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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 09, Issue 02, October 2016, 371-384
DOI: 10.1285/i20705948v9n2p371

Chi-square tests for generalized
exponential AFT distributions with

censored data

K. Aidi∗and N. Seddik-Ameur

Laboratory of probability and statistics LaPS
Badji mokhtar university Annaba - Algeria

Published: 14 October 2016

Generalized exponential models have numerous applications particularly
in reliability studies. Using the approach proposed by Bagdonavicius and
Nikulin for censored data, we propose the construction of modified chi-
square goodness-of-fit tests for the generalized exponentiated exponential
model (GEE) and an accelerated failure time model with the generalized ex-
ponentiated exponential distribution as the baseline (AFT −GEE). Based
on maximum likelihood estimators on initial data, these statistics recover
the information lost while grouping data and follow chi-square distributions.
The elements of the criteria tests are given explicitly. Numerical examples
from simulated samples and real data have been presented to illustrate the
feasibility of the proposed tests.

keywords: Accelerated failure time models- Chi-square test- Maximum
likelihood estimation- Reliability.

1 Introduction

Testing the fit of parametric models to experimental data is a crucial problem because
the choice of the hypothesized model affect seriously the results of the analysis and the
conclusions may be invalid if the model chosen is not appropriate. At that end, several
techniques may be used. However, in presence of censorship, classical procedures become
more complex and are not sufficiently developed. Modifications of some existing tests
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were proposed like chi-square tests based on the difference between Kaplan-Meyer and
maximum likelihood estimators of the cumulative distribution function (Habib et al.,
1986), or the differences between observed and expected numbers of failure in time
intervals (Hjort, 1990; Hollander and Pena, 1992).

Using the approach proposed by Bagdonavicius and Nikulin (2011), we construct mod-
ified chi-square goodness-of-fit tests to assess the adequacy of generalized exponentiated
exponential distributions (GEE) and the corresponding accelerated failure time model
(AFT−GEE), when data are right censored and the parameters are unknown. Based on
maximum likelihood estimators on initial data, these test statistics recover information
lost while grouping data and follow chi-square distributions.

The first test concerns the GEE distribution proposed by Gupta and Kundu (1999).
This distribution which has a great interest in simulations, is more flexible than gamma,
Weibull and log-normal distributions (Gupta and Kundu, 2007; Kundu and Gupta,
2007) and attracts the interest of researchers till now. For complete samples, and using
Monte Carlo simulations and Pearson system techniques, Hassan (2005) created tables
of goodness-of-fit critical values for this distribution for the classical statistics. Rao
(2012) considered the estimation of reliability in multicomponent stress-strength model
when variates are given by this distribution with different shape parameters; and Achcar
et al. (2015) developed the bayesian estimation using MCMC methods. Goodness-of-fit
tests for censored data are not investigated except likelihood ratio against alternative
hypothesis.

The second test concerns the corresponding accelerated failure time model AFT −
GEE, where the baseline is a GEE distribution. As we know, the lifetimes of the de-
vices under normal use conditions are often very long, so life testing is the best option for
engineers to perfect the reliability of their products and to eliminate the causes of failure
in a short time. Accelerated failure time (AFT ) models which relate survival times to co-
variates are the most appropriated in these cases and the commonly used statistical tests
are the likelihood ratio, the Wald and score tests. In censored data case, Bagdonavičius
et al. (2013) constructed modified chi-square tests for Weibull, loglogistic, lognormal
AFT models. Galanova et al. (2012) developed modifications of the wellknown statistics
Kolmogorov, Cramer-Von Mises-Smirnov, and Anderson-Darling statistics which take
into account the unknown parameters and censorship for exponential, gamma, Weibull,
Lognormal and generalized Weibull AFT models. These statistics are based on Kaplan-
Meyer estimate instead of the empirical distribution function. Also, Balakrishnan et al.
(2013) considered statistic tests based on residuals and investigated the statistical dis-
tributions of the classical test statistics for various models. Goual and Seddik-Ameur
(2014) constructed a modified chi-square test for the generalized inverse Weibull aft
model. Recently, Medeiros et al. (2014) evaluated the performance of the gradient test
in comparison with the likelihood ratio test in Weibull, log-normal and log-logistic AFT
models.

