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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 09, Issue 01, April 2016, 134-153
DOI: 10.1285/i20705948v9n1p134

Dimensionality reduction by clustering
of variables while setting aside atypical

variables

E.Vigneau∗a,b and M. Chena

aSensometrics and Chemometrics Laboratory, Oniris, National College of Veterinary Medicine,
Food Science and Engineering Nantes-Atlantic, Nantes, F-44322, France

bINRA, Nantes, F-44316, France

Published: 26 April 2016

Clustering of variables is one possible approach for reducing the dimen-
sionality of a dataset. However, all the variables are usually assigned to one
of the clusters, even the scattered variables associated with atypical or noise
information. The presence of this type of information could obscure the in-
terpretation of the latent variables associated with the clusters, or even give
rise to artificial clusters. We propose two strategies to address this problem.
The first is a “K + 1” strategy, which consists of introducing an additional
group of variables, called the “noise cluster” for simplicity. The second is
based on the definition of sparse latent variables. Both strategies result in
refined clusters for the identification of more relevant latent variables.

keywords: dimensionality reduction, clustering of variables, noise cluster,
sparse latent variables.

1 Introduction

The aim of clustering variables is to divide the set of the observed variables into homoge-
neous and distinct groups so as to identify the underlying structure in the measurement
space. In explorative data analysis, it is a helpful tool for reducing the dimensionality
of the data and interpreting complex problems more easily.

However, for high-dimensional datasets, clustering may lead to unsatisfactory results.
A large number of measured variables does not necessarily mean that all the information
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is useful. On the contrary, atypical or noise information may lead to rather inconsis-
tent clusters, and thus make it difficult to interpret the latent variables revealed by these
clusters. When the aim is to identify the structure of groups among the variables, strate-
gies for discarding scattered variables may be helpful. For instance, the identification
of homogeneous spectral ranges, the detection of biological pathways, the extraction of
segments in a panel of consumers or the development and validation of scales in social
science are all domains where the main interest is to reveal latent dimensions associated
with clusters of observed items, or features.

In order to clarify our purpose, let us consider a simple example with two groups of
variables and several scattered variables. The variables in a group are highly correlated
regardless of whether their correlations are positive or negative. The correlation structure
of the whole set of variables, on the basis of the first two principal components, is shown
on the left-hand side of Figure 1. All the variables identified in gray on the right-hand
side of Figure 1 are expected to be set aside because they do not fit the structure defined
by the two main groups. The same principle would be applied to all the variables that
are isolated, scattered or random. For simplicity, all these variables are referred to as
atypical or noise variables in the following. These terms are to be considered in a broad
sense in relation to the true, but unknown, underlying structure.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PC1

P
C

2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PC1

P
C

2

Figure 1: Correlation structure for set of variables including two clusters of highly corre-
lated variables and several scattered variables. The expectation is to set aside
the variables in grey on the right-hand side plot

For the clustering of variables, we consider here the Clustering of variables around
Latent Variables (CLV) method proposed by Vigneau and Qannari (2003). This method
aims to identify, simultaneously, a partition of the variables into groups as unidimensional
as possible, and a set of latent variables each of which is associated with one of the groups.
The CLV latent variables are synthetic variables that, like the principal components in
Principal Components Analysis (PCA) or the rotated components in Factor Analysis,
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enable a large dataset to be analyzed. However, the CLV latent variables are easier to
interpret than the principal components because each of them is a linear combination
of only those variables belonging to the same cluster. In fact, there is a wide range of
methods for the clustering of variables. The most common are hierarchical approaches
based on a similarity measure between the variables, such as the correlation coefficient,
the squared correlation coefficient and Kendall’s correlation coefficient, among others.
The CLV method is conceptually close to the well-known VARCLUS procedure in the
SAS software (Sarle, 1990). Diametrical Clustering (Dhillon et al., 2003), applied to gene
expression data, and the weighted-variances clustering recently proposed by Enki et al.
(2012) for constructing interpretable principal components are two proposals that also
show some similarity with the CLV approach. Regarding the partitioning solution, the
above-mentioned methods are crisp strategies where each variable is assigned to exactly
one cluster. Thus, one might expect that atypical or noise variables make the groups
obtained more difficult to interpret or may even give rise to artificial groups.

