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The term frailty was introduced by Vaupel et al., 1979, to indicate that
different individuals are at risks even though on the surface they may appear
to be quite similar with respect to the measurable attributes such as age,
sex, habits etc. The term frailty can be utilized to represent an unobserv-
able random effect shared by subjects with similar risks in the analysis of
time to event data and/or mortality rates. In this article, we make use of
the parametric shared frailty models to a real life data for identifying the
distributional form of baseline hazard function. The gamma shared frailty,
with disease stages as clusters, with log-logistic baseline hazard model came
out to be the best choice for modeling survival data of Head and Neck cancer
patients treated with radiotherapy. The suitability of the best-chosen model
is justified considering two significant covariates, namely, age of the patients
and habit of their alcohol consumption. We obtain the estimates of frailty
(or unknown heterogeneity) for five stages of disease taken as clusters for
Gamma- log-logistic shared frailty model.
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1 Introduction

The Cox model (see Cox, 1972) is a well-recognized statistical technique for analyzing
survival data. The Cox model is based on a modeling approach to the analysis of
survival data. The purpose of the model is to simultaneously explore the effects of
several variables on survival. When it is used to analyze the survival of patients in a
clinical trial, the model allows us to isolate the effects of treatment from the effects
of other variables. Importantly, correct inference based on those proportional hazards
models needs independent and identically distributed samples.
Sometimes, subjects may be exposed to different risk levels, even after controlling for
known risk factors; this is because some relevant covariates are often unavailable to the
researcher or even unknown. Also, the study population may be divided into clusters so
that subjects from the same cluster behave more cohesively than those in other clusters.
In the medical field, frailty is a term that is used more frequently. It originates from
gerontology where it is used to indicate that frail people have an increased risk for
morbidity and mortality. In statistical literature, frailty is a random component designed
to account for variability due to unobserved individual-level factors that is otherwise
unaccounted for by the other predictors in the model, see for more insight Vaupel et al.,
1979; Lancaster, 1979.
The Frailty model is the extension of the Cox proportional hazards models, which is
suitable for the individual or clustered survival data. Frailty models are the survival
models analog to regression models that account for heterogeneity and random effect.
Univariate frailty models take into account that the population is not homogeneous.
Heterogeneity may be explained by covariates, but when important covariates have not
been observed, this leads to unobserved heterogeneity. The idea is to suppose that
different patients possess different frailties and patients more frail (or prone) tend to
have an intended event earlier than those who are less frail. A shared frailty model is
a random effect model where the frailties are common among groups of individuals or
clusters and are randomly distributed across groups.
In this article, we consider the parametric approach of shared frailty models where the
variable frailty is assumed to have different probability distributions (such as gamma
and inverse Gaussian) under the three different parametric baseline hazard functions
viz. exponential, Weibull and log-logistic (see more details on shared frailty models
Hougaard, 2012; Therneau and Grambsch, 2000; Duchateau and Janssen, 2007 and
references therein).
Our objective is to find suitable parametric model for baseline hazard function under
different distributional assumptions in frailty for modeling head and neck cancer survival
data when clustered as per disease stages. The aim is to find the estimates for unknown
heterogeneity (frailty) for different clusters (owing the fact that under same disease stage
subjects experience similar frailness) under parametric shared frailty modeling.
Rest of the article is organized as follows. The basic concept of parametric shared
frailty model is described in section 2. The gamma shared frailty and inverse Gaussian
shared frailty models are described in subsections 2.1 and 2.2, respectively, while in
subsection 2.3, discussion is made on baseline hazard assumptions. Section 3 deals with
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the real data application of the parametric shared frailty models with known covariates
while subsections 3.1 and 3.2 deals with the data description and results of the data
analysis, respectively. Finally, section 4 concludes.