Here, we consider an AFT −GEE model which can be very interesting to improve the
performance of real systems. Maximum likelihood estimation of the unknown parameters
and fitting test when data are right censored are developed and the results are applied
on simulated and reliability data sets.



Electronic Journal of Applied Statistical Analysis 373

2 Statistic test for right censored data

Let T1, ..., Tn be n i.i.d. random variables grouped into k classes Ij . To assess the
adequacy of a parametric model F0

H0 : P (Ti ≤ t | H0) = F0(t; θ), t ≥ 0, θ = (θ1, ..., θs)
T ∈ Θ ⊂ Rs

when data are right censored and the parameter vector θ is unknown, Bagdonavicius
and Nikulin (2011) proposed a statistic test Y 2 based on the vector

Zj = 1√
n

(Uj − ej) , j = 1, 2, ..., k , with k � s.

This one represents the differences between observed and expected numbers of failures
(Uj and ej) to fall into these grouping intervals Ij = (aj−1, aj ] with a0 = 0, ak = τ ,
where τ is a finite time. The authors considered aj as random data functions such as
the k intervals chosen have equal expected numbers of failures ej .

The statistic test Y 2 is defined by

Y 2 = ZT Σ̂−Z =

k∑
j=1

(Uj − ej)2

Uj
+Q

where Σ̂− is, if necessary, a generalized inverse of the matrix Σ, and Z = (Z1, ..., Zk)
T .

Q = W T Ĝ−W Âj = Uj/n, Uj =
∑
i:ti∈Ij

δi,

W = (W1, ....,Ws)
T , Ĝ = [ĝll′ ]s×s, ĝll′ = îll′ −

k∑
j=1

ĈljĈl′jÂ
−1
j ,

Ĉlj =
1

n

∑
i:ti∈Ij

δi
∂

∂θ
lnh(ti, θ̂), îll′ =

1

n

n∑
i=1

δi
∂ lnh(ti, θ̂)

∂θl

∂ lnh(ti, θ̂)

∂θl′
,

Ŵl =
k∑
j=1

ĈljÂ
−1
j Zj , l, l′ = 1, ...., s

and θ̂ is the maximum likelihood estimator of θ on initial non-grouped data.
Under the null hypothesis H0 , the limit distribution of the statistic Y 2 is a chi-square

with r = rank(Σ) degrees of freedom. The description and applications of modified
chi-square tests are discussed in Balakrishnan et al. (2013).

3 Goodness-of-fit test for generalized exponentiated
exponential distribution GEE

Because of its several applications, the generalized exponentiated exponential model
GEE proposed by Gupta and Kundu (1999) is extensively studied by the authors and
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others. Nevertheless, goodness-of-fit tests have not been sufficiently investigated. In this
section, we construct a modified chi-square test based on the Y 2 statistic, defined above,
for the GEE distribution with density and hazard and functions

f(t; θ) = αλ(1− e−λt)α−1e−λt ; t ≥ 0

h(t; θ) =
αλ(1− e−λt)α−1e−λt

1− (1− e−λt)α

where α > 0 and λ > 0, are the shape and the scale parameters.
We consider T = (T1, T2, ..., Tn)T an i.i.d. random variables from GEE distribution.

And suppose that we observe the right censored sample t = (t1, t2, ..., tn)T with fixed
censoring time τ . Each ti can be written as ti = (Ti, δi) where Ti is a failure time and
δi a censoring indicator.

