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This paper describes the specification, estimation and comparison of dou-
ble generalized linear compound Poisson models based on the likelihood
paradigm. The models are motivated by insurance applications, where the
distribution of the response variable is composed by a degenerate distribu-
tion at the origin and a continuous distribution on the positive real line. We
present maximum likelihood and restricted maximum likelihood algorithms
for parameter estimation, with emphasis to the analysis of insurance data.
Simulation studies are employed to evaluate the bias and consistency of the
estimators in a finite sample framework. The simulation studies are also
used to validate the fitting algorithms and check the computational imple-
mentation. Furthermore, we investigate the impact of an unsuitable choice
for the response variable distribution on both mean and dispersion parame-
ter estimates. We provide R implementation and illustrate the application of
double generalized linear compound Poisson models using a data set about
car insurances.

1 Introduction

This paper discusses the statistical analysis of data sets with exact zeros and continuous
values in the response variable, with emphasis to the analysis of insurance data. Consider
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as an example the price for a car insurance, which depends on several factors, including
the age of the car, model of the car, age of the driver, and other covariates. This paper
seeks to predict how expensive a particular car insurance will be on average to correctly
decide the price. In real life insurances there will often be some and perhaps even a lot
of the considered insurances where no damage has been caused, which means that the
insurance company has no expenses for those insurances.

Standard statistical methods based on the Gaussian or gamma distributions are not
suitable for the analysis of data with both exact zeros and continuous values in the
response variable. To this end, consider the following standard model for the total
expenses Z also known as the total claim size

Z =

N∑
i=1

Xi,

where N is the number of claims that the company received, and Xi is the size of the
ith claim, where i = 1, 2, . . . , N . If no damage has been caused, the number of claims
N will be zero, and thus we define Z = 0 in this case. We assume that N and Xi

are Poisson and gamma distributed random variables, respectively. Thus, Z follows
a compound Poisson distribution (Jørgensen, 1994; Jørgensen and Smyth, 2002). The
compound Poisson distribution is a special case of the Tweedie distribution with power
parameter 1 ≤ p ≤ 2, as we shall discuss in the Section 2. The Tweedie distribution
offers a flexible family of models to deal with non-negative highly right-skewed data and
can handle continuous data with probability mass at zero (Jørgensen, 1997; Bonat and
Kokonendji, 2017).

In this paper, we discuss the estimation of Z by using the double generalized linear
models framework constructed based on the compound Poisson distribution. Following
the lines of Jørgensen (1994) and Jørgensen and Smyth (2002) we describe the specifica-
tion, estimation and comparison of double generalized linear compound Poisson models
based on the likelihood paradigm. We present maximum likelihood and restricted max-
imum likelihood estimation algorithms. Furthermore, we evaluate the properties of the
estimators in terms of bias and consistency through simulation studies. In contrast to
previous works (Jørgensen, 1994; Jørgensen and Smyth, 2002) and computational im-
plementations (Dunn, 2013; Zhang, 2013), the algorithm we shall present in Section 3
allows for a joint estimation of the regression, dispersion and power parameters. More-
over, we provide R implementation and illustrate the application of double generalized
linear compound Poisson models using a data set about car insurance in Sweden.

When dealing with real life datasets N might not be available, which means that the
estimation can only be done based on the total claim size. This paper also develops and
implements methods to estimate the expenses both for N known and N unknown. We
expect to obtain more precise results when the number of claims N is available, since
having more information available generally provides more precise estimates. Further-
more, the models can handle different exposures w on the observations. A standard
example of exposures in the context of insurance data is the policy-years.

Modelling strategies to the analysis of data with clumping at zero include the tobit
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models which treat the zero outcomes as censored observations below some cut point
(Van de Ven and van Praag, 1981; Amemiya, 1984). A disadvantage of this approach
is that it relies on a normality assumption of the latent response, which in turn can be
restrictive for high right-skewed data as often found in insurance applications. Another
alternative is the two-part models that use two equations to separate the modelling into
two stages. The first part is a binary model for the dichotomous event of having zero
or positive values, for which the logistic model is a frequent choice. Conditional on
a positive value, the second part assumes a continuous distribution, such as the log-
normal, gamma or inverse Gaussian (Min and Agresti, 2002). This approach generates
what is called of a zero-inflated model. For a comparison between compound Poisson
and gamma inflated models see Lecomte et al. (2013). While quite flexible the two-part
approach has the disadvantage to increase the model complexity by adding an additional
linear predictor to describe the excess of zeros. In particular for insurance applications
the two aforementioned approaches share the disadvantage that the number of claims N
when available is not taken into account on the parameter estimation and consequently
on the estimation of the total claim size.

Tweedie regression models have been recently extended in different ways to the analysis
of insurance data. Qian et al. (2016) proposed Tweedie compound Poisson models
with elastic net for covariate selection. Yang et al. (2017) discussed insurance premium
prediction via gradient tree-boosted Tweedie compound Poisson models. Furthermore,
Boucher and Danail (2011) highlighted the importance to model both the mean and
dispersion structures for claims reserving. For a general discussion about insurance
analysis with extra zeros see Yip and Yau (2005).

