Ridge regression. We can see in this latter figure, that the coefficient of correlation
decreases sharply for small values of κ.

A three fold cross-validation (CV) was applied to compare the prediction ability of
BP-regression and Ridge regression. Figure 3 shows the variation of the Root Mean
Squared Error associated with the three fold CV (RMSECV) for BP-regression (left)
and Ridge regression (right) in function of α and κ, respectively. Globally, the RMSECV
associated with BP-regression reaches smaller values than that of Ridge regression. In
BP-regression, the minimum value is equal to 7.66 and it is achieved for α = 0.03
whereas, with Ridge regression, the minimum value of the RMSECV is around 7.94 for
κ = 0. In order to better substantiate this finding, we run fifty times the three fold CV,
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Figure 2: Orange juice: Evolution of the squared correlation coefficients between y and

ŷα in function of α (left) and between y and ŷκ in function of κ (right).

and at each time we selected the minimum value of the RMSECV for both BP-regression
and Ridge regression. Figure 4 depicts the results associated to these fifty repetitions of
the three fold CV. We can see that BP-regression outperforms Ridge regression.
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Figure 3: Orange juice: comparison of the RMSE associated with a three fold cross-
validation applied on BP-regression and Ridge regression in function of α (0 ≤
α ≤ 1) and κ (between 0 and 300).
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Figure 4: Orange juice: Box-plot of fifty minimum values of RMSE selected from fifty
repetitions of a three fold cross-validation using BP-regression and Ridge re-
gression models.

Figure 5 shows the regression coefficients estimated by means of BP-regression (α=0.03)
and Ridge regression (κ=0). It is clear that the two vectors of coefficients are very similar
to each other.
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Figure 5: Orange juice: the regression coefficients associated to Ridge (κ = 0) and BP-
regressions (α = 0.03).
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5.2. Economics dataset

The second example pertains to an economics study used in Gruber (1998). The data (ta-
ble 1) consist of a dependent variable y which corresponds to the percentage of research
and development expenditures in USA and four dependent variables representing the
same percentages for France, Germany, Japan and the former Soviet Union, respectively
for ten years extending from 1972 to 1986. The condition indices are η2 = 15.8, η3 = 37.5
and η4 = 152.2 indicating the presence of near collinearity among the predictors.

YEAR y x1 x2 x3 x4

1972 2.3 1.9 2.2 1.9 3.7

1975 2.2 1.8 2.2 2.0 3.8

1979 2.2 1.8 2.4 2.1 3.6

1980 2.3 1.8 2.4 2.2 3.8

1981 2.4 2.0 2.5 2.3 3.8

1982 2.5 2.1 2.6 2.4 3.7

1983 2.6 2.1 2.6 2.6 3.8

1984 2.6 2.2 2.6 2.6 4.0

1985 2.7 2.3 2.8 2.8 3.7

1986 2.7 2.3 2.7 2.8 3.8

Table 1: Economics dataset: total national Research and development expenditures be-
tween 1972 and 1986.
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Figure 6: Economics data, evolution of the coefficient of variation associated with the
eigenvalues of the matrices (XTX)1−α (left) and XTX + κI (right) with α
between 0 and 1, and κ between 0 and 250.
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We start by investigating the effect of the parameters α and κ in reducing the collinear-
ity among the X-variables using the coefficient of variation. Figure 6 (left) shows the
evolution of the coefficient of variation associated with the eigenvalues of (XTX)1−α in
function of α (α varies between 0 and 1). Figure 6 (right) shows the evolution of the
coefficient of variation associated with the eigenvalues of XTX + κI (κ varies between 0
and 250). With BP-regression, the coefficient of variation decreases steadily with α, it
reaches the value 1 for α equals to 0.4. For Ridge regression, the coefficient of variation
decreases sharply for small values of κ then, starting from κ around 10, it decreases
slowly. It is equal to 1 for κ around 3.

Figure 7 depicts the squared coefficient of correlation obtained by means of BP-
regression, R2(α), (Figure 7, left) and Ridge Regression, R2(κ) (Figure 7, right). The
squared coefficient of correlation R2(α), decreases very smoothly from 0.975 (α = 0) to
0.945 (α = 1). This entails that a value of α around 1 will not result in a substantial
decrease of R2(α). By way of comparison, the coefficient of correlation R2(κ) decreases
sharply and reach the smallest value (0.945) with the first values of κ.