As random grouping intervals are considered such as expected failures to get into each
interval Ij = (aj−1, aj ] must be the same for any j, so the estimated limit intervals âj ,
(0 < â1 < â2 < ... < âk = τ) are obtained as

âj = − 1

λ
ln

1−

1− exp

∑i−1
l=1H

(
tl, θ̂

)
− Ej

n− i+ 1


1
α

 ; j = 1, .., k − 1, âk = t(n)

where H represents the GEE cumulative hazard function and θ̂ =
(
α̂, λ̂

)T
, the

maximum likelihood estimator of the unknown parameter vector θ.

3.1 Estimated matrix Ŵ

We first compute the elements of the estimated matrix Ĉ = (Cij)2×k

Ĉ1j =
1

n

n∑
i:ti∈Ij

δi

[
1

α̂
+

ln(1− e−λ̂ti)
1− (1− e−λ̂ti)α̂

]

Ĉ2j =
1

n

n∑
i:ti∈Ij

δi

 1

λ̂
+
ti

[
α̂e−λ̂ti + (1− e−λ̂ti)α̂ − 1

]
(1− e−λ̂ti)

(
1− (1− e−λ̂ti)α̂

)


and the matrix Ŵ can be deduced

Ŵl =

r∑
j=1

ĈljA
−1
j Zj , l = 1, 2 j = 1, .., k
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3.2 Estimated matrix Ĝ

The estimated matrix Ĝ = [ĝll′ ]2×2 , is derived from the estimated information matrix Î

and the estimated matrix Ĉ.

ĝ11 =
1

n

n∑
i=1

δi

[
1

α̂
+

ln(1− e−λ̂ti)
1− (1− e−λ̂ti)α̂

]2
−
A−1j
n2

k∑
j=1

 n∑
i:ti∈Ij

δi

(
1

α̂
+

ln(1− e−λ̂ti)
1− (1− e−λ̂ti)α̂

)2

ĝ12 = ĝ21

=
1

n

n∑
i=1

δi

(
1

α̂
+

ln(1− e−λ̂ti)
1− (1− e−λ̂ti)α̂

) 1

λ̂
+
ti
[
α̂e−λ̂ti + (1− e−λ̂ti)α̂ − 1

]
(1− e−λ̂ti)

(
1− (1− e−λ̂ti)α̂

)


−
A−1
j

n2

k∑
j=1

 n∑
i:ti∈Ij

δi

(
1

α̂
+

ln(1− e−λ̂ti)
1− (1− e−λ̂ti)α̂

) n∑
i:ti∈Ij

δi

 1

λ̂
+
ti
[
α̂e−λ̂ti + (1− e−λ̂ti)α̂ − 1

]
(1− e−λ̂ti)

(
1− (1− e−λ̂ti)α̂

)


ĝ22 =
1

n

n∑
i=1

δi

 1

λ̂
+
ti

[
α̂e−λ̂ti + (1− e−λ̂ti)α̂ − 1

]
(1− e−λ̂ti)

(
1− (1− e−λ̂ti)α̂

)
2

−
A−1j
n2

k∑
j=1

 n∑
i:ti∈Ij

δi

 1

λ̂
+
ti

[
α̂e−λ̂ti + (1− e−λ̂ti)α̂ − 1

]
(1− e−λ̂ti)

(
1− (1− e−λ̂ti)α̂

)
2

Therefore, we obtain the explicit form of the criteria test Y 2
n to fit data from a GEE

distribution when data are right censored

Y 2
n =

∑k
j=1

(Uj − ej)2

Uj
+ Ŵ T Ĝ−Ŵ

4 Construction of the AFT −GEE model

An accelerated failure time model (AFT ) with a baseline distribution F0(t) is defined
from its survival function by

S(t) = S0

(
te−β

T z
)

where z = (z0, z1, ....., zm)T is the vector of the covariables related to the different
stresses and β = (β0, β1, ....., βm)T their coefficients, so the survival function of the
AFT −GEE distribution is obtained as follows:
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S(t) = 1−
(

1− exp
{
−λte−βT z

})α
and its pdf and hazard functions are deduced

f(t) = αλe−β
T z exp

{
−λte−βT z

}(
1− exp

{
−λte−βT z

})α−1

h(t) =
αλe−β

T z exp
{
−λte−βT z

}(
1− exp

{
−λte−βT z

})α−1
1−

(
1− exp

{
−λte−βT z

})α
Depending on the values of the shape parameter, this distribution can be unimodal or

decreasing and the rate failure can be increasing, constant or decreasing which enable it
to be used to describe the reliability of many real systems.