The next section presents an overview of the Tweedie distribution with emphasis to
the construction of the density function for the special case of the compound Poisson
distribution. Section 3 describes the estimation algorithms. In the Section 4 we check the
algorithm implementation and the properties of the maximum likelihood and restricted
maximum likelihood estimators through simulation studies. In the Section 5 we analyse
a data set concerns car insurances. Finally, Section 6 discusses the main results and
directions for future works. The data that is analysed and the programs that were used
to analyse it can be obtained from
http://www.leg.ufpr.br/doku.php/publications:papercompanions:dglmtw.

2 Tweedie Family

In this section we shall discuss the construction of Tweedie models as described in details
by Jørgensen (1997). Tweedie models are a special case of exponential dispersion models
whose general form is given by

f(y; θ, φ) = a(y, φ) exp{(yθ − κ(θ))/φ}, (1)

where µ = E(Y ) = κ′(θ) is the mean, φ > 0 is the dispersion parameter, θ is the canonical
parameter and κ(θ) is the cumulant function. The variance is given by Var(Y ) = φV(µ)
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where V(µ) = κ′′(θ) is called the variance function. Tweedie densities are characterized
by power variance functions of the form V(µ) = µp, where p ∈ (−∞, 0] ∪ [1,∞) is
the index determining the distribution. Some important special cases of the Tweedie
distribution are the Gaussian (p = 0), Poisson (p = 1), gamma (p = 2) and inverse
Gaussian (p = 3) distributions. The function a(y, φ) is a normalized constant to be
discussed below.

In this paper, we are particularly interested in the case where 1 < p < 2 which
corresponds to the compound Poisson distribution. We shall now obtain the form of the
cumulant function associated with the compound Poisson distribution and discuss how
to compute the normalized constant for the cases where N is known and unknown. To
ease the notation, we define a new parameter α by

α =
p− 2

p− 1
⇐⇒ p =

α− 2

α− 1
,

and we let α = −∞ corresponds to the case where p = 1. Another useful relation is that

(p− 1)(α− 1) = −1.

In order to obtain the exponential dispersion model corresponding to the power vari-
ance function, we should obtain the expression for the cumulant function κ(θ). Let
τ(µ) = κ′(θ) denote the mean value mapping. Furthermore, note that

τ−1(µ) =

∫
µ−p dµ

=
1

(1− p)
µ1−p, p 6= 1

= (α− 1)µ1/(α−1),

which in turn gives us that

µ = τ(θ) = {θ(1− p)}
1

1−p , p 6= 1

=

(
θ

α− 1

)α−1

.
(2)

We can show from Eq. (2) that

θ =
µ1−p

1− p
, p 6= 1. (3)

Finally, by combining Eq. (3) and the fact that κ′(θ) = τ(µ), gives us the following
cumulant generating function,

κ(θ) =
µ2−p

2− p
, p 6= 2.

which in turn characterizes the Tweedie distribution for 1 < p < 2.
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We shall now discuss the construction of the probability function of the compound
Poisson distribution for the case of N known. Let N,X1, X2, . . . be a sequence of inde-
pendent random variables, with N being Poisson distributed and the Xi’s being gamma
and identically distributed. As described in the Section 1 the compound Poisson distri-
bution is defined by

Z(w) =

N(w)∑
i=1

Xi,

where Z = 0 by definition if N = 0 and now we introduce the exposure denoted by
w. Let ñ be the realization of N to avoid confusion with the sample size, that we shall
denote by n. Let Y (w) = Z(w)/w be the claim rate per unit of exposure. The joint
density function for N(w) and Y (w) is given by

fY (w),N(w)(y, ñ;µ, φ, p) = a(y, ñ;φ) exp

(
w

φ

[
yµ1−p

1− p
− µ2−p

2− p

])
, (4)

where

a(y, ñ;φ) =


{(

w
φ

)1−α
κ(−1/y)

}ñ
Γ(−ñα)ñ!y if y > 0,

1 if y = 0.

For further details about the density function, see Jørgensen (1994, 1997) and Smyth
(1996). The marginal density of Y (w) can be found by summing out N(w) in Eq.(4),
which gives

fY (w)(y;µ, φ, p) =
∞∑
ñ=1

a(y, ñ;φ) exp

(
w

φ

[
yµ1−p

1− p
− µ2−p

2− p

])
. (5)

Jørgensen (1997) showed that for the general case, where N(w) is unknown the nor-
malized constant a(y, φ) in Eq. (1) is given for y > 0 by

a(y, φ) =
1

y
W (y, φ),

with W (y, φ, p) =
∑∞

k=1Wk and

Wk =
y−kδ(p− 1)δk

φk(1−δ)(2− p)kk!Γ(−kδ)
,

where δ = (2 − p)/(1 − p). Dunn and Smyth (2005) presented detailed studies about
this series and an algorithm to evaluate the Tweedie density function based on series
expansions. The algorithm is implemented in the package tweedie (Dunn, 2013) for the
statistical software R(R Core Team, 2016) through the function dtweedie.series.

For both cases N(w) known or unknown the probability of exact zero is given by

P (Y (w) = 0) = exp

(
− wµ2−p

φ(2− p)

)
.
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The compound Poisson distribution provides a convenient and interpretable probabil-
ity model to deal with insurance data. Since, the number of claims N(w) is modelled by
a Poisson distribution and the claim size Xi is modelled by a gamma distribution. Fur-
thermore, the compound Poisson distribution can deal with exact zeros as often found
in insurance applications.