2 The parametric shared frailty models

In this section, we discuss about the basic concept and theoretical structure of parametric
shared frailty models. We consider here the parametric baseline hazard assumption under
known covariates.
Suppose there are n clusters and that cluster i has ni observations and associates with
the unobserved frailty Zi(1 ≤ i ≤ n). The vector Xij(1 ≤ i ≤ n, 1 ≤ j ≤ ni) contains
the covariate information for event time Tij of the jth observation in the ith cluster. The
survival times in cluster i(1 ≤ i ≤ n), conditional on the frailty term Z, are assumed to
be independent and their hazard functions are of the form

µ(t|Xij , Zi) = Ziµ0(t) exp(β′Xij) (1)

where µ0(t) denotes the baseline hazard functions and β denotes vector of the fixed effect
parameter to be estimated. The frailties Zi(i = 1, 2, . . . , n) are assumed to be indepen-
dently and identically distributed random variables with density function f(z). Various
frailty distributions have been proposed in the literature (see for more comprehensive
overview in this field Duchateau and Janssen, 2007; Van den Berg, 2001). The main
assumption of a shared frailty model is that all individuals in cluster i share the same
value of frailty Zi(i = 1, 2, . . . , n). The lifetimes are assumed conditionally independent
with respect to the shared (common) frailty. Within the clusters, this shared frailty is
the cause of dependence between lifetimes. We can derive the joint conditional multi-
variate survival function for the individuals in the ith cluster. Conditional on frailty Zi
which is shared by all individuals in cluster i, we have

S(ti1, ti2, . . . , tini |Xi, Zi) = S(ti1|Xi1, Zi)S(ti2Xi2, Zi) . . . S(tiniXini , Zi)

= exp

−Zi
ni∑
j=1

H0(tij)e
β′Xij

 (2)

Where H0(t) =
∫ t

0 µ0(s)ds denotes the cumulative baseline hazard function and Xi =
(Xi1,Xi2, . . . ,Xini) is the covariate matrix of the individuals in the ith cluster.
Now, averaging expression in (2) with respect to Zi, we get the marginal survival function
as

S(ti1, ti2, . . . , tini |Xi) = E [S(ti1, ti2, . . . , tin|Xi, Zi]

= E

exp

−Zi
ni∑
j=1

H0(tij)e
β′Xij



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Which can be further written as

S(ti1, ti2, . . . , tini |Xi) = L

 ni∑
j=1

H0(tij)e
β′Xij

 (3)

where L(.) is the Laplace transformation of the frailty variable.
Thus, the multivariate survival function is expressed as the Laplace transform of the
frailty distribution, evaluated at the cumulative baseline hazard. Assuming indepen-
dence between clusters, the joint survival function for all event-time data is now the
product of the survival functions of all the clusters and is given by

S(t11, t12 . . . , tnnn |X1,X2, . . . ,Xn) =
n∏
i=1

L

 ni∑
j=1

H0(tij)e
β′Xij


The unconditional (univariate) survival functions can be expressed by means of the
Laplace transform

S(tij |Xij) = E [S(tij |Xij , Zi]

= E
[
exp

{
−ZiH0(tij)e

β′Xij

}]
= L

(
H0(tij)e

β′Xij

)
(4)

2.1 Gamma shared frailty models

The standard assumption about frailty in shared frailty models is that it follows a gamma
distribution. Gamma distribution is preferred due to its flexible mathematical properties
and the simple form of Laplace transformation. Specific form of dependence between
event times in clusters is implied by each frailty distribution, e.g., the gamma distribution
models late dependence in shared frailty models (see Duchateau and Janssen, 2007).
Assuming for frailty a gamma distribution with expectation unity and variance σ2, we
get by using (3), multivariate survival function for the ith cluster as

S(ti1, ti2, . . . , tini |Xi) = L

 ni∑
j=1

H0(tij)e
β′Xij

 =

1 + σ2
ni∑
j=1

H0(tij)e
β′Xij

− 1
σ2

(5)

Different parametric functions can be assumed for baseline hazard function, but theory of
parameter estimation is developed in a very general situation. The regression parameters
β and the variance of frailty σ2 are the parameters usually estimated in parametric
gamma frailty models. If we assume the θ is the vector of unknown parameter involved in
baseline hazard function µ0, then to derive unconditional likelihood function we consider
first the conditional likelihood in the case of n clusters of size ni(i = 1, 2, . . . , n)

L(β,θ, σ2) =

n∏
i=1

∫ ∞
0

ni∏
j=1

[
ziµ0(tij ;θ)eβ

′xij
]δij

exp
{
−ziH0(tij ;θ)eβ

′xij
}
f(zi;σ

2)dzi

(6)
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with f(zi;σ
2) =

z
1
σ2

−1

i exp(−zi/σ2)