4.1 Maximum likelihood estimation in censored data case

Let us consider T = (T1, T2, ..., Tn)T a sample from an AFT − GEE distribution with
the parameter vector θ = (α, λ, β0, β1, ...., βm)T with right censored data.

The log-likelihood function can be written as

L(t, θ) =
n∑
i=1

δi[ln (αλ)− βT zi − tiui + (α− 1) ln
(
1− e−tiui

)
− ln

(
1−

(
1− e−tiui

)α)
] +

n∑
i=1

ln
(
1−

(
1− e−tiui

)α)
where ui = λe−β

T zi

The maximum likelihood estimators α̂, λ̂, β̂0, β̂1, ..., β̂m of the unknown parameters
α, λ, β0, β1, ..., βm are obtained by equaling the following score equations to zero.

∂L

∂α
=

n∑
i=1

δi

[
1

α
+

ln
(
1− e−tiui

)
1− (1− e−tiui)α

]
−

n∑
i=1

(
1− e−tiui

)α
ln
(
1− e−tiui

)
1− (1− e−tiui)α

∂L

∂λ
=

n∑
i=1

δi

[
1

λ
−
tie
−βT zi

[
1− αe−tiui −

(
1− e−tiui

)α]
(1− e−tiui) (1− (1− e−tiui)α)

]
−

n∑
i=1

αtie
−βT zi exp {−tiui}

(
1− e−tiui

)α−1

1− (1− e−tiui)α

∂L

∂β0
=

n∑
i=1

δi

[
−1 +

tiui
[
1− αe−tiui −

(
1− e−tiui

)α]
(1− e−tiui) (1− (1− e−tiui)α)

]
+

n∑
i=1

αtiuie
−tiui

(
1− e−tiui

)α−1
1− (1− e−tiui)α
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∂L

∂β1
=

n∑
i=1

δi

[
−zi1 +

tizi1ui
[
1− αe−tiui −

(
1− e−tiui

)α]
(1− e−tiui) (1− (1− e−tiui)α)

]
+

n∑
i=1

αtizi1uie
−tiui

(
1− e−tiui

)α−1

1− (1− e−tiui)α

∂L

∂βm
=

n∑
i=1

δi

[
−zim +

tizimui
[
1− αe−tiui −

(
1− e−tiui

)α]
(1− e−tiui) (1− (1− e−tiui)α)

]
+

n∑
i=1

αtizimuie
−tiui

(
1− e−tiui

)α−1

1− (1− e−tiui)α

Their analytical forms cannot be obtained, so we use iterative methods like Newton
Raphson method.

5 Goodness-of-fit test for the AFT −GEE model in
censored data case

For testing the hypothesis H0 that the distribution of T = (T1, ..., Tn)T belongs to the
parametric model AFT − GEE defined above, we construct the statistic test Y 2. For
this, we group data into k intervals Ij , such as the numbers of theoretical failure times
ej are the same, so the limits aj of the grouping intervals are obtained as follows:

âj = − 1

λ̂
eβ̂

T z ln

1−

[
1− exp

(∑i−1
l=1H(ti, θ̂)− Ej
n− i+ 1

)] 1
α̂


where

Ej =
j

k − 1

n∑
i=1

H(ti, θ̂) = − j

k − 1

n∑
i=1

ln

(
1−

(
1− exp

{
−λ̂tie−β̂

T zi
})α̂)

, j = 1, ..k−1

With this choice ej = Ek
k for any j = 1, ..., k and Ek =

n∑
i=1
H
(
ti, θ̂

)
.