3 Double Generalized Linear Models

Generalized linear models (GLMs) (Nelder and Wedderburn, 1972) assume a constant
dispersion parameter. Double generalized linear models (DGLMs) are an extension of
GLMs obtained by estimating the dispersion parameter separately for each observation,
allowing for more flexibility in the models. In this section, we shall describe the double
generalized linear models framework and how it is used for carrying out the parameter
estimation. Estimation of the compound Poisson distribution using the DGLM frame-
work, has previously been considered by Jørgensen and Smyth (2002), but assuming
that the power parameter is known.

We assume a generalized linear model with a logarithmic link function for the mean
cost by

gµ(µi) = log(µi) = x>i β,

where xi and β are (q × 1) vectors of known covariates and unknown regression param-
eters, respectively. We refer to this as the mean submodel. Simultaneously to the mean
submodel, we assume a dispersion submodel denoted by

gφ(φi) = log(φi) = z>i γ,

where zi and γ are (r × 1) vectors of known covariates and unknown regression pa-
rameters, respectively. In this paper, the logarithmic link function was employed for the
modelling of both mean and dispersion submodels. Further details about DGLMs can be
found in Nelder and Pregibon (1987); Smyth (1989) and Smyth and Verbyla (1999). The
estimation of the mean submodel is identical for unknown or known number of claims.
Thus, we shall discuss the estimation of the mean submodel in this section, while the
estimation of the dispersion submodels will be described in the next subsections.

In actuarial studies it is often convenient to use weights on the observations to improve
estimation on valuable objects or objects with many policy-years. To this end, we
consider the convolution formula for exponential dispersion models (Jørgensen, 1997).

Consider an additive exponential dispersion model ED∗(θ, λ), and assume that Z1, . . . , Zn
are independent and

Zi ∼ ED∗(θ, λi), i = 1, . . . , n.

Then the distribution of Z+ = Z1 + · · ·+ Zn is

Z+ ∼ ED∗(θ, λ1 + . . .+ λn). (6)
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This is the additive form of the convolution formula. The proof can be found in Jørgensen
(1997). For the corresponding reproductive property, we assume that the random vari-
ables Y1, . . . , Yn are independent. Furthermore, we assume that

Yi ∼ ED

(
µ,

φ

wi

)
, i = 1, . . . , n, (7)

where w is the exposure. If we let w+ = w1 + · · · + wn, the reproductive form of the
convolution formula is

1

w+

n∑
i=1

wiYi ∼ ED

(
µ,

φ

w+

)
.

The result follows from the duality transformation, and a special case of Eq. (6) with
λi = wi/φ for i = 1, . . . , n. The Eq. (7) is important, since it shows that the reproductive
exponential models are closed when adding observations together that have the same
claim rate, where the weights are given by the inverse dispersion parameters. This gives
a very convenient model for actuarial studies, such that we can use the exposure w in
the parameter estimation procedure.

From the convolution formula, see Jørgensen (1994) and using terminology and results
from Nelder and Pregibon (1987), we have that the prior weights are given by

wµi =
wi
φi
,

and recall that the power variance function is given by

Vp(µi) = µpi .

Thus, the diagonal matrix of working weights W µ has the following form

W µ = diag

{(
∂gµ(µi)

∂µ

)−2 wµi
Vp(µi)

}

= diag

{
wiµ

2−p
i

φi

}
.

(8)

Furthermore, the working response vector zµ is such that its elements are given by

zµi =
∂gµ(µi)

∂µ
(yi − µi) + gµ(µi)

=
yi − µi
µi

+ log(µi).

Finally, the scoring update for the regression coefficients is given by

βk+1 = (X>W µX)−1X>W µzµ, (9)

where k is the number of iterations and X = (x>1 , . . . , x
>
n )> is an n × q design matrix.

As initial values we use y = µ. All terms on the right hand side of Eq. (9) are obtained
from the previous iteration and note that the parameters in the dispersion structure
(γ, p) are assumed known.
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3.1 Estimation of dispersion parameters for unknown number of
claims

For the case of unknown number of claims, we perform the estimation of the disper-
sion parameters based on the marginal density of Y (w) presented in Eq. (5). The
log-likelihood function is given by

`(µ, φ, p) =
n∑
i=1

log fY (w)(yi;µi, φi, p).

We can use the iterative weighted least squares algorithm to estimate both the mean
and the dispersion regression parameters. Since, the Tweedie distribution is a member
of the exponential dispersion family, we know that the mean and dispersion parameters
are orthogonal, which implies that the vectors β and γ can be estimated separately.
For a detailed discussion about maximum likelihood estimation for Tweedie regression
models, see Bonat and Kokonendji (2017).

From Eq. (5) the unit deviance is given by

d(yi;µi) = 2wi

(
yiµ

1−p
i

1− p
−
µ2−p
i

2− p

)
.

To simplify the notation, we use di to denote the ith element of the unit deviance vector.
We use the unit deviance as the response vector of the dispersion submodel, since it does
not depend on φi. By using the saddlepoint approximation in the dispersion submodel,
we can show that

di ∼ φiχ2
1, φi ↓ 0,

which means that the unit deviance approximately follows a gamma generalized linear
model, see Smyth and Verbyla (1999). Moreover, a gamma model corresponds to a
Tweedie model with p = 2, so the variance function for φ is

Vp(φ) = φ2.

