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The asymptotic confidence interval of the slope in linear structural rela-
tionship model is usually used to draw the inference about parameter. It is
now evident that, asymptotic inference is often unreliable for small-sample.
In small samples, asymptotic inference may be unreliable as standard errors
may be imprecise, leading to incorrect confidence intervals and statistical test
size. In these issues, bootstrap can be used instead of asymptotic inference to
deal with these challenging problems. We consider both the parametric and
the jackknife-after-bootstrap methods for this particular study. The perfor-
mances of both confidence intervals are studied by real world data and Monte
Carlo simulations. Our findings show that overall the bootstrap confidence
intervals perform better than the asymptotic confidence interval for small
samples in terms of coverage probability with reasonable expected length.
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1 Introduction

In linear regression analysis, the explanatory variables are assumed to be fixed and mea-
sured without error. But in reality, due to many practical reasons this assumption often
does not exist and inherent measurement errors arise into the observations. Ignorance
of measurement errors directly affects the desirable criteria of point estimators or inter-
val estimators. A large number of literature on the errors-in-variables model (EIVM)
have been developed over the years (Madansky, 1959; Moran, 1971; Kendall and Stu-
art, 1973; Fuller, 1987; Cheng and Van Ness, 1944).The linear structural relationship
model (LSRM) is one of the families in the EIVM which also includes functional, ultra-
functional and ultrastructural relationship models. Over the past thirty years, a large
number of works have been done in LSRM (Birch, 1964; Barnett, 1967; Chan and Mak,
1979; Lakshminarayanan and Gust, 1984; Reilman et al., 1985; Bolfarine and Cordani,
1993; Gillard, J.W.). However, the point estimation of LSRM parameters was the main
focus in the most of the papers. A number of works has been done ( Gleser and Hwang,
1987; Li, 1989; Weerahandi, 1993; Liau and Shalabh, 2009) on interval estimation of
EIVM. Huwang (1996) and Tsai (2010) have addressed the interval estimation of LSRM
based on the asymptotic results assuming the measurement error variance σ2δ or σ2ε is
known.

Most of the works on interval estimation of LSRM are based on asymptotic results
which may not hold when the sample size is small to moderate and this kind of situation
is more prevalent in nature. In this situation it is difficult to find the proper distribution
of the estimators and the confidence intervals are not reliable in terms of coverage prob-
abilities and expected lengths. Efron (1979)’s bootstrap is a very useful alternative to
estimate the parameters and to construct their confidence intervals when the sample size
is small. Jackknife-after-bootstrap was proposed by Efron (1979) to reduce the standard
error of estimators. Since each and every observation is deleted in turns, it is expected
that this method is more resistant to outliers. Efron (1979) pointed out that for the
jackknife-after-bootstrap, the standard error of estimators may get reduced by 80%, so
this technique should help in the construction of confidence intervals.

In this article, we investigate two computer intensive confidence interval namely, para-
metric bootstrap confidence interval (PBCI) and jackknife-after-bootstrap confidence in-
terval (JABCI) for the slope parameter of LSRM assuming the ratio of error variance is
known and then compare these two computer intensive confidence interval with the ex-
isting traditional asymptotic confidence interval (ACI) on the basis of two criteria, viz.,
coverage probability and expected length. We organize this article as follows: In Section
2, we briefly discuss the parameter estimation of LSRM. The existing ACI for the slope
of LSRM with known ratio of error variances is reviewed in Section 3. In Section 4, we
introduce PBCI and JABCI for the slope of LSRM with known ratio of error variances.
In Section 5, PBCI and JABCI are compared with ACI based on the criteria of coverage
probability and expected length through the simulation study. Result of CI and length
of CI for slope using two real world data set are presented in Section 6. In Section 7, we
present the concluding remarks.
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2 Estimation of parameters in linear structural
relationship model

Consider the following circumstances

Y = α+ βX (1)

where, there exists a linear relationship between the random variables X (heights)
and Y (weights) and suppose that they are measured without error.