Fuzzy strategies, in which each entity can be allocated to several clusters with a mem-
bership between 0 and 1, are often proposed as alternatives to crisp clustering. In fact,
an atypical variable is expected to have modest membership values for several clusters.
In the context of the clustering of genes, Berget et al. (2005) suggested modifying the
criterion used for fuzzy clustering by adding a penalty term to identify relevant clusters
and a rest cluster. In the sensory analysis field, Dahl and Naes (2009) also adapted the
fuzzy clustering approach by considering two clusters, a good cluster and a noise cluster,
with the aim of identifying the outlying assessors (associated with the noise cluster).
Both these interesting works relied on clustering criteria based on Euclidean distances
between the entities to be clustered. In the CLV method, the entities considered are
variables and similarity indices based on covariance (or correlation) are used.

In this work, we aim to modify the CLV strategy in order to set aside or down-weight
the atypical or noise variables. We considered two approaches to achieve this goal. The
first, called a “K + 1” strategy, is based on a modification of CLV criteria by adding a
specific term so that an additional cluster (the “noise cluster”) can be introduced, as in
Dave (1991) and Berget et al. (2005). Thus, those variables without a clear affiliation
to any of the main clusters will be put aside and assigned to this additional entity. The
second approach concerns the CLV latent variables, with a sparsity constraint added,
in the same vein as Sparse Principal Component Analysis (Zou et al., 2006). Thus, the
variables with a low contribution to their associated latent variable will be given a zero
loading in the sparse CLV latent variables.

This paper is organized as follows. Section 2.1 gives a brief overview of the CLV
criteria and the algorithms used for their maximization. The “K + 1” and “Sparse LV”
strategies are described in Sections 2.2 and 2.3, respectively. In Section 3, the proposed
strategies are applied to a simulated set of data in order to explore their behavior,
compared to the standard CLV approach. Finally, we consider a real case study where
the aim was to reveal the sparse latent dimensions in a large multidisciplinary survey on
food perception, and nutritional and health status in elderly people.
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2 Methods

2.1 The CLV method

Let us consider a set of p variables observed on n individuals. We denote xj = (x1j , x2j ,
. . . , xnj)

t ∈ Rn, the vector of observations for the jth variable. All the observed vari-
ables xj(j = 1, . . . , p) are assumed to be centered. In addition, the user may choose
to standardize them, or not, to a unit variance. Given a number of clusters, K, the
objective of the CLV method is to seek a partition of the observed variables into K
groups (G1, G2, . . . , GK) and K latent variables, (c1, c2, . . . , cK) associated with each
group respectively, so as to maximize the internal coherence of the groups. Two types
of criteria are considered, which define two types of groups: (i) “directional groups” in
which positively or negatively correlated variables will be merged together, regardless
of the sign of the correlation coefficients, (ii) “local groups” in which only positively
correlated variables will be associated in the same group.
For directional groups, the CLV criterion to be maximized is T , defined as :

T =

K∑
k=1

p∑
j=1

δkj cov2 (xj, ck) , with var(ck) = 1 (1)

For local groups, the clustering criterion is S, defined as :

S =

K∑
k=1

p∑
j=1

δkj cov (xj, ck) , with var(ck) = 1 (2)

In (1) and (2), δkj = 1 if the jth variable belongs to group Gk, and δkj = 0 otherwise.
cov (xj, ck) stands for the covariance between the variable xj and the latent variable ck
and var(ck) is the variance of ck.

A partitioning algorithm is used for the optimization of T or S. It consists of two
alternating steps: the assignment step, during which the δkj are defined given the latent
variables ck, for k = 1, . . . ,K, and the estimation step of the latent variables, given the
partition of the variables. More precisely, this algorithm is conceived as follows:

1. Initialization step. A partition into K clusters is generated at random or selected
from the nested partitions obtained with a hierarchical algorithm. When random
initialization is considered, several random starts (say 100) are performed and the
solution leading to the largest value of the clustering criterion, T (Eq.1) or S
(Eq.2), is selected. For a non-random initialization, a reasonable choice is to run
beforehand an ascendant hierarchical clustering based on the considered clustering
criterion. This technique proceeds sequentially from a stage where each variable
is a group by itself to a stage in which all the variables are merged together. At
a given level, the two clusters of variables resulting in the smallest decrease of the
clustering criterion are merged together (Vigneau and Qannari, 2003). Even if the
construction of a hierarchy requires additional computational resources, when the
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number of variables is not too large (less than a few hundred, say), this way of
initializing the alternating optimization algorithm is recommended as it offers a
relevant initial solution.