Thus, the diagonal matrix of working weights W φ is given by

W φ = diag

{[
∂gφ(φi)

∂φ

]−2 1

2Vp(φi)

}
=

1

2
.

Consequently, the elements of the working response vector zφ are given by

zφi =
∂gφ(φi)

∂φ
(di − φi) + gφ(φi)

=
di − φi
φi

+ log(φi).
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Finally, the updated value of γ is obtained by

γk+1 = (Z>W φZ)−1Z>W φzφ. (10)

All terms in Eq. (10) are from the previous iteration. Iterating between the mean
submodel Eq. (9) and the dispersion submodel Eq.(10) until the increase in the log-
likelihood is smaller than some desired threshold, gives estimates for β and γ for a fixed
value of the power parameter.

It is well known that maximum likelihood estimators for dispersion parameters are
biased downwards for small sample sizes. This can be corrected by restricted maximum
likelihood (REML). We can apply this correction in double generalized linear models as
well. Consider the hat matrix for the mean submodel

H = W 1/2
µ X

(
X>W µX

)−1
X>W 1/2

µ ,

and let hi be the diagonal elements of H, known as the leverage. Modifying the diagonal
matrix of working weights by

W ∗
φ = diag

{[
∂gφ(φi)

∂φ

]−2 1− hi
2Vp(φi)

}

=
1− hi

2
,

and the elements of the working response vector z∗φ as

z∗φi =
∂gφ(φi)

∂φ
[d∗i − φi] + gφ(φi)

=
d∗i − φi
φi

+ log(φi),

with

d∗i =
di

1− hi
,

gives approximately unbiased estimators for φi when

γk+1 = (Z>W ∗
φZ)−1Z>W ∗

φz
∗
φ,

is used as the scoring update for γ. Further information about the leverage adjustment
can be found in Smyth et al. (2001) and Lee and Nelder (1998). The component 1−hi is
justified by the fact that an observation with leverage 1 provides no information about φi.
The mean submodel does not change in the restricted maximum likelihood case and the
model maximizes by alternating between the mean submodel and dispersion submodel
exactly as before. Convergence is decided by the penalized profile log-likelihood

`∗(µ, φ, p) = `(µ, φ, p) +
1

2
log |X>W µX|. (11)
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Finally, the asymptotic distribution of β̂ and γ̂ is given by(
β̂

γ̂

)
∼ N


(
β

γ

)
;

(
Iβ(β̂) 0

0 Iγ(γ̂)

)−1
 ,

where

Iβ(β̂) =
(
X>W µX

)
and Iγ(γ̂) =

(
Z>W φX

)
are the Fisher information matrices for β and γ, respectively. The asymptotic standard
errors for the regression parameters for both mean and dispersion submodels are ob-
tained by computing the square-root of the inverse of the diagonal terms of the Fisher
information matrix. Since we do not have orthogonality between γ and p, we cannot
directly invert the Fisher information to obtain the asymptotic variance for the power
parameter. Consequently, the standard error for the power parameter is obtained, based
on the profile likelihood function.

3.2 Estimation of dispersion parameters for known number of claims

When the number of claims N(w) is available, the joint density function from Eq. (4)
is used as the basis of the estimation. The log-likelihood function corresponding to the
joint density is given by

`(µ, φ, p) =

n∑
i=1

log fY (w),N(w)(yi, ñi;µi, φi, p)

=(1− α)

n∑
i=1

ñi log(wi/φi) +

n∑
i=1

1{ñi 6=0}ñi log κp(−1/yi)

−
n∑
i=1

1{ñi 6=0} log Γ(−ñiα)

+
1

φi

n∑
i=1

wi

{
yiµ

1−p
i

1− p
−
µ2−p
i

2− p

}
,

(12)

We note by passing that yi is sufficient for β, hence the estimation of β is identical to the
case of unknown number of claims, see Section 3.1. For the estimation of φ, we modify
the working responses and working weights, since a joint density function does not fit
into the framework of the generalized linear models. Notice that

∂ log f

∂φ
=

(α− 1)ñ

φ
− w

φ2

[
yµ1−p

1− p
− µ2−p

2− p

]
=

ñ

(1− p)φ
− w

φ2

[
yµ1−p

1− p
− µ2−p

2− p

]
,
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and
∂2 log f

∂φ2
=

ñ

(p− 1)φ2
+

2w

φ3

[
yµ1−p

1− p
− µ2−p

2− p

]
.

We have that,

E

[
yµ1−p

1− p
− µ2−p

2− p

]
=

µ2−p

(1− p)(2− p)
,

since E(Y ) = µ, and we know from earlier that

E(N(w)) =
wµ2−p

φ(2− p)
.