σ2/σ2Γ(1/σ2)
denoting the probability density function (PDF) of

gamma distribution with mean unity and variance σ2 and δij as event indicator.
The expression in (6) can be written as

L(β,θ, σ2) =

n∏
i=1

[
ziµ0(tij ;θ)eβ

′xij
]δij

y
1
σ2

+di
i σ2/σ2Γ(1/σ2)

∫ ∞
0

(yizi)
1/σ2+di−1 exp(yizi)yidzi (7)

where yi = 1
σ2 +

∑ni
j=1H0(tij ;θ)eβ

′xij and di =
∑ni

j=1 δij , number of observed events in
cluster i. Finally, we have the unconditional log-likelihood function of the shared gamma
frailty model (see for details Duchateau and Janssen, 2007) as

L(β,θ, σ2) =

n∑
i=1

[
di lnσ2 + ln Γ(1/σ2 + di)− ln Γ(1/σ2)

]
−

n∑
i=1

(1/σ2 + di)

ln

1 + σ2
ni∑
j=1

H0(tij ;θ) expβ′xij

+

n∑
i=1

ni∑
j=1

δij{β′xij + lnµ0(tij ;θ)}

(8)

In parametric shared gamma frailty model with known covariates, the unobserved frailty
Zi(i = 1, 2, . . . , n) in each cluster can be estimated using counting process (see Nielsen
et al., 1992) as follows

Ẑi =
1/σ̂2 +

∑ni
j=1 δij

1/σ̂2 +
∑ni

j=1H0(tij ; θ̂) exp
(
β̂′xij

) (9)

Here, σ̂2, θ̂ and β̂ are the estimates of σ2, θ and β, respectively.

2.2 Inverse Gaussian shared frailty models

As mentioned earlier, gamma distribution is used as a frailty distribution for several rea-
sons, however, it has drawbacks (see Kheiri et al., 2007) for example it may weaken the
effect of covariates. Alternative to the gamma distribution Hougaard, 1984 introduced
inverse Gaussian as a frailty distribution.
The inverse Gaussian distribution has many similarities to standard Gaussian distribu-
tion (see Chhikara, 1988). Furthermore, it provides much flexibility in modeling, when
early occurrences of failures are dominant in a lifetime distribution and its failure rate
is expected to be non-monotonic.
In such situations, the inverse Gaussian distribution might provide a suitable choice for
the lifetime model. Moreover, for the inverse Gaussian distribution the surviving popu-
lation becomes more homogeneous with respect to time, whereas for gamma distribution
the relative heterogeneity is constant. The inverse Gaussian distribution has unimodal
density and is the member of exponential family. While its shape resembles the other
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skewed density functions, such as lognormal and gamma (see Hanagal and Dabade, 2013
for more detailed discussion). These properties of inverse Gaussian distribution motivate
us to use inverse Gaussian as frailty distribution in case of shared heterogeneity.
The similar theoretical line up is followed as given in equations, (3) and (4) above and the
frailty distribution for the cluster i(i = 1, 2, . . . , n) is replaced with the inverse Gaussian
distribution.

2.3 Baseline hazard function assumption

As indicated at the introduction, under the parametric approach, the baseline hazard is
defined through a parametric function involved with a vector of its parameters and is
estimated together with the regression coefficients, and the frailty parameter(s). Here
we consider the exponential, Weibull and log-logistic as parametric distributions for the
baseline hazard for each case of frailty assumption, viz. gamma and inverse Gaussian.
Table 1 indicates the forms of the baseline hazard functions for the exponential, Weibull
and log-logistic distributions.
Exponential hazard function. The constant hazard function, λ, is a consequence of