5.1 Estimated matrix Ĉ

To obtain the estimated vector Ŵ , we must compute the elements of the estimated
matrix Ĉ:

Ĉ1j =
1

n

n∑
i:ti∈Ij

δi

[
1

α̂
+

ln
(
1− e−tiui

)
1− (1− e−tiui)α̂

]

Ĉ2j =
1

n

n∑
i:ti∈Ij

δi

 1

λ̂
−
tie
−β̂T zi

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)
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Ĉ3j =
1

n

n∑
i:ti∈Ij

δi

−1 +
tiui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)


Ĉ4j =
1

n

n∑
i:ti∈Ij

δi

−zi1 +
tizi1ui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)


Ĉmj =
1

n

n∑
i:ti∈Ij

δi

−zim +
tizimui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)


5.2 Estimated matrix Î

After simplifications, the components of the symetric estimated matrix Î defined by

îll′ =
1

n

∑n
i=1 δi

∂ lnh(ti, θ̂)

∂θl

∂ lnh(ti, θ̂)

∂θl′

are obtained as follows:

ı̂11 =
1

n

n∑
i=1

δi

(
1

α̂
+

ln
(
1− e−tiui

)
1− (1− e−tiui)α̂

)2

ı̂22 =
1

n

n∑
i=1

δi

 1

λ̂
−
tie
−β̂T zi

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)
2

ı̂33 =
1

n

n∑
i=1

δi

−1 +
tiui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)
2

ı̂44 =
1

n

n∑
i=1

δi

−zi1 +
tizi1ui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)
2

ı̂12 =
1

n

n∑
i=1

δi

(
1

α̂
+

ln
(
1− e−tiui

)
1− (1− e−tiui)α̂

) 1

λ̂
−
tie
−β̂T zi

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)
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ı̂13 =
1

n

n∑
i=1

δi

(
1

α̂
+

ln
(
1− e−tiui

)
1− (1− e−tiui)α̂

)−1 +
tiui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)


ı̂14 =
1

n

n∑
i=1

δi

(
1

α̂
+

ln
(
1− e−tiui

)
1− (1− e−tiui)α̂

)−zi1 +
tizi1ui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)


ı̂23 =
1

n

n∑
i=1

δi

 1

λ̂
−
tie
−β̂T zi

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)
−1 + tiui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)


ı̂24 =
1

n

n∑
i=1

δi

 1

λ̂
−
tie
−β̂T zi

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)
−zi1 + tizi1ui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)


ı̂34 =
1

n

n∑
i=1

δi

−1 + tiui
[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)
−zi1 + tizi1ui

[
1− α̂e−tiui −

(
1− e−tiui

)α̂]
(1− e−tiui)

(
1− (1− e−tiui)α̂

)


Therefore the quadratic form Q̂ is obtained and the test statistic can be deduced
easily:

Y 2
n

(
θ̂
)

=

k∑
j=1

(Uj − ej)2

Uj
+ Ŵ T

ı̂ll′ − k∑
j=1

ĈljĈl′jÂ
−1
j

−1 Ŵ

6 Simulations

In this section, an important simulation study is carried out to show the feasability of
the proposed tests. Data from GEE distribution with (α = 2, λ = 0.8) and AFT −GEE
model with the following values of the parameters α = 3, λ = 2, β0 = 0.5, β1 = 0.8 are
generated M = 10 000 times with sample sizes n1 = 15, n2 = 25, n3 = 50, n4 = 130,
n5 = 350 and n6 = 500. Using the Newton Raphson method, the values of the mean
simulated MLEs α̂, λ̂, β̂0, β̂1 of the AFT − GEE parameters and their mean square
error are given in table 1. In the second time, and using R software, we calculate the
values of the criteria test Y 2 for the two models. Tables 2 and 3 give the empirical
levels of significance comparing to the corresponding theoretical levels of significance γ
(γ = 0.01, γ = 0.05, γ = 0.1). Note that the MLes of the GEE parameters are not
reported here.
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M = 10 000 n1 = 15 n2 = 25 n3 = 50 n4 = 130 n5 = 350 n6 = 500