However,in reality, these two variables X and Y are not observed directly, i.e., they
are measured subject to error. Assume that for each i, xi and yi are taken instead of Xi

and Yi respectively (i = 1, 2, .., n). If δi and εi are the two respective errors in measuring
Xi and Yi , then we can write xi = Xi+δi and yi = Yi+εi , where the error terms δi and
εi are normally distributed having zero mean and variance σ2δ and σ2ε ,respectively. This
reveals that the variances of error are not dependent on i and so independent of the level
of X and Y , which assumed homoscedasticity. There are some assumptions that have
been described in the literature for obtaining the X values. For example, Kendall and
Stuart (1973) described the structural model considering Xi as normal distribution with
mean µ and variance σ2X . In LSRM, the errors are assumed to be normal, the bivariate
normal distribution of xi and yi , is then(

xi

yi

)
∼ N

([
µ

α+ βµ

]
,

[
σ2X + σ2δ βσ2X
βσ2X β2σ2X + σ2ε

])
(2)

Kendall and Stuart (1973) have shown that there are five equations with six unknown
(µ, α, β, σ2X , σ

2
δ , σ

2
ε ) , hence an additional assumption is required for the unique and

consistent solutions of the parameters of the model (1). In particular, Hood et al.
(1999) discuss in detail estimation procedure to estimate the model (1) under various

assumptions. However, for the case when the ratio of error variance λ = σ2
ε

σ2
δ

is assumed

to be known, the Maximum Likelihood Estimate (MLE) for the slope parameter β is
given by

β̂ =
(S2
y − λS2

x) +
√

(S2
y − λS2

x)2 + 4λS2
xy

2Sxy
(3)

where,S2
x , S2

y and Sxy are defined as S2
x = 1

n

∑
(xi − x̄)2, S2

y = 1
n

∑
(yi − ȳ)2 and

Sxy = 1
n

∑
(xi − x̄)(yi − ȳ),respectively.

and the variance for the slope parameter is

vâr(β̂) =
β2σ2Xσ

2
δ + λσ2Xσ

2
δ + λσ4δ

nσ4X
(4)



Electronic Journal of Applied Statistical Analysis 377

3 Asymptotic Confidence Interval for the Parameter β of
LSRM

In this section, the asymptotic confidence interval for LSRM with known ratio of error
variances is discussed briefly. In case of identifiable model, it is convenient to use asymp-
totic confidence set for the interval estimation (Fuller, 1987; Cheng and Van Ness, 1944;
Birch, 1964) for more details. However, only a few number of studies have been carried
out on the interval estimation of LSRM on the basis of identifiability assumption. Tsai
(2010) discussed the asymptotic confidence interval for the slope parameter of LSRM
under the assumption of σ2δ known case. The asymptotic confidence interval for the
slope β of LSRM under the identifiability assumption of the ratio of two error variances
known is given by Tsai (2010) as

β̂ ± Z1−α
2

√
vâr(β̂) (5)

whereZ1−α
2

is the 100(1−α
2 ) percentile of standard normal distribution. The estimated

value of the slope is taken from (3) and vâr(β̂) is taken from (4) respectively.

4 Computer Intensive Confidence Intervals for the Slope
of LSRM

The bootstrap is a computer intensive technique for measuring standard errors, biases,
confidence intervals and other measures of statistical accuracy. It has become a standard
statistical tool and produce accurate estimates automatically in almost any situation,
including very complicated ones, without requiring much thought from the statistician.
Moreover, the bootstrap method needs less assumption and easily comparable to the
conventional methods. There has been a lot of theoretical and empirical research (Efron,
1979; Shao and Tu, 1996; Davison and Hinkley, 1997) examining the properties of the
bootstrap estimation.

4.1 Parametric Bootstrap Confidence Interval

For parametric bootstrap (PB), first we need to select the distribution type that the data
come from and find the MLE of parameters for that distribution. Then, we randomly
resample the data with replacement from the fitted model. The parametric bootstrap
consists of the following steps:
1. A random sample (x1, y1), (x2, y2), ..., (xn, yn) is collected from a study of our interest.
2. The parameters (µ, α, β, σ2X , σ

2
δ , σ

2
ε ) of the distribution are determined that best

fits the data from the known distribution family using maximum likelihood estimators
(MLE).
Finally, we calculate the maximum likelihood estimate of the slope parameter say

β̂PB =
1

B

B∑
i=1

β̂i
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and standard error (se) of the slope say

se(β̂PB) =

√√√√ 1

B − 1

B∑
i=1

(β̂i − β̂PB)

for each bootstrap replication.