The prior weights for the dispersion submodel are given by

wφ =
2wµ2−p

φ(2− p)(p− 1)
,

gives us the Fisher information for φ as

E

(
−∂

2 log f

∂φ2

)
= −

(
wµ2−p

φ3(2− p)(p− 1)
+

2wµ2−p

φ3(1− p)(2− p)

)
= −

(
wµ2−p − 2wµ2−p

φ3(2− p)(p− 1)

)
=

wµ2−p

φ3(2− p)(p− 1)

=
wφ

2Vp(φ)
,

where Vp(φ) = φ2. By defining dispersion responses as

d(y;µ) =
2Vp(φ)

wφ

∂ log f

∂φ
+ φ

=
2

wφ

(
ñφ

1− p
− w

[
yµ1−p

1− p
− µ2−p

2− p

])
+ φ.

We can now rewrite the first derivative of the log-likelihood as

∂`(β, γ, p)

∂φ
=
wφ(d− φ)

2Vp(φ)
. (13)

By the definitions of the dispersion prior weights and the dispersion responses, we have
transformed Eq.(13) so it fits into the concept of generalized linear models.

We have the diagonal matrix of working weights W φ as

W φ = diag

{[
∂gφ(φi)

∂φ

]−2 wφi
2Vp(φi)

}
=
wφi
2
,
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where the division of 2 is to match the model developed in Section 3.1. We have the
working response vector zφ with components

zφi =
∂gφ(φi)

∂φ
[di − φi] + gφ(φi)

=
di − φi
φi

+ log(φi).

The scoring update for γ is then found as

γk+1 = (Z>W φZ)−1Z>W φzφ.

Alternating between the mean submodel and the dispersion submodel until the increase
in the log-likelihood function (12) is smaller than a predefined threshold, gives the esti-
mates of β and γ for a fixed value of p.

When N(w) is observed, we have more information available to estimation of φ, mean-
ing there is less need for the restricted maximum likelihood adjustment of γ. Nonetheless
there might be cases where the adjustment is still useful. Since the estimation of β has
not changed, we can use the same penalized profile log-likelihood as in (11), as the basis
for the estimation. Adjusting the working weight matrix to

W ∗
φ = diag

{[
∂gφ(φi)

∂φ

]−2 max(wφi − hi, 0)

2Vp(φi)

}

=
max(wφi − hi, 0)

2
,

where hi is the leverages as before. The elements of the working response vector change
to

z∗φi =
∂gφ(φi)

∂φ
[d∗i − φi] + gφ(φi)

=
d∗i − φi
φi

+ log(φi),

where

d∗i =
wφdi
wφ − hi

,

and
γk+1 = (Z>W ∗

φZ)−1Z>W ∗
φz
∗
φ,

is the new scoring iteration for gφ. Standard errors of the parameters are found exactly
as for N(w) unknown.

The value of the power parameter for all aforementioned cases was considered fixed.
However, in practice is important to estimate the power parameter. The easiest approach
would be to estimate the model for some different predefined values of p and choice the
best one, for example using the maximised value of the log-likelihood function. A better
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approach is to use an optimization algorithm named Golden Section Search (Sauer,
2006) to estimate p. The algorithm is relatively slow, but it will always converges and
it is still better than the naive approach of looping through a vector of predefined p
values. Even though the algorithm in itself is rather slow, it is in fact faster than using
standard algorithms as for example the Newton-Raphson algorithm. This is because the
calculation of the derivatives is slow, making zero-order optimization algorithms better.
The algorithm works on functions with one variable, where the function is continuous
on the interval [a, b], where we want to find the maximum. The algorithm is applied to
the log-likelihood function `, as a function of p. The maximum likelihood estimate for
β and γ are found for each value of p considered in a profile likelihood manner. The
algorithms described in this paper were implemented in R and the code is available as
a supplementary material. It is important to highlight that, although the flexibility of
the tweedie package it does not allow to model the dispersion structure and a joint
estimation of regression, dispersion and power parameters.

4 Simulation studies

In this section we present a simulation study that was conducted to check the properties
of the maximum likelihood and restricted maximum likelihood estimators in a finite
sample scenario. The simulations have also been used to validate the fitting algorithm
and the computational implementation. We simulated 1500 data sets and evaluated the
bias and consistency for the full set of parameters, i.e. β,γ, and p. We considered the
cases of an unknown and known number of claims, combined with different values of the
power parameter p = (1.1, 1.3, 1.5, 1.7, 1.9). We considered samples of size 50, 100, 250,
500 and 1000. We have used one covariate in both the mean and dispersion structures
and the data were simulated using the tweedie package Dunn (2013). The covariate
values were generated from a standard Gaussian distribution. The regression parameters
in the mean sub-model were fixed at β0 = 0.5 and β1 = 1.5. Similarly, the regression
parameters in the dispersion sub-model were fixed at γ0 = −1 and γ1 = 0.5. These
values were chosen in order to have enough mean and dispersion variation and also keep
the mean small enough to have a substantial amount of exact zeros. The models were
fitted by using the maximum likelihood and restricted maximum likelihood methods.

We start by considering the case of unknown number of claims. Figure 1 shows the
average bias plus and minus the average standard errors by sample sizes, estimation
methods and values of the power parameter.

