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This paper discusses the fitting of suitable models to rainfall observations.
Daily rainfall amounts were aggregated to monthly data using the Thiessen
polygons method and multivariate seasonal vector integrated autoregressive
moving average models (sVARIMA ) were fitted to the monthly cumulative
rainfall volume. The data were obtained from the 12 Palestinian meteorolog-
ical gauge stations located across the 5 governorates of the Gaza Strip and
incorporated 42 years (from 1973 to 2014) of irregular daily precipitation. It
can be concluded that the use of sVARIMAmodels in the environmental sci-
ences provide a useful approach for forecasting rainfall data as a preliminary
guideline toward short and long-term sustainable water resources manage-
ment.

Keywords: sVARIMAmodels, exact maximum likelihood estimation, state
space representation, Gaza strip.

1 Introduction

Many time series encountered in hydrological, meteorological and environmental studies
exhibit strong seasonal behavior with a fixed integer period. Obviously, monthly rainfall
amount series usually exhibit strong seasonal behavior. When seasonal correlation exists
but is not taken into account then, most likely, the estimators will not be fully efficient.
An even more serious problem is that statistical inferences from the model may be
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incorrect. Clearly the analysis of rainfall amount series impacts many disciplines. For
instance, in agricultural planning, one needs to determine the optimum time for planting
crops based on the predicted rainfall amount during the precipitation season.

One can argue that the marginal distribution of rainfall as time series data may have
a large spike at the origin and positive skewness. For this reason, the combination of
these discrete and continuous features makes the use of time series for modelling the
rainfall data non accurate. To deal with such a case, Cox (1981) introduced a model
of nonseasonal first order autoregressive (AR ) character. To handle the seasonal and
nonseasonal variations in the rainfall data, Stern and Coe (1984) proposed the fitting
and the use of non-stationary Markov chains and gamma distributions to the rainfall
occurrence and amounts respectively. They showed that the process of fitting and using
these models provides a straightforward and flexible analysis for rainfall records.

In contrast to the univariate time series cases, where the seasonal ARIMAmodels
have received considerable attention, there has been much fewer studies involving multi-
plicative sVARIMAmodeling in multivariate time series. In the literature, Salas et al.
(1980); Bras and Rodŕıguez-Iturbe (1985); Ansley and Kohn (1995) and Soltani et al.
(2007) implemented the classical multivariate time series models to preserve the auto
and cross correlations of the rainfall data via univariate auto regressive moving average
(ARMA ) models; however, they did not consider the multivariate seasonal models in
details.

Although numerous studies on rainfall data have been carried out with data collected
in Middle East countries, none of these utilized seasonal multivariate time series tech-
niques to describe the individual and the possible cross relationships in the rainfall data.
In fact, most previously published articles in the field of environmental sciences, espe-
cially those in connection with data originating from the Gaza Strip, have consisted
simply of a summary of characteristics of rainfall based on the observed data where the
time series models did not aim at forecasting future results (El-Nahhal et al., 2013a,b,c;
Safi et al., 2014).

Decision making for short and long term water resource management necessitates a
clear insight into hydrology and climate volatility, as for instance estimating rainfall
amounts during precipitation seasons may provide significant information about fresh
water availability in the near and mid-term future (Banu et al., 2016). Generally, rain-
fall like many other environmental data shows spatial and temporal variation (Cristiano
et al., 2016) where the precipitation season displays 12 months of circular stationarity;
hence, in many situations, especially within a small geographic area (such as the Gaza
Strip), spatial-dependence is almost perfect so that the variability in the rainfall obser-
vations can be explained by temporal models. Therefore, in the multivariate analysis
of rainfall, the objective in modeling monthly aggregates is to describe the within-year
variability, where each variable represents the amount of rainfall at a single location
(gauge station).

The main objective of this article is to propose an empirical multivariate temporal
model that estimates the amount of monthly cumulative rainfall, which could contribute
to the sustainable management of groundwater resources. This research is based on
monthly cumulative rainfall datasets obtained from 12 meteorological stations located
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across the Gaza Strip in the State of Palestine.