Now, the parametric bootstrap confidence interval for the slope β is given by

β̂PB ± Z(1−α
2
)se(β̂PB) (6)

4.2 Jackknife-After-Bootstrap Confidence Interval

The jackknife-after-bootstrap (JAB) method provides a way of estimating standard er-
ror for bootstrap quantity using only information from original bootstrap samples, i.e.
further resampling is not required here. The complete procedure for JAB method con-
sists of the following steps:

1. Leave out data point i , for i = 1, 2, ..., n from the original bootstrap sample and
then compute the maximum likelihood estimate of slope parameter say β̂(i).

2. Compute the JAB estimate (Fox, 1997) of the slope, say β̂JAB as

β̂JAB =
1

n

n∑
i=1

β̂(i)

3. Define the standard error of JAB estimate (Wang, 1998), say as se(β̂JAB)

se(β̂JAB) =

√√√√n− 1

n

n∑
i=1

{se(β̂(i))− se(β̂(.))}2

where,

se(β̂(i)) =

√√√√ 1

B − 1

B∑
i=1

(β̂(i) − β̂JAB)2

and

se(β̂(.)) =
1

B

B∑
i=1

se(β̂(i))

Finally, the JAB confidence interval for β is given by

β̂JAB ± Z(1−α
2
)se(β̂JAB) (7)
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5 Results of Simulation Study

We carried out a simulation study to investigate the performance of the ACI, PBCI and
JABCI under a variety of combinations of parameters. The performance is measured
under the criteria of length of CI as well as coverage probabilities based on 10,000
simulated data each replicated 200 times. The length of confidence interval for ACI,
PBCI and JABCI are computed as the median of all 10,000 replications.

The simulated data set is generated by using equation (2). We choose µ = 10, α = 0
and β = 1 with different values of σ2X = 2, 5, 10 and σ2δ = 0.50, 0.75, 1.00. For each
specified set of parameters, different values of simulated data sets (xi, yi) are obtained.
These simulated data sets are then used to estimate the slope and confidence interval
of the slope of linear structural relationship model. Moreover, different sample sizes
n = 10, 30, 50 is considered in order to investigate the performance of ACI, PBCI and
JABCI.

Table 1: Results for the expected length and coverage probability of slope when µ =
10, α = 0,and β = 1, and significance level α = 0.05