0.0 0.2 0.4 0.6 0.8 1.0

0.
94

5
0.

95
0

0.
95

5
0.

96
0

0.
96

5
0.

97
0

0.
97

5

α

R
2 (α

)

0 5 10 15 20 25 30

0.
94

5
0.

95
0

0.
95

5
0.

96
0

0.
96

5
0.

97
0

0.
97

5

κ

R
2 (κ

)

Figure 7: Economics data: Evolution of the squared correlation coefficient between y
and ŷα in function of α (left) and between y and ŷκ in function of κ (right).

Since the number of rows is small, a leave-one-out (LOO) cross-validation was per-
formed and the RMSECV was computed. The evolution of RMSECV curve as a func-
tion of α (figure 8) indicates that this statistic decreases and flattens out starting from
α = 0.4. Any value of α above 0.4 could be chosen to ensure an optimal RMSECV. By
comparison, the curve associated to Ridge regression (figure 8) indicates that an optimal
value for RMSECV is reached for κ around 0.06. The optimal value for RMSECV for
both strategies were practically identical (around 0.057).

Table 2 shows the correlation coeffients of the dependant and the indepant variables
together with the regression coefficients estimated by means of BP-regression (α=0.4)
and Ridge regression (κ=0.006). It can be seen that Ordinary Least Squares (OLS)
regression, leads to an inconsistency since the correlation between y and x2 is very high
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Figure 8: Economics data: comparison of the RMSE under LOO cross-validation be-
tween BP-regression (left) and Ridge regression (right).

and positive yet, the associated coefficient is negative. Both Ridge and BP-regressions
yield consistant coefficients since these coefficients are all positive. Morover, the two
vectors of coefficients bear a hight similarity to each other.

Regression coefficients

Dependant Correlation OLS BP-regression Ridge regression

variables with y

x1 0.9777 0.626 0.386 0.378

x2 0.908 -0.115 0.179 0.094

x3 0.956 0.287 0.405 0.281

x4 0.348 0.025 0.064 0.071

Table 2: Correlation coefficients of the dependant and the indepant variables. Regression
cofficients obtained by means of OLS, BP and Ridge regressions.
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6. Conclusion

BP-regression is a biased regression strategy which shares several features with Ridge
regression. Among these features, we single out: (i) it is a simple and straightforward
regression method, (ii) it is a shrinkage procedure since the length of the vector of regres-
sion coefficients decreases as α increases, (iii) it depends on a single tuning parameter,
(iv) it aims at achieving a profitable bias-variance trade off. Moreover, BP-regression
seems to stand at a mid-point between Ridge regression and Generalized Ridge regression
since, through a first order approximation, it turns out that BP-regression differentially
augments the various eigenvalues of the predictors variance covariance matrix; yet it
depends on a single regularization parameter, α.

The illustrations on the basis of two datasets seem to endorse the efficiency of the BP-
regression since it seems that it yields a performance similar to that of Ridge regression.

Further investigations are needed to better clarify the merits of BP-regression over
competing methods. For instance, it would be interesting to investigate whether this
strategy of analysis could be supported by considerations pertaining to the Bayesian
framework as it is the case for Ridge regression (Timothy, 2007).

Another line of investigation would be to extend BP-regression to a multidimensional
setting where the aim is to predict a multivariate, Y, from a set of predictors, X.

Another extension of BP-regression which is worth investigating concerns the context
of classification and discrimination. This would provide an alternative to the so-called
regularized discriminant analysis (Friedman, 1989). The regularization proposed in this
latter method draws from Ridge regression and, therefore, should easily be adapted to
a regularization akin to BP-regression.

