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Recently, the scientific community has assessed evidence that exposure to
outdoor air pollution causes lung cancer and increases the risk of bladder
cancer. Because air pollution in urban areas is mainly caused by transporta-
tion, it is necessary to evaluate pollutant exhaust emissions from vehicles
during their real world use. Nevertheless, their evaluation and reduction
is a key problem, especially in the cities, that account for more than 50
percent of world population. A correct evaluation of pollutant emissions
and fuel consumption by vehicles in real use and precisely geolocated in a
road is an important activity and it is still open in the international scien-
tific contexts. Several experimental campaigns were carried out with some
cars instrumented for both the acquisition of kinematic data, polluting emis-
sions in continuous, and GPS latitude, longitude and altitude data for the
correct geolocalization and slope variation during a path. In the context
of qualitative and quantitative study of correlation between kinematic se-
quences/emission/geographical position, the aim of this paper is a statis-
tical evaluation of the slope variability along streets during each journey
performed by the instrumented vehicle. Therefore, through a multivariate
statistical approach, this type of gradient analysis permits the correlation
study of the emission profiles and consumption for a specific road position
and the evaluation of the influence on their behavior.
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1 Introduction

The air quality of urban environments has become more important in recent years.
Control of air quality affected by traffic emission is vital for human health. Vehicular
emissions are one of the major sources of air pollutants in the urban environment. Al-
though several studies of pollutant emission are made (André et al., 2006; May et al.,
2013) just few of them (Wood et al., 2014; Prati et al., 2014; Wyatt et al., 2014;
Sentoff et al., 2015; Carrese et al., 2013) took into account the change in altitude in
city traffic evaluation and the possible influence on emissions variation. The evaluation
of the emission produced by vehicles in correspondence of determined traffic situation in
a defined road with specified traffic management rules is generally carried out by multi-
plying emission factors per vehicle activity, obviously considering different vehicle types.
The problem is thus, in principle, defined when the following information is available:

e Road characteristics (number of lanes, type of pavements, crossing).

e Traffic management rules (traffic lights, parking, speed limits, ...).

e Vehicle composition (fleet composition, vehicle age distribution, ...) and activity.
e Vehicle flow and density, congestion level of road.

In recent years we are seeing positive results, but on a national scale we are still far from
achieving this goal. To obtain the emission factors, consolidated methods make reference
to vehicle mean velocity, which can be easily obtained by vehicle flow and density in the
road. In this framework a statistical approach has been proposed capable to consider
more attributes than the simple speed to characterize driving behavior, not only in the
determination of driving cycles (DCs) but also in the emission modeling (Rapone et al.,
1995, 2005). Many research programs have been carried out on this subject, whose aim
was to determine driving behavior and emission trends. Preliminary results show that,
if we consider a specific road, driving behavior changes and so driving cycles of different
characteristics always occur (Ferulano et al., 2000; Hickman and and McCrae, 2003;
André M., 2004). In this context, it could be interesting also to suggest paths based
not only on the minimum distance, but on the minimization of fuel consumption as a
function of the geomorphological features of the territory. An experimental campaign
in the hilly area of Naples city is realized by PEMS (Portable Emission Measurement
Systems) equipment (Weiss et al., 2011; Franco et al., 2014; Watson et al., 2012).
Some results relative to tests performed on road, with a new Fiat 500 TwinAir turbo
with 875cc displacement homologated EURO 5 (gasoline powered), are presented.

2 Experimental Activity

The Fiat 500 TwinAir has been instrumented for on-road tests as shown in the following
Figure 1. The main components of the monitoring system used in this work are:
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e a Semtech gas analyzer produced by Sensor to measure at 1Hz CO, NOx and
COg2 emissions. This analyzer uses NDIR cell (Non-Dispersive Infrared) for CO
and CO9 measurements, NDUV cell for NO/NOgy and separate electrochemical
sensor for oxygen. The analyzer is calibrated on a regular basis and zeroes itself
on start-up using outside air;

e an EFM (Exhaust Flow Meter) by Sensor;

e an OBD interface and logging computer running proprietary software (EDS) to
acquire engine operating parameters (speed, rpm, engine air flow);

e a GPS receiver by Racelogic Ltd to acquire the spatial position;
e a video camera to record traffic situations.