The next section introduces the study and describes the dataset being analyzed. In
Section 3, we provide some background on the multivariate seasonal ARIMAmodels.
We discuss the exact maximum likelihood methodology of multivariate processes with
missing values in Section 4. The Akaike and Schwarz Bayesian information criteria
for model selection and multivariate portmanteau diagnostic seasonal and non-seasonal
test statistics are discussed in Sections 5 and 6, respectively. In Section 7, we fit the
seasonal vector ARIMAmodel to the monthly rainfall amounts (measured in Million
Cubic Meter, MCM ) data. Then we assess and summarize the results in Section 8.

2 Study area and data set

The Gaza Strip is a small region with a total area of 365 square kilometers, which
is located in arid and semi-arid areas on the eastern coast of the Mediterranean Sea at
longitude 34o200

′′
East and latitude 31o250

′′
North. It is well known that the Gaza Strip

is one of the world’s most densely populated areas, and its unique coastal plain aquifer
is not meeting the population needs due to the unsustainably high rate of extraction
of this aquifer (Melloul and Collin, 2000). This aquifer extends over a distance of 120
km starting from South of mount Carmel in Haifa and ending in the Gaza Strip; it
has a width of 7-20 km and disappears near the foothills of the mountains of the West
Bank (Al-Najar, 2011; Shomer et al., 2004). The aquifer in the Gaza Strip receives an
average annual recharge of 50-60 Million Cubic Meter per Year (MCM /y) mainly from
rainfall; rainfall being the main source of groundwater and surface water resources as
it provides more than 90% of all water supplies in the Gaza Strip (Palestinian Water
Authority, 2013). The precipitation season in the Gaza Strip extends from October to
March. Rain rarely falls in September, April, or May. Since October 31, 1972, rain
never fell during the summer months (June-August) except for only one day, namely,
June 15, 1992. This short winter season cannot replenish the groundwater systems as
needed, which has led to the lowering of the groundwater level and sea water intrusion.
The contamination from sea water intrusion and the lack of sufficient refilling of the
aquifer of the Gaza Strip has resulted in brackish irrigation, and consequently, drinking
water that is not complying with the standards proposed by the Food and Agriculture
Organization of the United Nations, FAO (Al-Khatib and Al-Najar, 2011; Palestinian
Water Authority, 2013). Problems associated with the lack of quality and quantity of
fresh water resources in Palestine and many other countries in the Middle East may be
alleviated and controlled if decision makers in these countries support scientific research,
including statistical models for rainfall precipitation, and adopt the recommendations.

The data used in this research was obtained from the 12 Palestinian meteorological
stations located across the five governorates of the Gaza Strip1 and incorporated 42 years
(from 1973 to 2014) of 1622 irregular daily observations (data available at the n = 1622
integer times t1 < t2 < · · · < tn are not equally spaced, having been taken during
precipitation seasons). In general, rain gauge data were collected by the Palestinian

1The five governorates of the Gaza Strip are: Northern, Gaza, Deir el-Balah, Khan Yunis, and Rafah.
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Ministry of Agriculture from October of a given year to March of the following year2, so
that the amount of the rainfall can be considered to be null during the non-precipitation
months.

Table 1: Summary statistics for rainfall gauge stations

Governorate Station Longitude Latitude Area (Km2)