Ridge regression was not designed to select a subset of variables. However, as stated
above, this method of analysis shrinks the regression coefficient estimates toward zero as
κ increases. Some authors advocated using this property to discard those variables whose
coefficients become very close to 0 (Draper and Smith, 1998). BP-regression shares the
same property and thus can highlight those variables whose coefficients become very
small. A better method than Ridge and BP-regressions to achieve a selection of variable
is LASSO (Tibshirani, 1996). This method of analysis yields sparse models since the
coefficients of the variables which are deemed to be unimportant are set to zeo. The
Elastinet method (Zou and Hastie, 2005) stands as a combination of both Ridge and
Lasso regression and is likely to lead to a better performance. This hints to a direction
of research that combines BP-regression with a strategy of analysis for sparcity.
Throughout the paper, we have compared BP-regression with Ridge regression both from
a conceptual point of view and in terms of their performance. Both methods are biased
regression methods which are based on the principle of trading the high variability of
the parameters for a (small) bias. Both methods seem to have the same performance in
terms of prediction ability. Further research is indicated to better highlight the merits,
if any, of BP-regression over Ridge regression.
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7. Appendices

Prerequisite: Chebyshev’s Weighted sum inequality (Cvetkovski, 2012)
We start by recalling Chebyshev’s weighted sum inequality.

Let us consider p scalars (aj), p scalars (bj) and p positive scalars (qj) (j = 1, ..., p)
such that

a1 ≥ a2... ≥ ap
b1 ≥ b2... ≥ bp

q1 + q2 + ...+ qp = 1

Then, we have:

(
∑p

k=1 akqk)(
∑p

k=1 bkqk) ≤
∑p

k=1 akbkqk

A. Coefficient of variation

We aim at proving that CV (α) is a decreasing function of α. In order to study the
evolution of CV (α) as a function of α, we consider K(α) = (CV (α))2. Both K(α) and
CV (α) have the same variation since CV (α) ≥ 0. We have:

K(α) =
p
∑p

j=1 λ
2(1−α)
j − (

∑p
j=1 λ

1−α
j )2

(
∑p

j=1 λ
1−α
j )2

= p

∑p
j=1 λ

2(1−α)
j

(
∑p

j=1 λ
1−α
j )2

− 1

It follows:

K ′(α) =
A

B
×

[−2(
∑p

j=1 ln(λj)λ
2(1−α)
j )(

∑p
j=1 λ

1−α
j ) + 2(

∑p
j=1 λ

2(1−α)
j )(

∑p
j=1 ln(λj)λ

1−α
j )]

(
∑p

j=1 λ
1−α
j )2

with A = p(
∑p

j=1 λ
1−α
j ) and B = (

∑p
j=1 λ

1−α
j )2 which are both positive. Thus, K ′(α) ≤

0 iff:

(
∑p

j=1 λ
2(1−α)
j )(

∑p
j=1 ln(λj)λ

1−α
j )

(
∑p

j=1 λ
1−α
j )2

≤
(
∑p

j=1 ln(λj)λ
2(1−α)
j )(

∑p
j=1 λ

1−α
j )

(
∑p

j=1 λ
1−α
j )2

Or equivalently: p∑
j=1

λ1−αj

λ1−αj∑p
j=1 λ

1−α
j

 p∑
j=1

ln(λj)
λ1−αj∑p
j=1 λ

1−α
j

 ≤
 p∑
j=1

ln(λj)λ
1−α
j

λ1−αj∑p
j=1 λ

1−α
j


Let us denote by qj =

λ1−αj∑p
j=1 λ

1−α
j

. Obviously, we have qj ≥ 0 and
∑p

j=1 qj = 1
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The inequality above can be written as p∑
j=1

λ1−αj qj

 p∑
j=1

ln(λj)qj

 ≤
 p∑
j=1

ln(λj)λ
1−α
j qj


Since λ1 ≥ λ2... ≥ λp and 0 ≤ α ≤ 1, we have (λ1)

1−α ≥ (λ2)
1−α ≥ ... ≥ (λp)

1−α and
ln(λ1) ≥ ln(λ2) ≥ ... ≥ ln(λp).

It follows that the inequality above holds by a direct application of the Chebyshev’s
weighted sum inequality (see Prerequisite). Therefore K

′
(α) ≤ 0. This shows that the

coefficient of variation is a decreasing function of α.