The dispersion coefficients are slightly underestimated for small sample sizes, but for
large sample sizes the simulation does not show any bias. The power parameter shows
a small bias in the extreme cases, i.e. p = 1.1 and p = 1.9 for a sample of sizes 50 and
100. Simulations for the mean structure does not show any bias in any of the cases.
The standard errors decrease while the sample size increases, as expected showing the
consistency of the estimators. In general, the difference between maximum likelihood
and restricted maximum likelihood estimators are of little magnitude. However, for
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Figure 1: Average bias plus and minus average standard error for the parameters β0, β1,
γ0, γ1, and p, by sample sizes, estimation methods and values of the power
parameter - Case N(w) unknown.
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small sample sizes the REML estimators present slightly smaller bias than the MLE.
The estimation procedure however, was slower in the REML case.

The results for the case of a known number of claims has been done in the same way
and are illustrated in Figure 2.

Figure 2: Average bias plus and minus average standard error for the parameters β0, β1,
γ0, γ1, and p, by sample sizes, estimation methods and values of the power
parameter - Case N(w) known.

As expected, the standard errors of the parameters have decreased now when more
information is available. At the same time, the estimation procedure now gives an
unbiased result for the dispersion structure for p = 1.1, but shows the same sign of a
slight bias for small sample sizes with p = 1.9 in the dispersion structure. The results
do not show any bias for the power and regression parameters associated with the mean
structure.

In order to investigate the impact of the power parameter in the fitted models Fig-
ure 3(A) illustrates the change in the parameters estimates for the dispersion sub-model
for different values of the power parameter. Similarly, Figure 3(B) illustrates the change
in the standard errors associated with the regression parameters (β) for different values
of the power parameter. In the supplementary material we present the Figures 1 and
2 using the x axis in a standardized scale. It provides a better visualizations of the
estimators properties. On the other hand, by using an standardized x-axis we loose the
perspective about how the
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Figure 3: Illustration of the change in the parameters in the dispersion submodel for
different values of p (A). Illustration of the change in the relative standard
errors for β for different values of p (B). The red lines correspond to the true
values.

The results presented in Figure 3 show that the value of p used, has a large impact on
the dispersion parameters. In particular on the base dispersion, causing the standard
errors of the parameter estimators in the mean structure to change a lot. Figure 3(B)
should be interpreted such that if p = 1.1 were to be used, the estimated standard error of
β0 would be approximately 10% larger than the true value. It highlights the importance
of a joint estimation of the regression, dispersion and power parameters when fitting
double generalized linear compound Poisson models.

We also conducted another simulation study using 10 covariates in the mean and
dispersion structures. The values of the covariates, regression and dispersion parameters
were generated randomly from a standard Gaussian distribution. The results were really
similar to the one covariate case presented in this Section. Thus, for a matter of space,
we opted to include only the one covariate simulation study.

5 Analysis of Third Party Motor Insurance for Sweden,
1977

In this section we analyse the data set collected by Andrews (1985) which has previously
been analysed by Jørgensen and Smyth (2002). In Sweden all risk classifications are
standardized among all insurance companies, giving the opportunity to analyse them
combined. In this data set we have 2182 observations, for which 385 are exact zeros. In
order to compare the estimates and standard errors, we fitted the models by using the
four approaches presented, i.e. maximum likelihood and restricted maximum likelihood
combined with N(w) known and unknown. Table 1 provides a description of the data
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Table 1: Variable description - Third Party Motor Insurance for Sweden, 1997.

Variables Description

Kilometres Kilometres travelled per year.

1 :< 1000.

2 : 1000 − 15000.

3 : 15000 − 20000.

4 : 20000 − 25000.

5 :> 25000.

Zone Geographical zone.

1 : Stockholm, Goteborg, Malmo with surroundings.

2 : Other large cities with surroundings.

3 : Smaller cities with surroundings in southern Sweden.

4 : Rural areas in southern Sweden.

5 : Smaller cities with surroundings in northern Sweden.

6 : Rural areas in northern Sweden.

7 : Gotland.

Bonus No claims bonus. Equal to the number of years, plus one, since last claim.

Make 1 − 8 represent eight different common car models.

All other models are combined in class 9.

Insured w Number of insured in policy-years.

Claims N(w) Number of claims.

Payment Z(w) Total value of payments in Swedish krona.

set.

Make 4 is the Volkswagen 1200, which went out of production shortly after 1977. The
other models are unknown, due to risk of impacting the sale of those cars. The exposure
w will entering the estimation as weights. We start by comparing the estimates of the
mean effects. To this end, we have combined Bonus level 5 and 6, and Kilometres 2 and
3, which does not cause any lose of goodness-of-fit. This has been verified by using the
Akaike Information Criterion (AIC) and likelihood ratio test based on the method of a
known number of claims. This reduction of factor levels has thus been applied for the
data analysis. Table 2 shows the regression parameter estimates along with standard
errors for the mean submodel for each method.

The estimates do not differ among the methods used. The value of p is somewhat
similar. Increasing mileage does indeed increase the claim rate per unit of exposure,
and that a higher bonus group decreases the claim rate per unit of exposure. Table 3
presents the estimates and standard errors associated with the dispersion parameters
obtained by using the different approaches.

The change from maximum likelihood to restricted maximum likelihood has close to no
effect on the value of p that maximizes the log-likelihood. The base dispersion is higher
when N(w) is not available. The standard errors in the mean structure are somewhat
identical for the different methods - even though the dispersion coefficients are quite
different. To explain this behaviour, recall the weight matrix for the mean submodel
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Table 2: Mean submodel estimates for each method considered using the logarithmic
link function. The numbers in the brackets denote the standard error.