Table 1: Baseline hazard function assumption

Distribution µ0(t) H0(t) =
∫ t

0 µ0(s)ds Parameter space

Exponential λ λt λ > 0

Weibull λptp−1 λtp λ > 0, p > 0

Log-logistic eαktk−1

1+eαtk
ln(1 + eαtk) α ∈ R, k > 0

the memoryless property of the exponential distribution: the distribution of the subjects
remaining survival time given that he or she has survived till time t does not depend on
t. In other words, the probability of death in a time interval [t, t+ δt] does not depend
on the starting point, t.
Weibull hazard function. For the Weibull distribution, the hazard function depends
on t. We can see that, depending on whether p is greater than or less than 1, the hazard
can increase or decrease with increasing t. This is often more realistic than the assump-
tion of a constant hazard function (as in the exponential case). Since the exponential
distribution is a special case of the Weibull with p = 1, one way of analyzing the hazard
rate is to fit the (more general) Weibull model and then test whether p = 1.
Log-logistic hazard function. The log-logistic distribution has a fairly flexible func-
tional form, it is one of the parametric survival time models in which the hazard function
may be decreasing, increasing, as well as hump-shaped, that is it initially increases and
then decreases, depending upon the values of α and k.
With these above considerations, we approach to find out the best possible combination
for frailty and baseline hazard for the below-mentioned data set and thereby find the
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estimates for frailty for each selected cluster (disease stage in our case). We consider
Akaike information criteria (AIC), see Akaike, 1974, for model selection. Smaller the
value of AIC better is the model. We apply R software to perform the statistical analysis.
The detailed result with discussion is presented in the next section.

3 Application in real life data

As indicated at the introduction, in this section, we consider parametric shared frailty
approach for modeling the data on cancer survival. The best model is reached through a
search for best possible distribution for the baseline hazard under gamma frailty and in-
verse Gaussian frailty. We assume three popular lifetime distributions, viz. exponential,
Weibull and log-logistic, in modeling baseline hazard for both the cases.

3.1 Head and Neck cancer survival data

The survival (time to death) data on 244 subjects with squamous cell carcinoma in four
sites viz. Larynx, Oropharynx, Hypopharynx, and Nasopharynx treated at the Radiation
Oncology department of Malabar Cancer Centre, Thalassery, India, from January 2010
to December 2013 are collected retrospectively from case record files. Latest survival
status (death or alive) are captured with the last follow up time at the end of July 2015.
Five different stages (stage-I, stage-II, stage-III, stage-IVA, stage-IVB) of disease are
found while capturing the data. In this data collection, other factors such as age, sex,
smoking and alcohol habits of the patients are considered as possible known cofactors,
other than unknown heterogeneity shared stage wise, affecting the survival time.

3.2 Results and discussions

In this sub-section, we represent the results of parametric shared frailty model when
applied to the above-mentioned data. First, after general discussion about the data,
we present the results for gamma frailty model and reach the best possible combination
of frailty and baseline hazard under known covariates and then we continue the same
exercise changing the frailty assumption as inverse Gaussian distribution. Finally, the
best model is found out comparing gamma frailty and inverse Gaussian frailty with
judiciary chosen baseline hazard for each case and estimates for frailty is obtained for
the best model. It is to be noted that, under different frailty assumption the best suited
baseline hazard function may be different for the same data set but in our case it was
not so, as we can see below.
In the data, we have in total 244 squamous cell carcinoma cases treated with radiotherapy
comprising 223(91%) males and only 21(9%) female cases. We collected data for four
sites in Head and Neck, viz. site-1 (Larynx) 34% cases, site-2 (Oropharynx) 23% cases,
site-3 (Hypopharynx) 34% cases and site-4 (Nasopharynx) 9% cases. The average age
of the patients is 59 years with standard deviation of 10 years, while the median age
is found to be 60 years. The data shows 200(82%) cases are smokers and 151(62%)
cases posses alcoholic habit. In terms of disease stage, we have 9% with stage-I, 16%
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stage-II, 30% are stage-III, 38% are stage-IVA and 7% in stage-IVB. The 68(28%) cases
experienced the event (death) and rests are censored. For analysis, the unit for the
survival times is taken in days.
Now, we start with gamma frailty assumption with three different base line hazard
functions as mentioned in the previous section. Initially, we considered three covariates,
viz. age, alcohol habit and smoking habit of the patients, but it is observed that smoking
habits do not contribute significantly in the models (see table 2 for details) and hence
we proceed with only two significantly contributing covariates, age and alcohol habit
(P-value less than or equal to 0.05 is taken as significant level).The result obtained is
given in the table 3. From table 3, we see that log-logistic distribution is the logical