B. Correlation coefficient

B.1. BP-regression correlation coefficient: R2(α)

We aim at proving that the squared coefficient of correlation between y and ŷα, R2(α),
is a decreasing function of α. We recall that R2(α) is given by:

R2(α) =

(∑p
j=1 λ

α
j (uTj y)2

)2
yTy

∑p
j=1 λ

2α
j (uTj y)2

with uj the jth column of the matrix U associated with the singular value decomposition
of X = UΛ1/2VT . R2(α) have the same variation as:

f(α) =

(∑p
j=1 λ

α
j aj

)2∑p
j=1 λ

2α
j aj

Where aj = (uTj y)2. By deriving f(α) with respect to α, we have:

f
′
(α) = A

 p∑
j=1

aj(lnλj)λ
α
j

 p∑
j=1

λ2αj aj

−
 p∑
j=1

λαj aj

 p∑
j=1

(lnλj)λ
2α
j aj


with A =

2(
∑p
j=1 λ

α
j aj)

(
∑p
j=1 λ

2α
j aj)

2 ≥ 0. Thus f
′
(α) ≤ 0 iff p∑

j=1

aj(lnλj)λ
α
j

 p∑
j=1

λ2αj aj

−
 p∑
j=1

λαj aj

 p∑
j=1

(lnλj)λ
2α
j aj

 ≤ 0

Dividing the two members of this last inequality by
(∑p

j=1 ajλ
α
j

)2
, it follows that

f
′
(α) ≤ 0 iff:  p∑

j=1

(lnλj)qj

 p∑
j=1

λαj qj

−
 p∑
j=1

(lnλj)λ
α
j qj

 ≤ 0
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where qj =
ajλ

α
j∑p

j=1 ajλ
α
j

(qj ≥ 0 and
∑p

j=1 qj = 1). Since, λ1 ≥ λ2... ≥ λp and 0 ≤ α ≤ 1,

we have (λ1)
α ≥ (λ2)

α ≥ ... ≥ (λp)
α and ln(λ1) ≥ ln(λ2) ≥ ... ≥ ln(λp). Therefore by

applying the Chebyshev’s weighted sum inequality (see Prerequisite) we have: p∑
j=1

(lnλj)qj

 p∑
j=1

λαj qj

−
 p∑
j=1

(lnλj)λ
α
j qj

 ≤ 0

which means that R2(α) is a decreasing function of α.

B.2. Ridge regression correlation coefficient: R2(κ)

We aim at proving that the squared coefficient of correlation between y and ŷκ, R2(κ),
is a decreasing function of α. We recall that R2(κ) is given by:

R2(κ) =

(∑p
j=1

λj
λj+κ

(uTj y)2
)2

yTy
∑p

j=1

(
λj

λj+κ

)2
(uTj y)2

with uj the jth column of the matrix U associated with the singular value decomposition
of X = UΛ1/2VT . R2(κ) have the same variation as:

g(κ) =

(∑p
j=1

λj
λj+κ

aj

)2
∑p

j=1

(
λj

λj+κ

)2
aj

Where aj = (uTj y)2. By deriving g(κ) with respect to κ, we have g
′
(κ) equal to:

A

 p∑
j=1

aj(
λj

λj + κ
)
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λj
(λj + κ)

λj
(λj + κ)2
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−
 p∑
j=1

λj
(λj + κ)2

aj

 p∑
j=1

(
λj

λj + κ

)2

aj



with A =
2

(∑p
j=1

λj
λj+κ

aj

)
(∑p

j=1

(
λj

λj+κ

)2

aj

)2 ≥ 0. Thus g
′
(κ) ≤ 0 iff

 p∑
j=1

aj
λj

λj + κ

 p∑
j=1

λj
(λj + κ)

λj
(λj + κ)2

aj

−
 p∑
j=1

λj
(λj + κ)2

aj

 p∑
j=1

(
λj

λj + κ

)2

aj

 ≤ 0

Dividing the two members of this last inequality by
(∑p

j=1 aj
λj

(λj+κ)2

)2
, it follows that

g
′
(κ) ≤ 0 iff:  p∑

j=1

(λj + κ)qj

 p∑
j=1

λj
λj + κ

qj

−
 p∑
j=1

λjqj

 ≤ 0
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where qj =
aj

λj

(λj+κ)
2∑p

j=1 aj
λj

λj+κ

(qj ≥ 0 and
∑p

j=1 qj = 1). Since, λ1 ≥ λ2... ≥ λp and κ ≥ 0,

we have λ1 + κ ≥ λ2 + κ ≥ ... ≥ λp + κ and λ1
λ1+κ

≥ λ2
λ2+κ

≥ ... ≥ λp
λp+κ

. Therefore by

applying the Chebyshev’s weighted sum inequality (see Prerequisite) we have g
′
(κ) ≤ 0

which means that R2(κ) is a decreasing function of κ.
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