Northern Beit Hanon 35o13
′
E 32o56

′
N 29.0 58.8

Beit Lahia 35o21
′
E 31o37

′
N 14.3

Jabalia 34o29
′
E 31o32

′
N 15.5

Gaza Shati 35o16
′
E 32o21

′
N 2.3 73.5

Gaza City 34o27
′
E 31o30

′
N 13.0

Tuffah 35o23
′
E 31o76

′
N 23.3

South Gaza 34o24
′
E 31o28

′
N 35.0

Middle Nussirat 34o23
′
E 31o26

′
N 29.5 68.0

Deir el-Balah 35o27
′
E 31o51

′
N 38.5

Khan Yunis Khan Yunis 35o18
′
E 32o28

′
N 83.5 126.0

Khuzaa 34o21
′
E 31o18

′
N 42.5

Rafah Rafah 34o16
′
E 31o14

′
N 38.8 38.8

Figure 1 shows the locations of the 12 rainfall gauge stations within the Gaza Strip
and Table 1 summarizes some descriptive geographic information about these stations.
It is worth noting that the data has missing series from October 31, 1972 till November
10, 1998 for both Jabalia and Tuffah stations, and from October 30, 1980 till October 12,
1991 for the South Gaza (Mughraka) station, and from October 31, 1972 till November
5, 1999 for Khuzaa station. To analyze such a process involving an unusual pattern
of missing data, the exact maximum likelihood estimation approach will be used for
estimating the fitted model parameters (Jones, 1980; Harvey and Pierse, 1984; Ansley
and Kohn, 1983; Wincek and Reinsel, 1986).

3 Seasonal vector ARIMA (sVARIMA) models

The multiplicative seasonal vector integrated autoregressive moving average model
sVARIMA (p, d, q)× (P,D,Q)s with mean vector zero for a k-dimensional time series of
size n, Zt = (Z1t, . . . , Zkt)

′, t = 1, 2, . . . , n (Reinsel, 1997; Lütkepohl, 2005; Tsay, 2014)
can be written as

2Data includes very few observations in April, May and September.
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Figure 1: Location of rainfall stations in the Gaza strip.

Φp(B)ΦP (Bs)∇d∇sDZt = Θq(B)ΘQ(Bs)at, (1)

with Φp(B) = Ik −ϕ1B
1− · · · −ϕpB

p and Θq(B) = Ik −ϑ1B1− · · · −ϑqBq being non-
seasonal polynomials in B of degrees p and q, respectively, and ΦP (Bs) = Ik −Φ1B

s−
· · · −ΦpB

sP and ΘQ(Bs) = Ik − θ1Bs− · · · − θQBsQ being seasonal polynomials in Bs

of degrees P and Q, respectively. The integers p ≥ 0 and q ≥ 0 are the orders of the
non-seasonal autoregressive (AR) model and moving average (MA ) model respectively,
whereas P ≥ 0 and Q ≥ 0 are the orders of the seasonal autoregressive (SAR ) model and
seasonal moving average (SMA ) model respectively. B is the backshift operator on t and
s > 0 is the length of the seasonal period; d is the order of the non-seasonal differences
where ∇d = (Ik −B)d is a k × k diagonal matrix of dimension k representing the non-
seasonal differencing operator, whereas D is the order of seasonal differences and ∇sD =
(Ik −Bs)D is a k × k diagonal matrix representing the seasonal differencing operator;
both d andD may be selected to transform the non-stationarity in the sVARIMAmodels
to stationary VARMAmodels. It is assumed that the VARMAmodel is stationary,
invertible, and identifiable with no common roots between Φp(B) and Θq(B) and no
common roots between ΦP (Bs) and ΘQ(Bs) (Reinsel, 1997; Lütkepohl, 2005; Tsay,
2014). The process {at} is a white noise process which is uncorrelated in time with a
mean zero; that is, E(at) = 0 and E(ata

′
t−`) = Γ0δ` where Γ0 is a k× k positive-definite

variance covariance matrix and δ` is the usual Kronecker delta, which is equal to unity
at ` = 0 and zero elsewhere.
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4 Exact maximum likelihood estimation

We first transform the sVARIMAmodel specified by Equation (1) into the Box-Jenkins
VARMA (Ṗ , Q̇) representation with Ṗ = 1 +p+P × s and Q̇ = 1 + q+Q× s as follows:

Φ̇Ṗ (B)Z̈t = Θ̇Q̇(B)at, (2)

with
Φ̇Ṗ (B) = Φp(B)ΦP (Bs) and Θ̇Q̇(B) = Θq(B)ΘQ(Bs), Z̈t = ∇̇Zt,

where ∇̇ = diag[(Ik −B)d(Ik −Bs)D].
It was shown that the state space form of the VARMAmodel associated with Kalman

filtering procedures is a convenient representation for constructing the likelihood function
in situations where we have values that are not observed at equally spaced times because
of missing observations (Jones, 1980; Harvey and Pierse, 1984; Ansley and Kohn, 1983;
Wincek and Reinsel, 1986).