Table 2: Gamma shared frailty models, baseline hazards, covariates, AIC value

Frailty Baseline Covariates Estimate SE P-Value AIC

distribution Hazard

Gamma

Exponential

Age 0.031 0.014 0.023

1181.884Alcohol 0.542 0.287 0.058

Smoking -0.071 0.378 0.851

Weibull

Age 0.032 0.014 0.019

1181.645Alcohol 0.573 0.287 0.046

Smoking -0.073 0.378 0.846

Log-logistic

Age 0.030 0.014 0.034

1181.323Alcohol 0.568 0.287 0.048

Smoking -0.079 0.377 0.833

choice (as AIC value is the least) for the baseline hazard function under gamma shared
frailty with clustering done with respect to disease stage. The same exercise is performed
changing the frailty distribution as inverse Gaussian distribution with known covariates
age and alcohol habit. The result obtained is given in table 4.

From table 4, we see that again log-logistic distribution is the logical choice (as AIC
value is the least in this case also) for the baseline hazard function under inverse Gaussian
shared frailty with clustering done with respect to disease stage. Hence, for a data like
ours we suggest to take log-logistic distribution as a favorable choice for baseline hazard
in estimating unknown heterogeneity in survival analysis where natural cluster is given
priority for similar risk experience.
With the above findings, we, now, proceed further to identify the best model considering
baseline hazard as log-logistic failure rate function. We take, as previous, model selection
criterion, AIC, and find the best model as depicted in table 5.

It is clear from table 5 that gamma shared frailty model with log-logistic baseline
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Table 3: Gamma shared frailty models, baseline hazards, significant covariates, AIC
value

Frailty Baseline Covariates Estimate SE P-Value AIC

distribution Hazard

Gamma

Exponential
Age 0.030 0.013 0.023

1179.918
Alcohol 0.522 0.265 0.049

Weibull
Age 0.032 0.013 0.019

1179.682
Alcohol 0.552 0.266 0.038

Log-logistic
Age 0.030 0.014 0.035

1179.366
Alcohol 0.545 0.266 0.040

Table 4: Inverse Gaussian shared frailty models, baseline hazards, significant covariates,
AIC value

Frailty Baseline Covariates Estimate SE P-Value AIC

distribution Hazard

Inverse Gaussian

Exponential
Age 0.030 0.013 0.026

1180.862
Alcohol 0.515 0.265 0.052

Weibull
Age 0.031 0.013 0.022

1180.737
Alcohol 0.543 0.266 0.041

Log-logistic
Age 0.029 0.014 0.040

1180.404
Alcohol 0.536 0.266 0.044

Table 5: AIC values for Gamma and Inverse Gaussian frailty models with Log-logistic
baseline hazard

Baseline Hazard Frailty distribution AIC

Log-logistic
Gamma 1179.366

Inverse Gaussian 1180.404
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hazard function comes out to be the best model in this situation as AIC value is lesser
as compared to that in case of inverse Gaussian frailty assumption.
Now we get estimates of frailty for each cluster (disease stage) by applying the formula
given in (9) and with log-logistic baseline hazard function consideration. The estimates
obtained are given in table 6.

Table 6: Frailty estimates with disease stage as clusters

Disease Stage(cluster) Frailty estimates

Stage-III 0.298

Stage-IVA 0.804

Stage-I 1.193

Stage-IVB 1.292

Stage-II 1.356

4 Conclusion

In this article, parametric shared frailty models are applied to a real life data for identi-
fying the distributional form of baseline hazard function. When we applied parametric
shared frailty approach considering stages of cancer as clusters, we identified that log-
logistic distribution’s hazard rate is a logical choice for baseline hazard function for the
model taking gamma and inverse Gaussian distribution as individual choice for frailty
distribution. Finally, the gamma shared frailty with log-logistic baseline hazard model
came out to be the best choice for modeling survival data of head and neck cancer pa-
tients, with specifically mentioned sites, treated with radiotherapy.
The suitability of the best-chosen model is justified considering two significant covari-
ates, namely age of the patients and habit of their alcohol consumption. We obtain the
estimates of frailty (or unknown heterogeneity) for five stages of disease taken as clus-
ters for Gamma- log-logistic shared frailty model. It is found that patients with stages
IVB, II, I have estimates of frailty variable more than unity and they are more frail as
compared to the patients with stages III and IVA, respectively.
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