2. Estimation step. In a cluster Gk (k = 1, . . . ,K), the latent variable ck is defined

• for directional groups, as the first standardized principal component of the
matrix Xk formed by the variables belonging to Gk,

• for local groups, as the standardized mean variable of the variables in Gk.

3. Assignment step. Each variable xj (j = 1, . . . , p) is considered in turn. xj is as-
signed to the cluster Gk for which its squared covariance coefficient, for directional
groups, or its covariance coefficient, for local groups, with ck is higher than for
every other group latent variable. More formally,

• for directional groups:

δkj = 1 if max
l

{
cov2 (xj, cl)

}
= cov2 (xj, ck) (3)

• for local groups:

δkj = 1 if max
l
{cov (xj, cl)} = cov (xj, ck) (4)

4. Repeat 2 and 3 until the stability of the partition is achieved. Usually, at the
convergence, there is strictly no change in the group’s memberships between two
iterations, and the clustering criterion will not then change any more. However, in
order to manage the most complex cases, with very fuzzy structure, the stopping
rule may be defined so that the variation of the clustering criterion will be less
than a very small threshold (say, 1E-5). In addition, the maximum number of
iterations allowed for steps 2-3 is fixed, by default, to 20. If after 20 iterations, the
convergence criterion is not reached, the procedure is stopped. In practise, this last
stopping rule is almost never used. For real case studies, like the one discussed in
Section 3.2, two or three iterations are usually sufficient, even if the initialization
is based on a random partition.

With this algorithm, all the variables are assigned to one, and only one, group. Ide-
ally, the atypical or noise variables should be discarded. To address this question, two
modified procedures were investigated.

2.2 “K + 1” strategy

This strategy consists in introducing an additional cluster for handling the atypical or
noise variables in the clustering. Based on the concept introduced by Dave (1991),
this additional cluster, also named “noise” cluster, can be represented by a prototypical
variable that is expected to have the same correlation with all the observed variables
xj (j = 1, . . . , p). The CLV criteria are consequently updated and a fixed parameter,
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ρ, representing the common correlation coefficient associated with the definition of the
“noise” cluster protoype, is introduced. According to the type of groups sought, this
consists of maximizing:
for directional groups, a new criterion T defined as:

Tnew =

K∑
k=1

p∑
j=1

δkj cov2 (xj, ck) +

p∑
j=1

(1−
∑
k

δkj) ρ
2 var (xj) (5)

and for local groups, a new criterion S:

Snew =
K∑
k=1

p∑
j=1

δkj cov (xj, ck) +

p∑
j=1

(1−
∑
k

δkj) ρ
√

var (xj) (6)

with var(ck) = 1. In (5) and (6), the last term holds for the contribution of the additional
“noise cluster” in the criterion. Namely, if the variable xj belongs to one of the main
groups Gk (k = 1, . . . ,K), we have δkj = 1 for a given k and (1 −

∑
k δkj) = 0. On

the contrary, if the variable xj does not belong to any main groups, (1 −
∑

k δkj) = 1.
The number of variables that will be assigned to the “noise cluster” depends on the
parameter ρ. If ρ is chosen to be very small, most variables will be assigned to one of
the groups Gk rather than to the “noise cluster”. If ρ is large, then a high number of
variables will be allocated to the “noise cluster”. ρ is a tuning parameter to be chosen
between 0 and 1. Choosing ρ = 0 leads to the basic CLV criteria (eqs.(1) and (2)).
When ρ = 1, all variables will be assigned to the “noise cluster”.