Now suppose that the observations on at least some components of the vector series
{Z̈t} are available at the n integer times t1 < t2 < · · · < tn, not necessarily equally
spaced, and Z̈t follows the VARMAmodel as given in (2). Thus, at time ti, we observe
Z?

ti = MiZ̈ti , where Mi is a known incidence matrix of dimension ki × k(ki ≤ k), whose
elements are equal to 1 or 0 to indicate the occurrence of an observation in each given
component. In particular, Mi = Ik when all components of Z̈tiare observed at time ti
so that Z̈t has the state-space representation given by

Yt = Φ̇Yt−1 + Ψat, (3)

or equivalently

Yt =



0 Ik 0 . . . 0

0 0 Ik . . . 0
... 0 0 . . .

...

0 0 0 . . . Ik
Φ̇r Φ̇r−1 . . . . . . Φ̇1


Yt−1 +



Ik
Ψ1

...

...

Ψr−1


at, (4)

with Φ̇i = 0 if i > Ṗ , Ψ(B) = Φ̇Ṗ (B)−1Θ̇Q̇(B), Z̈t = HYt = [I,0, . . . ,0]Yt, Yt is the

kr-dimensional state vector and r = max(Ṗ , Q̇+ 1) (Reinsel, 1997, Ch. 7).
It follows that the joint density of the vector of observations z = (Z?′

t1 , . . . ,Z
?′
tn)′ can

be expressed as

f(z) = (
n∏

i=1

|Σti|ti−1
|−

1
2 )× exp[

n∑
i=1

R′Σ−1ti|ti−1
R] (5)

with R = Z?
ti − Ẑ?

ti|ti−1
and Σti|ti−1

= E(RR′).

The quantities Ẑ?
ti|ti−1

and Σti|ti−1
are directly determined from the recursive filtering

calculations described in Equations 7.25-7.27, Chapter 7 of Reinsel (1997).
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5 Criteria for model specification

To choose the most appropriate low order mixed seasonal VARIMAmodel based on
the observations of a dataset, we usually appeal to model selection criteria such the
Akaike Information Criterion (AIC ) and/or the Bayesian information criterion (BIC ).
The AICmodel selection criteria (Akaike, 1974, 1976) is given by

AIC = n−1(−2× log(maximized likelihood) + 2r)

= log(|Σr|) + 2rn−1 + constant, (6)

where r denotes the number of parameters estimated by maximum likelihood (ML )
in the sVARIMAmodel and Σr is the corresponding ML residual covariance matrix
estimate of Σ = Cov(at).

The BIC criteria (Schwarz, 1978) imposes more penalty for the number of estimated
model parameters than does AIC and can be calculated by the formula

BIC = log(|Σr|) + r log(n)n−1. (7)

These model selection criteria are used to compare various models fitted by ML to the
series. The fitted model that yields a minimum value for a given criteria is chosen
(Reinsel, 1997).

6 Multivariate time series diagnostic checking

Under the null hypothesis that the model in (1) has been correctly identified, the resid-
uals âtk = Ztk− Ẑtk, t = 1, . . . , n of the fitted model may be estimated and used to test
the null hypothesis that

H0 : Γ` = 0, ` = 1, 2, . . . ,m,

where Γ` = Cov(at,at−`) and m is the maximum lag that covers all lags, `, of interest.
The portmanteau test statistics are usually used to check the adequacy of the fitted
VARIMAmodels.