The signals from all devices have been synchronized by using the same information
obtained from different sources (i.e. speed from GPS and OBD).
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Figure 1: Experimental route: the hilly area of Naples (VMR Path)

During the experimental campaign, instrumented car performed some missions in
the city of Naples along a traffic busy route. In particular, in this paper, we referred
especially to the hilly area of Naples city, named VRM Path (figure 2), characterized by
roads with numerous elevation changes (figure 3) and a path length of about 8 km. Path
has an average uphill of 6.9%, while downhill has an average gradient of 6.5%. Overall,
one road tests have been performed to make a comparison between the acquisition data
in real use and the dynamometric test bench in the lab.

A repetition of VMR Path driving cycle acquired on-road (WMR Road) was three
times realized! in laboratory (WMR_LAB_R1-3) and exhaust emissions were measured
and analyzed. In this context this paper tries to give a contribution to the evaluation
and comparison of the fuel consumption and emissions during road tests performed

1Usually, the recorded road speed profile is repeated at least three times on the dynamometer test
bench with the related acquisition of the emissions profile. The repetitions are used for the emission
values’s validation.
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Figure 2: Experimental route: the hilly area of Naples (VMR Path) with slope variability
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Figure 3: Experimental route: elevation profile of the hilly area of Naples

in real use by PEMS (Portable Emission Measurement System) and repeated on the
chassis-dynamometer.

3 Statistical Evaluation

The velocity profile of each recorded trip is segmented in a succession of sequences, so
that a sequence is the part of motion of a vehicle between two successive stops. Driving
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cycles have been determined without any conditioning of data respect to road network,
but keeping the information detected on road, in terms of GPS coordinates latitude,
longitude and altitude, when applicable. The method utilized to determine the driving
cycles is based on sequence characterization. To characterize the sequence pattern the
identified variables are partially related to the dynamic vehicle equation, plus idling time
to consider standstill phase emission production and partially to slope variability. These
variables are identified by considering emission variation as explained by the variation
in exhaust mass (function of energy spent by the vehicle in a driving cycle), and the
frequency of acceleration events at different speeds (1). Moreover, the variables were
identified considering two potential causes of variability in emissions for a driving cycle:
energy expenditure from the vehicle in the cycle and the acceleration events at different
speeds (Joumard et al., 2007; Rapone et al., 2008).

M =~ /P (t)dt ~ /t(ao +ay * v(t) + ag * v3(t) + Myg * (a(t)) * v(t)dt (1)

where M is the total mass of exhaust, P(t) the engine power, v(t) the speed, a(t) the
acceleration and M,, the vehicle effective mass. In Table 1, variables characterizing
driving behavior are reported.

Table 1: Variables characterizing driving behavior

Variable Description

mv (km/h) Mean of running speed (v>0)
mv?(km?/h?) Mean of square speed (v>0)
mv3(km? /h3) Mean of cube speed (v>0)

Tral (s) idling time v=0 in second
Trunning (s) total running time (v>0) in second
Dist (m) distance covered

Tseq (s) Total duration of the sequence (s)

Mean of instantaneous values of product (a(t)v(t))

m_vapos (m?/s?)
when v(t)>0 and a(t)>0

DS1 (%) %time with delta slope <-0.70 meters (m)
DS2 (%) %time -0.70<= delta slope <-0.20 meters (m)
DS3 (%) %time -0.20<= delta slope <0 meters (m)
DS4 (%) %time 0<= delta slope <0.20 meters (m)
DS5 (%) %time 0.20<= delta slope <0.70 meters (m)
DS6 (%) %time with delta slope >=0.70 meters (m)