The criteria Tnew and Snew can be maximized by using the same type of algorithm as
that described in Sect.2.1, except with a modification in the assignment step, which is
constructed as follows:
Assignment step. A variable xj will be assigned to cluster Gk in which the (squared)
covariance between xj and ck is greater than with other latent variables, except if this
value is too small in relation to the value of the ρ parameter. More formally, we have:

• for directional groups,{
δkj = 0 ∀k if max

{
maxl

{
cov2 (xj, cl)

}
, ρ2var(xj)

}
= ρ2var(xj)

δkj = 1 if max
{

maxl

{
cov2 (xj, cl)

}
, ρ2var(xj)

}
= cov2 (xj, ck)

• for local groups,{
δkj = 0 ∀k if max

{
maxl {cov (xj, cl)} , ρ

√
var(xj)

}
= ρ
√

var(xj)

δkj = 1 if max
{

maxl { cov (xj, cl)} , ρ
√

var(xj)
}

= cov (xj, ck)

By the construction of criteria Tnew (5) and Snew (6), the tuning parameter ρ is
analogous to a correlation coefficient. As it will be shown in the illustrative section
(sub-sections 3.1 and 3.2), various values of ρ, between 0 and 1, can be investigated.
The curve of the evolution of the number of variables that are set aside as a function
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of the correlation threshold can provide a guide to the choice of a specific value for
ρ. Without screening a range of values for ρ, cutoff values for the item’s loadings
(or correlation coefficient between a manifest variable and a latent variable) commonly
used in Exploratory Factor Analysis may be considered. Even if this question remains
controversial, setting the cutoff at 0.4 seems to be the lowest acceptable threshold,
whereas 0.6 or 0.7 would be the upper limit (Matsunaga, 2010). Taking account the
statistical significance of the item’s loadings according to the sample size, Hair et al.
(2010) published a table (Chapter 3, Table 2 in the reference) showing, for instance,
that a loading of 0.4 could be considered as significant (α = 5%) for a minimum number
of 200 observations.

2.3 “Sparse LV” strategy

Let us consider the CLV clustering with the criterion in (1) for directional groups. For
a partition of K clusters, the assumption is that the atypical or noise variables will be
randomly assigned to one of the main groups Gk (k = 1, . . . ,K). However, it is expected
that their contribution to the latent variable ck (the first principal component of Xk in
this case) will be small. Methods such as the Sparse PCA (SPCA) (Zou et al., 2006),
SCoTLASS (Jolliffe et al., 2003) and sPCA-rSVD (Shen and Huang, 2008) have been
proposed in order to improve the interpretation of principal components (PCs) by using
modified PCs with possible zero loadings producing sparse loading vectors. The same
rationale can be adopted for the CLV latent variables, which can be modified so that zero
loadings will be given to the variables that do not fit to the main groups. We denote c∗k,
(k = 1, . . . ,K) the sparse latent variables. They are defined, according to the iterative
algorithm proposed by Shen and Huang (2008), as follows:

1. For a group Gk (k = 1, . . . ,K), which contains pk variables, let αk be the loading
vector associated with the first principal component ck of Xk.

2. Calculate a sparse loading vector βk = (β1k, . . . , βjk, . . . , βpkk)T . For each variable
xj belonging to this group, its loading value βjk is defined as

βjk =

(
|cov (xj, ck)| − ρ

√
var (xj)

)
+

Sign (cov (xj, ck)) (7)

This corresponds to the soft-thresholding (or Lasso) penalty (Tibshirani, 1996;
Shen and Huang, 2008). In the expression in (7), the symbol ( )+ means that the
value of the difference is retained if it is positive, it is equal to 0 otherwise. More
precisely, we have:

b = (|a| −∆)+Sign(a) =


a−∆ if a ≥ ∆

a+ ∆ if a ≤ −∆

0 if |a| < ∆
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3. Update the loading vector αk in order to maximize αk
tXk

tXkβk, subject to the
constraint αk

tαk = 1. In other words, set αk = Xk
tXkβk/‖Xk

tXkβk‖. Update
ck = Xkαk/‖Xkαk‖.

4. Repeat steps 2 and 3 until convergence of the modified loadings vector βk. The
convergence criterion is defined here on the L1-norm of the difference of two suc-
cessive normalized loadings vectors. As previously, the maximum number of it-
erations allowed is fixed to 20 (by default). In our experience, this level is very
rarely reached. For instance, in the case study discussed in Section 3.2, whatever
the value of ρ, the highest number of iterations required before the stabilization of
the sparse loadings vector, in a group of variables, was eight.

5. The sparse loading vector and modified latent variable in group Gk are vk =
βk/‖βk‖ and c∗k = Xkvk/‖Xkvk‖, respectively.