Chitturi (1974); Hosking (1980) and Li and McLeod (1981) introduced multivariate
portmanteau test statistics that can be seen as multivariate analogs of the well-known
univariate portmanteau statistic proposed by Ljung and Box (1978). These test statistics
may be expressed in terms of the residual autocovariances Γ̂` = n−1

∑n
t=`+1 âtâ

′
t−`, ` ≥ 0

as follows

Qm = n
m∑
`=1

tr(Γ̂′`Γ̂
−1
0 Γ̂`Γ̂

−1
0 ), (8)

where tr(·) denotes the trace of a matrix and Γ̂−` = Γ̂′`.
Recently, Mahdi and McLeod (2012) introduced a non-seasonal VARMA test statistic

that extends the univariate portmanteau test proposed by Peña and Rodŕıguez (2006).
The multivariate portmanteau test statistic of Mahdi and McLeod (2012) is

Dm = −3n(2m+ 1)−1 log |R̂m|, (9)
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with

R̂m =


Ik R̂1 . . . R̂m

R̂−1 Ik . . . R̂m−1
... . . . . . .

...

R̂−m R̂−m+1 . . . Ik

 , (10)

R̂`, ` = 1, . . . ,m, being the residual autocorrelation matrix defined by Hosking (1980)
as R̂` = L̂′Γ̂`L̂, where L̂ is the lower triangular Cholesky decomposition of Γ̂−10 .

Mahdi and McLeod (2012) derived the asymptotic distribution of their test statistic as
a chi-square distribution with 3k2m(m+ 1)(4m+ 2)−1−p− q degrees of freedom, where
k represents the dimension of the time series. In addition, Mahdi and McLeod (2012)
proposed a Monte-Carlo version of Dm and provided a simulation comparison study to
demonstrate that both methods (the asymptotic distribution of Dm and its Monte-Carlo
version) are more powerful than Chitturi (1974); Hosking (1980) and Li and McLeod
(1981) portmanteau test statistics with the correct size level.

Replacing the residual autocorrelations included in the Toeplitz matrix specified in
(10), R̂`, by R̂`s will extend Dm to test the seasonality (Mahdi, 2016). The multivariate
seasonal portmanteau statistic to test whether the seasonal autocorrelations at multiple
lags s of time series are different from zero as proposed by Mahdi (2016) is

Dms = −3n(2m+ 1)−1 log |R̂m(s)| ∼ χ2
3m(m+1)(4m+2)−1−P−Q (11)

where R̂m(s) is the seasonal residual autocorrelations of the Toeplitz matrix appearing
in (10) with R̂` replaced by R̂`s.

7 The fitting of the seasonal VARIMA model

We now fit the seasonal vector ARIMAmodel for spatio-temporal rainfall data. We
utilize the statistical software (Mahdi et al., 2014; R Development Core Team, 2015;
Tsay, 2016) to analyze the daily rainfall data obtained from the 12 Palestinian meteo-
rological stations located across the five governorates of the Gaza Strip.

As the rainfall amount may vary from one station to another based on the weighted
region area, we use the Thiessen polygons technique to compute the amount of the
daily rainfall measured in each station based on its weighted area (Thiessen, 1911). The
amount of the rainfall measured in Million Cubic Meter (MCM ) over an area A 3 based
on the Thiessen polygons method is given by:

Rv = Ra ×A× 10−3, (12)

where Rv stands for the rainfall volume from region of area A in Million Cubic Meter
(MCM ) and Ra is the rainfall amount in Millimeters (Mm).

3See Figure 2 and Table 1 for the station network areas.
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Figure 2: Rainfall Thiessen network of the Gaza strip.

Motivated by the fact that the geographical area of the Gaza Strip is small, so that the
spatial-dependence within such a small geographic space is almost perfect, it is reasonable
to restrict our analysis to the temporal-dependence. We compile the district information
of the 12 meteorological stations into 5 groups (governorates) and do the analysis based
on the amount of precipitation that has accumulated within the 5 governorates of the
Gaza Strip. In this respect, the rainfall dataset from the Gaza Strip can be seen as a
multivariate time series of dimension 5 so that the spatio-temporal dependence structure
in this data can be explained by multivariate time series models. Then, we split the data
into accumulated monthly data to obtain a multivariate time series of size 486× 5.