We carry out the PCA analysis for dimensionality reduction (retain variance and build
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orthogonal variables) and then subsequently the CDA, that reproduce analysis in the
each cluster but using as variables PCA components. By CDA, we attempts to classify
driving cycle, with cluster membership, and obtain the two dimensions that provide
maximum separation among the clusters. Elevation values are processed obtaining six
variables, DS1-DS3 describing downhill road and DS4-DS6 uphill road. They represent
the percentage variation relative to the sequence duration. Values that define the ranges
of the variables DS1-DS6 in the Table 1 are derived from the study of the distribution of
frequencies of the incremental delta slope (Meccariello and Della Ragione, 2014). Here
was mainly analyzed problems relating to errors on the measurement of the slope and
its influence on emissions and consumption. Moreover, the analysis was conducted by
identifying kinematic sequences, while in this paper a deep analysis was performed on
a DCs, that are a succession of similar sequences. The values calculated for a sequence
constitutes a multivariate observation X. Therefore, observations (sequences) must be
analyzed utilizing multivariate statistical methods. Since a considerable number of vari-
ables represents a sequence and these are mutually correlated, a Principal Component
Analysis (PCA) is performed. Principal components (PC) are latent variables function
of variables of Table 1, calculated by the matrix of observed X(i, j), where i=1,k and
j=1,NS; k are the 14 identified variables, NS are the total number of sequences which
in this case study are 128. Each PC tends to characterize different typical features of
sequences by a group of correlated variables, separating for example sequences with high
mean speed and long running time and low acceleration, from sequences with low mean
speed, high idling time and acceleration. Referring to the analysis, the first eight compo-
nents explain about the 97% of driving cycle variability, while the first four components
explain almost 76.39%. In this analysis, most variability was explained by the first two
components with about 60%2. In Table 2 a factor pattern table, to understand which
items load highly on which factors and then determine what items have in common,
is reported. The first component characterizes the sequences with higher mean speed
(mv)? and longer duration (tseq). The second component, instead, characterizes the
sequences with negative slope (DS1, DS2), respect to the sequences with positive slope
(DS5, DS6). This approach allows us to understand the effect and the differences of all
DCs through the identified variables.

Clustering of sequences by multivariate statistical analysis give the basic information
to cut automatically driving cycles from the real velocity profile detected on the road.
A new cycle starts when a sequence belonging to a different cluster is encountered in
the car speed time series slope (Della Ragione et al., 2013). So, observed sequences are
classified into homogeneous groups (clusters) by applying a clustering method, utilizing
principal components calculated for each sequence, as variables characterizing the se-
quence. Moreover, to determine the sequence pattern most representing of each cluster,
a multidimensional normal distribution is fitted to sequence PC data and its density
function is estimated. Sequences are ranked by density: those closest to the maximum

2In kinematic data analysis, where variables are strongly correleted, the use of more components doesn’t
help to explain the effect of original variables on the fenomena

3The variables mv, mv? and mv® are strongly correlated each one, and are an expression of the average
speed. The correlation ratio are mv/mv? 97%; mv/mv® 98%; mv?/mv? 92%.
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Table 2: Variables characterizing driving behavior

Variable Componentl Component2 Component3 Component4
Tral (s) -0.028 -0.145 -0.587 0.147
Dist (m) 0.882 -0.065 0.276 0.052
mv (km/h) 0.922 0.160 0.149 0.041
mv?(km?/h?) 0.941 0.104 0.205 -0.021
mv3 (km?/h3) 0.928 0.058 0.242 -0.017
m_vapos (m?/s3) -0.153 0.291 0.288 0.599
Tseq(s) 0.846 -0.094 0.145 0.075
DS1 (%) 0.343 -0.578 -0.186 0.431
DS2 (%) 0.304 -0.820 -0.166 0.099
DS3 (%) -0.329 -0.287 0.454 -0.593
DS4 (%) -0.561 0.484 0.370 0.355
DS5 (%) 0.411 0.612 -0.559 -0.043
DS6 (%) 0.573 0.439 -0.335 -0.301

density (the mode of distribution) are taken as the most representative. Discriminant
analysis is applied to outline features and reciprocal differences of clusters. Canonical
Discriminant Analysis is used to determine which variables discriminate between clus-
ters (groups) of multivariate observations. Some optimal combinations (functions) of
variables are automatically determined so that the first function provides the overall
discrimination between groups, the second provides the second most, and so on. Func-
tions are denoted as canonical variables (called in the paper Canl, Can2,..). In figure
4 a cluster representation of sequences is shown. Can 1 sequences are correlated with
variables that differentiate the cluster’s sequences from slow to fast and long time dura-
tion, while Can 2 sequences are correlated to variables that explain the slope variability
features.

The selected road test is subdivided in about 39 sequences, that are grouped in five
clusters. For each cluster it is possible to point out fundamental differences in the
kinematic features. Driving cycles are defined starting from the cluster of sequences
which are subsequently grouped into clusters of cycles. The clusters of sequences allow
us to construct the criterion for the division of the speed diagram in sections, each
one corresponding to a driving cycle. The rule used to define a cycle, defined as the
succession of homogeneous sequences, is the following:

I A cycle begins with the first sequence of a trip, or when there is a transition from
one group to another, i.e. 1-2, 1-3, 2-3, and vice versa.