Covariates N(w) known N(w) unknown

MLE REML MLE REML

Base cost 6.543 (0.084) 6.549 (0.086) 6.544 (0.097) 6.538 (0.103)

Kilometres2-3 0.249 (0.064) 0.249 (0.064) 0.239 (0.069) 0.237 (0.073)

Kilometres4 0.336 (0.109) 0.337 (0.107) 0.300 (0.115) 0.291 (0.121)

Kilometres5 0.509 (0.120) 0.530 (0.122) 0.471 (0.119) 0.478 (0.124)

Bonus2 −0.309 (0.107) −0.317 (0.113) −0.313 (0.122) −0.314 (0.127)

Bonus3 −0.378 (0.115) −0.383 (0.114) −0.390 (0.116) −0.390 (0.121)

Bonus4 −0.693 (0.127) −0.697 (0.133) −0.655 (0.137) −0.655 (0.142)

Bonus5-6 −0.872 (0.087) −0.874 (0.089) −0.898 (0.098) −0.882 (0.102)

Bonus7 −1.316 (0.076) −1.323 (0.078) −1.316 (0.091) −1.317 (0.096)

Make2 0.231 (0.088) 0.219 (0.088) 0.256 (0.086) 0.261 (0.091)

Make3 −0.041 (0.099) −0.055 (0.095) 0.018 (0.130) 0.031 (0.137)

Make4 −0.623 (0.100) −0.627 (0.102) −0.617 (0.110) −0.611 (0.115)

Make5 0.005 (0.093) 0.008 (0.095) 0.030 (0.108) 0.039 (0.114)

Make6 −0.379 (0.086) −0.375 (0.086) −0.376 (0.090) −0.378 (0.095)

Make7 −0.264 (0.113) −0.269 (0.116) −0.213 (0.124) −0.202 (0.130)

Make8 0.443 (0.167) 0.430 (0.167) 0.506 (0.195) 0.525 (0.201)

p 1.725 (0.016) 1.732 (0.015) 1.675 (0.050) 1.671 (0.047)
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Table 3: Dispersion submodel estimates for each method considered using the logarith-
mic link function. The numbers in the brackets denote the standard error.

Covariates N(w) known N(w) unknown

MLE REML MLE REML

Base dispersion 4.736 (0.038) 4.768 (0.011) 5.418 (0.359) 5.676 (0.255)

Kilometres2-3 −0.112 (0.028) −0.068 (0.007) 0.096 (0.231) 0.063 (0.164)

Kilometres4 −0.211 (0.048) −0.204 (0.008) −0.129 (0.267) −0.211 (0.190)

Kilometres5 −0.335 (0.053) −0.227 (0.008) −0.420 (0.267) −0.482 (0.190)

Bonus2 0.493 (0.048) 0.507 (0.010) 0.241 (0.316) 0.183 (0.224)

Bonus3 0.618 (0.051) 0.448 (0.010) −0.013 (0.316) −0.046 (0.224)

Bonus4 0.788 (0.057) 0.795 (0.010) 0.417 (0.316) 0.392 (0.224)

Bonus5-6 0.864 (0.039) 0.804 (0.008) 0.436 (0.274) 0.385 (0.194)

Bonus7 1.203 (0.034) 1.079 (0.010) 0.995 (0.316) 1.059 (0.225)

Make2 −0.083 (0.039) −0.141 (0.010) −0.451 (0.338) −0.535 (0.240)

Make3 0.188 (0.044) 0.039 (0.010) 0.568 (0.338) 0.345 (0.240)

Make4 0.398 (0.045) 0.415 (0.010) 0.328 (0.338) 0.188 (0.240)

Make5 −0.104 (0.041) −0.074 (0.010) −0.018 (0.338) −0.111 (0.240)

Make6 0.303 (0.038) 0.283 (0.010) 0.094 (0.338) −0.048 (0.240)

Make7 0.070 (0.050) 0.125 (0.010) 0.022 (0.338) −0.098 (0.240)

Make8 0.023 (0.074) −0.016 (0.010) 0.199 (0.338) 0.049 (0.240)
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that we have found in Eq. (8):

W µ = diag

{
wiµ

2−p

φi

}
.

Differences in the standard errors for β among the different methods should be found
in differences in the weight matrix. The reason that the values do not change much
for the different methods, are explained by the fact that when the dispersion estimates
are higher, the estimated value of p is lower, which means that the nominator and
denominator relative to each other are the same among the different methods. When
N(w) is observed and more information is available, the standard error of p is lower as
expected. The 95% confidence intervals obtained based on the profile likelihood for the
Tweedie power parameter p are presented in Table 4.

Table 4: Confidence intervals (95%) for Tweedie power parameter, for each method con-
sidered.

Method p̂L p̂ p̂U

N(w) known ML 1.693 1.725 1.757

N(w) known REML 1.701 1.732 1.762

N(w) unknown ML 1.572 1.675 1.767

N(w) unknown REML 1.575 1.671 1.761

The intervals are wider when N(w) is not observed, which is an expected result. We
also see that all methods have overlapping intervals, suggesting that the difference is
not significant. Standard errors for the dispersion sub-models, are larger when N(w) is
unknown, which is expected since N(w) provides a lot of information on the dispersion.