Figure 3: Monthly cumulative rainfall (MCM ) in 5 governates of the Gaza strip.
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Figure 4: Means of rainfall (MCM ) by month for the years 1973-2014 in 5 governates
of the Gaza Strip.

Figure 3 shows the plots of the monthly cumulative rainfall amounts for the 5 gover-
nates in MCM . The patterns of peaks and troughs in Figure 3 suggest that the monthly
seasonal rain effect is presents within the 42 years.

To detect seasonality, we plot the average of the accumulated rainfall of the observed
months during the 42 years and the Autocorrelation Function (ACF ) as seen in Figures 4
and 5, respectively, which clearly show that there exist monthly differences. Accordingly,
we deseasonalized the series data using the first seasonal difference of lag 12 as seen in
Figure 6. The graphs in Figures 6 and 7 suggest that the data has mean zero and no
further differencing is needed.

Table 2: Information criteria values of suggested sVARIMAmodels

sVARIMAmodel AIC BIC

sVARIMA (1, 0, 0)× (1, 1, 0)12 3.3249 3.7638

sVARIMA (0, 0, 1)× (1, 1, 0)12 3.3130 3.7520

sVARIMA (2, 0, 0)× (0, 1, 0)12 4.4941 4.9330

sVARIMA (0, 0, 2)× (1, 1, 0)12 3.3377 3.9962

Then, we estimate the parameters of the sVARIMAmodel with the maximum like-
lihood method and select the best model among several fitted models (Table 2) using
the proposed information criteria. The AIC and BIC suggest that the preferred model
is the sVARIMA (0, 0, 1)× (1, 1, 0)12 model.
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Figure 5: ACF of monthly cumulative rainfall (MCM ) in 5 governates of the Gaza strip.

The ML estimates of the selected model parameters (with estimated standard errors
in parenthesis) are

Φ̂1 =



−0.328
(0.101)

0.066
(0.077)

−0.189
(0.088)

0.171
(0.077)

−0.392
(0.176)

0.256
(0.106)

−0.422
(0.081)

−0.200
(0.093)

0.195
(0.081)

−0.594
(0.185)

0.112
(0.122)

0.009
(0.091)

−0.553
(0.106)

0.134
(0.092)

−0.340
(0.210)

0.142
(0.157)

0.086
(0.117)

−0.050
(0.136)

−0.420
(0.118)

−0.425
(0.269)

0.014
(0.052)

0.052
(0.039)

0.016
(0.046)

0.004
(0.040)

−0.601
(0.091)


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and

ϑ̂1 =



−0.069
(0.114)

0.084
(0.089)

−0.066
(0.102)

0.107
(0.082)

0.041
(0.133)

−0.097
(0.127)

−0.034
(0.095)

−0.086
(0.107)

0.246
(0.081)

−0.001
(0.092)

0.182
(0.143)

−0.033
(0.105)

−0.095
(0.120)

−0.022
(0.101)

0.172
(0.188)

0.301
(0.183)

−0.126
(0.133)

−0.122
(0.156)

−0.070
(0.133)

0.308
(0.245)

0.138
(0.061)

−0.013
(0.045)

−0.068
(0.052)

−0.033
(0.045)

0.102
(0.086)


,

with estimated ML residual variance-covariance matrix

Σr =


6.093 5.513 6.173 7.745 2.349

5.513 6.763 5.702 7.243 2.187

6.173 5.702 8.716 10.135 3.078

7.745 7.243 10.135 14.644 4.378

2.349 2.187 3.078 4.378 1.625

 ,

whose determinant is 22.24.

Figure 6: Deseasonalized monthly cumulative rainfall in 5 governates of the Gaza Strip.