α̂ 2.8854 2.8985 2.9254 2.9523 2.9785 3.0026

S.M.E 0.0040 0.0032 0.0028 0.0021 0.0016 0.0004

λ̂ 1.8654 1.8925 1.9625 1.9745 1.9894 1.9998

S.M.E 0.0035 0.0029 0.0025 0.0019 0.0013 0.0008

β̂0 0.5721 0.5654 0.5425 0.5254 0.5102 0.5019

S.M.E 0.0045 0.0039 0.0026 0.0019 0.0012 0.0006

β̂1 0.8423 0.8325 0.8214 0.8154 0.8045 0.8012

S.M.E 0.0037 0.0025 0.0017 0.0012 0.0009 0.0005

Table 1. Mean simulated values of MLEs α̂, λ̂, β̂0, β̂1 and
their corresponding square mean errors

M = 10 000 n1 = 15 n2 = 25 n3 = 50 n4 = 130 n5 = 350 n6 = 500

γ = 1% 0.0034 0.0045 0.0054 0.0061 0.0078 0.0089

γ = 5% 0.0159 0.0298 0.0312 0.0421 0.0453 0.0463

γ = 10% 0.0236 0.0320 0.0371 0.0442 0.0489 0.0521

Table 2. Simulated levels of significance for Y 2 test for AFT −GEE model against
their theoretical values (γ = 0.01, γ = 0.05, γ = 0.1)

M = 10 000 n1 = 15 n2 = 25 n3 = 50 n4 = 130 n5 = 350 n6 = 500

γ = 1% 0.0023 0.0054 0.0084 0.0091 0.0112 0.0128

γ = 5% 0.0034 0.0072 0.0097 0.0108 0.0152 0.0163

γ = 10% 0.0073 0.0120 0.0139 0.0260 0.0282 0.0319

Table 3. Simulated levels of significance for Y 2 test for GEE model against their
theoretical values (γ = 0.01, γ = 0.05, γ = 0.1)

The maximum likelihood estimated parameter values, presented in Table 1, agree
closely with the true parameter values. The values of the criteria test Y 2 of the proposed
models AFT − GEE and GEE, obtained for different simulated levels of significance
(Table 2, Table 3) give good results for all sample sizes.
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7 Applications

To show the usefulness of the proposed tests, we apply our results to two real data sets
from survival analysis and reliability.

Example 1:
We consider sample data of 51 patients with advanced acute myelogenous leukemia

reported to the International Bone Marrow Transplant Registry. These patients had
received an autologous (auto) bone marrow transplant in which, after high doses of
chemotherapy, their own marrow was reinfused to replace their destroyed immune sys-
tem.

Leukemia free-survival times (in months) for Autologous Transplants:
0.658, 0.822, 1.414, 2.5, 3.322, 3.816, 4.737, 4.836*, 4.934, 5.033, 5.757, 5.855, 5.987,

6.151, 6.217, 6.447*, 8.651, 8.717, 9.441*, 10.329, 11.48 , 12.007, 12.007*, 12.237, 12.401*,
13.059*, 14.474*, 15*, 15.461, 15.757, 16.48, 16.711, 17.204*, 17.237, 17.303*, 17.664*,
18.092, 18.092*, 18.75*, 20.625*, 23.158, 27.73*, 31.184*, 32.434*, 35.921*, 42.237*,44.638*,
46.48*, 47.467*, 48.322*, 56.086.

* means censored data.
We apply the test proposed above, for testing the null hypothesis H0, for which these

data fit a generalized exponentiated exponential distribution GEE. We calculate the
maximum likelihood estimators α̂, λ̂ of the unknown parameters α, λ:

θ̂ =
(
α̂, λ̂

)T
= (0.9190, 0.03)T

We choose k = 5 classes, the results necessary for the calcul of the criteria test Y 2
n ,

are given in Table 4.