II A cycle ends with the last sequence of a journey, or a transition with the previous
sequence. In this phase, the construction of new variables characterizing the cycles
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Canonical Variables Identified by Cluster
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Figure 4: Cluster representation of sequences

in a similar way as done for the sequences is made.

After that, same statistical methodologies (Meccariello et al., 2014), applied on se-
quences, are carried out to investigate the kinematic characteristics of driving cycles,
which are formed by applying the above rule. Clusters of cycles synthesize and represent
the different behaviour and traffic situations that have occurred. For this reason, for each
driving cycle (statistical unit) the average value of pollutants and fuel consumption are
calculated. Results are illustrated by cluster representation in the Can 1, Can 2 scatter
plot (figure 5). In table 3 the total canonical structure of the discriminant analysis is
shown. These are the correlations between the continuous variables used (Component
1 and Component 2) and the two discriminant functions (Canl and Can2). We can
see that the first discriminant function is positively correlated with F1 and F2; and the
second discriminant function is negatively correlated with F1 and positively with F2.

Table 3: Total canonical structure

Variable Canl Can2

fl_mean 0.894 -0.446
f2_mean 0.518 0.855

Accordingly to the characteristic of the PC factor, the groups are quite internally



618 Meccariello, Della Ragione

Canonical Variables Identified by Cluster
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Figure 5: Cluster representation of cycles

homogeneous and differentiated in terms of mean velocity, distance covered and different
percentage of DS1-DS3 (representing sequence realized for most of the time in downhill
road) and DS4-DS6 (representing sequence realized for most of the time in uphill road).

Table 4: Mean Variables characterizing WMR, path

N > o o o o o

N 0 = = & 5 = 5

&@& 4%& D> &‘Q& o™ -év@ n o B D B D

&) & SRS ~ A0 A A A A A A

1 6.73 557 962 34 75717 7 26 27 28 12 0

2 18.92 123 1238 8 585956 0 5 6 19 54 16
3 16.95 85 3170 15 1452097 9 36 13 23 16

4 7.62 414 1088 35 142764 0 2 17 54 25 2

The Cluster 1 and 4 have the lowest average speed, while Cluster 2 and 4 correspond
to path’s segments taken essentially uphill with different percentages of positive slope
(DS5 and DS6); they spend 70% and 27%, respectively, in uphill phases. Instead, Cluster
1 and 3 are characterized especially by cycle carried in downhill path; they spend 53%
and 48%, respectively, in downhill phases. Moreover, Cluster 1 and 4 have the lowest
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average speed with higher number of sequences, typical of congest areas.

4 Results and Conclusions

The aims of this activity are to compare fuel consumption and emissions on road during
real world experimental tests, in order to identify and characterize representative road
routes. Moreover, this paper seeks to give a contribution to on-board measurements with
PEMS, in different geographical areas, using statistical methodologies to analyze driving
behaviour and perform correlations with emission measurements. In this framework a
statistical approach has been proposed capable to consider more attributes than the
simple speed to characterize driving behavior. The methodology allows to characterize
cars operating conditions in different trip zones and to define clusters of cycle with
typical kinematic pattern. In the analysis and definition of clusters for VMR path,
slope gradient plays a significant role especially in the return part of the path. In
figure 6 the latitude vs longitude of VMR Road acquired on-road and the three times
repeated in laboratory WMR_LAB_R1-3, with different colour and label according to
the cluster analysis, are shown. Here it is clear that the cluster analysis groups well and
summarizes the main features of the kinematics on road. The succession of the same
cluster is encountered throughout the path despite small variations kinematic. In fact,
the sequences cluster for all path is 3-4-2-4-3-1-4-1-3-1. In addiction, the differences

VMR_LAB_R1 VMR_LAB_R2
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Figure 6: Latitude vs longitude of VMR Road and its three repetition (WMR_LAB_R1-
3).
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between laboratory and road CO2 emissions results are presented in the figure 7. In
the following plots, LAB variable takes value L for laboratory tests and the value R for
on road tests. Also variable CLUSTER, which assumes value 1-4 indicates cycle’s data
belonging to particular cluster. In according to figure 6, with the same cluster colours
and label of figure 7, we can highlight the effects on CO2 emissions due to the influence
of slope variability. This phenomenon is evident not only from a qualitative analysis
on the knowledge of the path, but also mainly from the inherent nature of the cluster
resulting from the effect of the used variables.
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Figure 7: CO; cluster mean values lab/road comparison over the path
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