In terms of covariates effects the results in Table 2 show clearly that the three con-
sidered covariates are statistically significant for explaining the expected claim rate per
unit of exposure. Increasing the kilometres travelled per year increase the claim rate
per unit of exposure. For example, for kilometres > 25000 we expect an increasing of
66.36% in the claim rate per unit of exposure. On the other hand, the covariate Bonus
has a negative effect in the claim rate per unit of exposure. For the more extreme level
of the Bonus covariate, we expect a decreasing of 3.72 times in the claim rate per unit of
exposure in relation to the base cost. The covariate Make indicates that the claim rate
per unit of exposure varies among the car models.

The dispersion sub-model can be interpreted in a similar way. The results in Ta-
ble 3 show that the covariate Kilometres decreases the dispersion parameter estimates.
This result is expected, since this covariate increases the expected value of the response
variable. Thus, for the more extreme level of this covariate, we expect a decreasing of
39.79% in the dispersion parameter estimates. On the other hand, the number of bonus
increases 3.33 times the dispersion parameter estimates. Again, it is expected since the
covariate Bonus decreases the expected claim rate per unit of exposure. In general the



404 Andersen, Bonat

car model also changes the dispersion structure, however the effect is weaker than the
Bonus and Kilometres covariates.

We have considered diagnostic measures on the restricted maximum likelihood meth-
ods, and the constant dispersion method. These are illustrated in Figure 4.

Figure 4: Deviance residual plots for the dispersion and mean submodel along with quan-
tile plots. Red dots represents the exact zeros observations.

Both methods considered in the plots do not show any sign of significant outliers and
we conclude that they are both providing a good fit to the data.

6 Discussion

We developed and implemented methods to handle the analysis of datasets with a com-
bination between zeros and continuous values in the response variable, which is often
the case for actuarial studies. One major issue we encountered was the derivation of the
density function, when the number of claims N(w) is unavailable, since it requires calcu-
lations of infinite sums. There have not been any findings of cases, where the number of



Electronic Journal of Applied Statistical Analysis 405

terms in the sum that contributes significantly to the sum is not a finite number. This
number may however, be extremely large, and the terms that contribute significantly to
the sum may also occur far away from index 1, making the approach of starting at 1,
and continue adding terms until the terms are smaller than some threshold, very time
dependent. We have used the method developed by Dunn and Smyth (2005) that starts
by identifying which index number that corresponds to the largest term in the sum, and
then continues to add terms on both sides of the maximum, until machine accuracy is
reached.

Standard errors for the regression coefficients can be found in the usual way. The
standard error of the Tweedie power parameter p have been found using profile likelihood.
The confidence interval is in most cases close to symmetric around the optimal value of
p, which makes the asymptotic approximation performs decently. The estimation of p is
done by the Golden Section Search algorithm in double generalized linear models, which
has the advantage of being derivative free, and thus, avoids to evaluate a large number
of infinite sums.

Simulation studies verified that the methods are indeed asymptotically unbiased, but
the sample size may need to be large for p close to 1. Simulation studies have also shown
that estimation of the costs of the insurance claims does not change no matter what
value of p is used. In fact, any distribution that is a member of the Tweedie family of
distributions could be used to achieve unbiased estimators. Simulations have shown that
the value of p used, may cause the standard errors of the parameters, for modelling the
claim rate per unit of exposure to change, causing different results in hypothesis tests
and discriminant analysis. We have found that the standard errors of the parameters
can easily change by more than 10%, making the correct estimation of p important for
actuarial studies, where the interest often lies in a particular group according to the
insured item.

Data analysis has shown that all methods considered, provide similar estimators. How-
ever, if the number of claims is observed, one should always use the methods including
this information, because of faster convergence and potentially (but not necessarily)
more accurate results. We have also shown that including covariates in the estimation
of the dispersion parameters may be necessary to achieve unbiased standard errors of
the mean response, meaning that one should always start by fitting the model using
covariates to model both the mean and dispersion structures.

The difference found between using maximum likelihood and restricted maximum
likelihood, were small in its magnitude in either simulation studies and data analysis.
To this end, we recommend to use the methods based on maximum likelihood, because
they converge faster. However, we highlight that for small sample size as n = 50 the
restricted maximum likelihood method presents a better performance in terms of bias
and consistency than the maximum likelihood method, mainly for the case of N(w)
unknown.

The estimation methods presented in this paper, are all based on maximum likelihood.
An extension of the methods developed in this paper, could be to develop methods using
estimating functions Bonat and Kokonendji (2017); Jørgensen and Knudsen (2004). The
standard error for the dispersion parameter φ in the constant dispersion method has
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not been found, but could potentially be found using the Fisher information matrix.
Similarly for the Tweedie power parameter p in the double generalized linear model
methods, the standard error could also be found by the Fisher information matrix. In
both cases one would have to be careful, since we do not have orthogonality between φ
and p.

The methods have been implemented in the statistical software R, by taking advantage
of the tweedie package (Dunn, 2013). The package provides a function to calculate
the marginal density of Y (w) and the lm function has also been used to perform the
weighted least squares fit. The package rootSolve Soetaert (2015) has been used for
the calculations of the approximate confidence interval for p. Generally, R also provides
a lot of practical functions for statistical analysis.
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