As some of the coefficient estimates of Φ̂1 and ϑ̂1 are not significant, we can refine the
fitted sVARIMAmodel by setting all the insignificant estimates to zero. The AIC and
BIC applied to the refined model are 3.3036 and 3.5758, respectively, which suggest
suggests this model is preferable to the full model.

The final selected model is

(I5 − Φ̂1B
12)Żt = (I5 − ϑ̂1B)ât, (13)
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Figure 7: ACF of deseasonalized monthly cumulative rainfall in 5 governates of the Gaza
strip.

i.e.,

Zt −Zt−12 − Φ̂1Zt−12 − Φ̂1Zt−24 = ât − ϑ̂1ât−1, (14)

where Żt = Zt−Zt−12 represents the monthly cumulative rainfall measured in MCM in
the 5 governates of the Gaza Strip at time t, Φ̂1 and ϑ̂1 are the respective ML estimates of
the seasonal autoregressive and non-seasonal moving average parameter matrices (with
estimated standard errors in parenthesis) and ât denotes the residuals of the fitted model
at time t with estimated ML residual variance-covariance matrix Σr, the ML estimates
being

Φ̂1 =



−0.356
(0.064)

0.049
(0.039)

−0.170
(0.051)

0.143
(0.051)

−0.296
(0.137)

0.220
(0.077)

−0.430
(0.052)

−0.181
(0.065)

0.166
(0.061)

−0.498
(0.153)

0.055
(0.058)

0.000
(0.000)

−0.535
(0.047)

0.100
(0.051)

−0.205
(0.152)

0.104
(0.058)

0.000
(0.000)

0.000
(0.000)

−0.467
(0.047)

−0.246
(0.175)

0.000
(0.000)

0.043
(0.016)

0.000
(0.000)

0.000
(0.000)

−0.535
(0.046)


,
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ϑ̂1 =



0.000
(0.000)

0.091
(0.029)

0.000
(0.000)

0.069
(0.028)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

−0.054
(0.050)

0.185
(0.044)

0.000
(0.000)

0.181
(0.051)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.006
(0.103)

0.283
(0.078)

−0.094
(0.045)

0.000
(0.000)

0.000
(0.000)

0.036
(0.140)

0.125
(0.029)

0.000
(0.000)

−0.043
(0.020)

0.000
(0.000)

0.014
(0.053)


,

and

Σr =


6.262 5.676 6.355 7.947 2.410

5.676 6.931 5.861 7.406 2.239

6.355 5.861 8.947 10.412 3.162

7.947 7.406 10.412 14.993 4.482

2.410 2.239 3.162 4.482 1.659

 ,

whose det(Σr) is 23.88.

Finally, we applied the Monte-Carlo seasonal and nonseasonal Mahdi and McLeod
test statistic to check the adequacy of the proposed model (Mahdi, 2016; Mahdi and
McLeod, 2012). The results presented in Table 3 suggest that this model is adequate.

Table 3: Monte-Carlo seasonal and nonseasonal portmanteau test statistics

Lags
seasonal tests nonseasonal tests

statistic p-value statistic p-value

5 77.18547 0.9810190 112.5859 0.26773227

10 123.20723 1.0000000 160.4557 0.98801199

15 293.18354 0.6953047 333.2310 0.14685315

20 430.40587 0.2437562 471.8811 0.09497502

8 Conclusion

In this paper, we implemented a multivariate time analysis to model monthly cumula-
tive rainfall data obtained from gauge stations located in the Gaza Strip. Our analysis
suggests that the sVARIMA (0, 0, 1)× (1, 1, 0)12 model is the most appropriate for fore-
casting rainfall amounts a month-ahead in the governorates of the Gaza Strip. It can
be concluded that the sVARIMAmodel applied to the current and previous rainfall
data provides a useful method to forecast rainfall data. It could prove very helpful to
environmental scientists, especially those based in Middle Eastern countries, to utilize
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our model to forecast the amount of rainfall as a preliminary guideline toward short and
long-term sustainable water resources management.
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