âj 3.0890 7.1303 12.5666 22.8197 56.0860

UJ 4 10 6 6 2

ej 5.5863 5.5863 5.5863 5.5863 5.5863

Ĉ1j −0.1917 −0.2469 −0.0924 −0.0628 −0.0095

Ĉ2j 2.4278 6.1542 3.7326 3.7633 1.2740

Table 4. values of âj , ej , Uj , Ĉ1j , Ĉ2j

and the estimated matrix Ĝ

Ĝ2×2 =

(
0.1198 −3.7226

−3.7226 177.7709

)
the estimated vector Ŵ :

Ŵ =
(
Ŵ1, Ŵ2

)T
=
(
−0.1259 8.2881

)T
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So, we obtain the value of the criteria test statistic Y 2
n :

Y 2
n = X2 +Q = 9.0652 + 0.4406 = 9.5059

For significance level γ = 0.05, the critical value of the chi-square distribution is
χ2
5 = 11.07050. As χ2

5 > Y 2
n , so, we can say that these data can be modeled by the GEE

distribution.

Example 2:
We consider a data set from Cox et al. (1984) which represents life-testing results of

springs given by Mr W. Armstrong. We want to verify if these data can be modeled by
an AFT −GEE distribution.

Springs are tested under cycles of repeated loading and failure time is the number of
cycles to failure, it being convenient to take 10 cycles as the unit of ’ time ’. Here 60
springs were allocated, 10 to each of six different stress levels. At the lower stress levels,
where failure time is long, some springs are censored, i.e. testing is abandoned before
failure has occurred.

Stress

0.950 0.225 0.171 0.198 0.189 0.189 0.135 0.162 0.135 0.117 0.162

0.900 0.216 0.162 0.153 0.216 0.225 0.216 0.306 0.225 0.243 0.189

0.850 0.324 0.321 0.432 0.252 0.279 0.414 0.396 0.379 0.351 0.333

0.800 0.627 1.051 1.434 2.020 0.525 0.402 0.463 0.431 0.365 0.715

0.750 3.402 9.417 1.802 4.326 11.52∗ 7.152 2.969 3.012 1.550 11.211

0.700 12.51∗ 12.505∗ 3.027 12.505 6.253 8.011 7.795 11.604∗ 11.604∗ 12.47∗

∗ Censored

Table 5. Failure times of springs

Using Newton Raphson method, we compute the maximum likelihood estimators of
the unknown parameters

θ̂ =
(
α̂, λ̂, β̂0, β̂1

)T
= (3.0663, 0.0624, 11.6171,−18.1301)T .
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The results necessary for the calcul of the criteria test Y 2
n , with k = 6 grouping

intervals, are given in Table 6.

âj 0.190 0.296 0.445 1.356 6.124 12.510

UJ 11 10 12 5 9 7

ej 9.1682 9.1682 9.1682 9.1682 9.1682 9.1682

Ĉ1j −0.0169 −0.0285 −0.0752 −0.0375 −0.0362 −0.0103

Ĉ2j 0.9726 0.0707 0.9864 0.6638 0.9867 0.4858

Ĉ3j −0.2478 −0.2540 −0.3735 −0.1662 −0.2487 −0.1551

Ĉ4j −0.2362 −0.2373 −0.3418 −0.1495 −0.2121 −0.1226

Table 6. values of âj , ej , Uj , Ĉ1j , Ĉ2j , Ĉ3j , Ĉ4j

So, we obtain the value of the criteria test Y 2
n

Y 2
n = X2 +Q = 5.1920 + 7.1284 = 12.3204

For significance level γ = 0.05, and as the value of Y 2
n = 12.3204 is inferior than the

critical value χ2
6 = 12.5915; so we can say that the proposed model AFT − GEE fit

these data.

Conclusion:

Papers related to the GEE distribution showed that this one can be used more fre-
quently than Weibull and gamma distributions. So, observed data from reliability and
survival analysis can be suitably modeled by GEE and AFT −GEE distributions. We
hope that the results obtained through this study will be used by practionnars in several
fields.
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