n σ2
X σ2

δ Expected length Coverage probability

ACI PBCI JABCI ACI PBCI JABCI

10 2 0.50 0.8679 1.5081 1.2828 0.8805 0.9510 0.9500

0.75 1.0783 2.4811 1.7045 0.8850 0.9520 0.9490

1.0 1.2666 3.6733 2.1031 0.8830 0.9560 0.9450

5 0.50 0.5323 0.7301 0.7380 0.8860 0.9430 0.9550

0.75 0.6615 0.9584 0.9521 0.8860 0.9470 0.9520

1.0 0.7716 1.2135 1.1358 0.8830 0.9520 0.9500

10 0.50 0.3752 0.4755 0.5019 0.8940 0.9400 0.9510

0.75 0.4599 0.6053 0.6282 0.8910 0.9430 0.9550

1.0 0.5323 0.7301 0.73806 0.8860 0.9430 0.9550

30 2 0.50 0.5226 0.5392 0.6765 0.9310 0.9440 0.9510

0.75 0.6549 0.6944 0.8747 0.9320 0.9370 0.9610

1.0 0.7755 0.8559 1.0461 0.9300 0.9320 0.9620

5 0.50 0.3198 0.3225 0.4093 0.9280 0.9380 0.9650

0.75 0.3968 0.4029 0.5136 0.9290 0.9400 0.9530

1.0 0.4611 0.4742 0.5972 0.9310 0.9430 0.9540

10 0.50 0.2240 0.2242 0.2823 0.9300 0.9360 0.9530

0.75 0.2760 0.2760 0.3499 0.9300 0.9370 0.9540

1.0 0.3198 0.3225 0.4093 0.9280 0.9380 0.9540

50 2 0.50 0.4159 0.4202 0.5088 0.9420 0.9430 0.9640

0.75 0.5226 0.5347 0.6403 0.9440 0.9460 0.9660

1.0 0.6196 0.6427 0.7761 0.9450 0.9460 0.9650

5 0.50 0.2532 0.2523 0.3043 0.9430 0.9430 0.9600

0.75 0.3137 0.3148 0.3808 0.9430 0.9420 0.9600

1.0 0.3669 0.3702 0.4495 0.9420 0.9430 0.9640

10 0.50 0.1767 0.1752 0.2118 0.9420 0.9430 0.9620

0.75 0.2177 0.2173 0.2605 0.9440 0.9450 0.9610

1.0 0.2532 0.2523 0.3043 0.9420 0.9430 0.9620
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From Table 1 it is shown that when the sample size is n = 10 and 30 the coverage
probability of the jackknife-after-bootstrap is very close to our target value 0.95. Al-
though the coverage probabilities of the parametric bootstrap are very close to those
of the JABCI, the latter ones perform better on the basis of having shorter confidence
intervals. The performance of the classical ACI is poor in this situation. Its coverage
is roughly about 7% less than the target value. When the sample size increases to 30,
the performance of the ACI improves, but still it performs less than the JABCI and
the PBCI. In case of n = 50 , the performance of the ACI improves as it possesses
coverage probability close to the target value, but the PBCI produces coverage proba-
bility marginally better than the ACI which are even closer to the target value without
jeopardizing the expected length. The JABCI produces coverage probabilities slightly
higher than the target value. Similarly for the sample size n = 10 and n = 30, when the
values of σ2X and σ2δ increases, the JABCI performs better than the other two methods
in terms of coverage probability. But when the sample size increases to n = 50, the
PBCI performs better than the other two methods though the coverage probability of
ACI and JABCI are very close to the target value. Again when the value of σ2X increase,
the expected length of each method decreases and this is true for each sample size. The
reverse conclusion can be drawn for σ2δ .

6 Numerical Examples

In this section, we consider two real world data sets to investigate the performance of
three confidence intervals. In order to make the relationship as model (1), we assume
that measurement error can occur in both the variables of these two examples. Firstly,
the serum kanamycin data is considered which is taken form Kelly (1984) and secondly,
we consider the iron in slag data taken from Hand et al. (1994). Table 2 and Table 3
demonstrate the confidence interval and the length of confidence interval for the slope
parameter of ACI, PBCI and JABCI method from the serum kanamycin and iron in slag
data respectively.

6.1 Serum Kanamycin Data

These data were taken from Kelly (1984) and consist of simultaneous pairs of measure-
ments of serum kanamycin levels in blood samples drawn from twenty premature babies.
One of the measurements was obtained by a heelstick method (x) and the other by us-
ing an umbilical catheter (y). Since there is a measurement error in both methods, the
measurement error model seems to be appropriated for describing these data.

6.2 Iron in Slag Data

The data for the 50 results of Iron content of crushed blast-furnce slag measured by
two different techniques, which are chemical test and magnetic test (Hand et al., 1994).
From Table 2 and Table 3, we observe that JABCI produces the shortest confidence
interval for slope followed by PBCI and ACI method.
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Table 2: Results of CI and the length of CI for slope from serum kanamycin data

Method CI Length of CI

ACI (0.7577, 1.3818) 0.6241

PBCI (0.7519, 1.3415) 0.5895

JABCI (1.0367, 1.5236) 0.4868

Table 3: Results of CI and the length of CI for slope from iron in slag data

Method CI Length of CI

ACI (0.6519, 1.1920) 0.5401

PBCI (0.6640, 1.0538) 0.3898

JABCI (0.9152, 1.1811) 0.2659

7 Conclusions

In this article we investigate the parametric bootstrap confidence interval and jackknife-
after-bootstrap confidence interval for the slope of LSRM when the ratio of the two error
variances is known. Monte Carlo simulation reveals that for n = 10 and n =30, the
JABCI produces the most satisfactory results followed by the PBCI. The performance
of the ACI is not satisfactory in this occasion. However, for n =50, the JABCI produces
coverage probabilities slightly higher than the target value. Thus it is clear that both
bootstrap confidence intervals, the PBCI and the JABCI, performs well when sample
size is small for the slope of linear structural relationship model.
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