For local groups, a similar strategy is adopted but with CLV latent variables being the
mean variable of the measured variables in a group. The algorithm for defining sparse
LV is constructed as follows :

1. For group Gk (k = 1, . . . ,K), let αk =
(

1
pk
, 1
pk
, . . . , 1

pk

)T
be the loading vector

associated with the standardized mean variable ck in Gk.

2. Calculate a sparse loading vector βk with (7), in the same way as for directional
groups.

3. For a fixed vector βk, update αk = βk/(
∑

j βjk) and ck = Xkαk/‖Xkαk‖.

4. Repeat steps 2 and 3 until convergence of βk.

5. The sparse loading vector and the modified latent variable in group Gk are vk =
βk/(

∑
j βjk), and c∗k = Xkvk/‖Xkvk‖, respectively.

It can be noticed that the thresholding parameter used for the “Sparse LV” strategy is
the same as the assignment thresholding adopted for the “K + 1” strategy. As a matter
of fact, this tuning parameter, ρ, is a threshold value of a correlation coefficient. Its
value is to be chosen between 0 and 1.

From a practical point of view, an R package, named ClustVarLV (Vigneau and
Chen, 2015), for the clustering of variables using the CLV method is available on the
CRAN website. The new developments presented here have been implemented in the
CLV kmeans procedure.

3 Applications

3.1 Simulated dataset

The purpose of working with a simulated dataset was to evaluate the ability of both
strategies to identify variables generated completely at random, in addition to a set
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of variables organized into K groups. Four groups of variables, of different size, were
generated around prototype variables more or less correlated to each others.

We simulated 100 datasets having p=85 variables and n=50 observations. They con-
tained four groups of 30, 20, 10 and 5 variables, respectively, and 20 variables gener-
ated independently. Four prototype variables, Z1,Z2,Z3,Z4, were generated from a
multivariate Gaussian distribution with a mean vector µ = (0, 0, 0, 0) and a specified
covariance matrix Σ:

Σ =


1 0 0 0

0 1 0.3 0.2

0 0.3 1 0.1

0 0.2 0.1 1

 (8)

The variables in each group and the random variables were generated as follows:

xj = ωjZ1 + εj , j = 1, . . . , 30,

xj = ωjZ2 + εj , j = 31, . . . , 50,

xj = ωjZ3 + εj , j = 51, . . . , 60,

xj = ωjZ4 + εj , j = 61, . . . , 65,

xj ∼ N (0, 1), j = 66, . . . , 85

where ωj ∈ {+1,−1} is used to generate randomly positive and negative correlations
between each simulated variable and its prototype. εj ∼ N (0, σ) with σ set at 0.8.

K = 4 CLV CLV “K + 1” CLV “Sparse LV”

ρ = 0.5 C1 C2 C3 C4 C1 C2 C3 C4 CA C1 C2 C3 C4

G1 30 0 0 0 30 0 0 0 0 30 0 0 0

G2 0 20 0 0 0 20 0 0 0 0 20 0 0

G3 0 0 10 0 0 0 10 0 0 0 0 10 0

G4 0 0 0 5 0 0 0 5 0 0 0 0 5

isolated 4.77 4.44 4.97 5.82 0.01 0.03 0.03 0.09 19.84 0.01(5.12) 0.03(4.74) 0.02(5.06) 0.06(4.96)

Table 1: Cross-tabulation (averaged over 100 repetitions) displaying the memberships of
the variables to their true groups (G1, G2, G3, G4 and isolated variables) and the
clusters obtained for a partition into K=4 clusters, according to the strategy
used. For the “K + 1” strategy, CA represents the additional “noise cluster”.
For the “Sparse LV” strategy, the numbers in parentheses correspond to the
number of variables with a zero loading. For both proposed strategies ρ was set
to 0.5.

Table 1 summarizes the clustering results obtained when looking for K = 4 directional
groups, using the basic CLV algorithm (see Section 2.1), the “K+1” strategy (see Section
2.2), or the “Sparse LV” strategy (see Section 2.3) with ρ = 0.5. The true groups were
denoted G1 to G4 and the clusters of variables obtained were denoted C1 to C4.

If the number of clusters was correctly chosen, i.e. K = 4, (Table 1), we observed
that the basic CLV method always retrieved the structure based on the four groups of
variables. This was expected because the simulated pattern was very simple and clear.
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However, the four clusters also contained more or less the same number of isolated
variables. In fact, these variables were randomly distributed across the four clusters.
Both alternative strategies also retrieved the true underlying groups. Moreover, the
isolated variables were satisfactorily identified. They were assigned to the additional
cluster, CA, with the “K+ 1” strategy, or their loading was set to zero with the “Sparse
LV” strategy (numbers given in parentheses).

K = 3 CLV CLV “K + 1” CLV “Sparse LV”

ρ = 0.5 C1 C2 C3 C1 C2 C3 CA C1 C2 C3

G1 30 0 0 30 0 0 0 30 0 0

G2 0 20 0 0 20 0 0 0 20 0

G3 0 0 10 0 0 10 0 0 0 10

G4 0.42 3.41 1.17 0 0 0 5 (0.69) (3.17) (1.14)

isolated 6.76 6.34 6.90 0.01 0.02 0.03 19.94 0.01(7.05) 0.02(6.29) 0.02(6.61)

K = 5 CLV CLV “K + 1” CLV “Sparse LV”

ρ = 0.5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 CA C1 C2 C3 C4 C5

G1 30 0 0 0 0 30 0 0 0 0 0 30 0 0 0 0

G2 0 20 0 0 0 0 20 0 0 0 0 0 20 0 0 0

G3 0 0 10 0 0 0 0 10 0 0 0 0 0 10 0 0

G4 0 0 0 5 0 0 0 0 5 0 0 0 0 0 2 0

isolated 2.7 2.34 2.7 3.04 9.22 0.01 0.03 0.03 1.2 3.53 16.58 0.01(3.43) 0.03(3.29) 0.02(3.56) 0.06(3.19) 2.27(4.14)

Table 2: Cross-tabulation (averaged over 100 repetitions) displaying the memberships of
the variables to their true groups and the clusters obtained when K=3 or K=5
is sought (ρ = 0.5).

Table 2 shows the partitions obtained when the number of clusters was incorrectly
chosen, namely when K was set to 3 or 5. With K = 3 (top part of Table 2), using
the basic CLV approach, the variables of the smallest group, i.e. G4, were aggregated
into the other three clusters, even though the covariances between Z4 and the other
prototype variables were small (maximum 0.3). In fact, the variables generated around
Z4 were treated similarly to the isolated variables: they were randomly allocated to one
of the three clusters. In contrast, the “K + 1” strategy gave an interesting and more
reasonable result: the existence of the small group of variables, G4, was not identified
but the other groups were correctly highlighted. With the “Sparse LV” strategy, those
variables that came from G4 obtained a zero loading on the sparse latent variables of
their current cluster. When the number of clusters K was chosen as 5 instead of 4
(bottom part of Table 2), the basic CLV approach led to a fifth cluster selecting some
of the isolated variables (on average, 9.22 out of 20). The true groups, G1 to G4, were
perfectly retrieved and the rest of the isolated variables were distributed at random in
the clusters C1 to C4. For the “K + 1” and “Sparse LV” strategies, a fifth cluster had
a relatively small size (on average 3.53 variables or 2.27 with a non-null loading). This
change from a large cluster, using the basic CLV method, to a very small cluster, when
the refining strategies were used, could be an indication of the irrelevance of a cluster.

Regarding the impact of the tuning parameter ρ, three criteria were computed: (i) the
proportion of True Positives (TP), i.e. the correct assignments for variables belonging
to one of the four true groups; (ii) the proportion of True Negatives (TN), i.e. the
correct assignments, or loading, for the isolated variables; (iii) the percentage of all the
variables assigned to the “noise cluster” CA, or having a zero loading. Figure 2 shows
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the performance of both strategies with different values of parameter ρ, from 0 to 1,
by steps of 0.01. The results were almost the same whichever strategy was used. As
expected, the percentage of the variables set aside, or with a zero loading (third criterion)
increased with ρ. Two stages can be identified in this simulation setting. The first stage,
in the interval [0.35, 0.7], corresponds to cases in which all, or almost all, the isolated
variables were put aside. Within this interval, the solutions were almost perfect. The
second stage, reached for large value of ρ > 0.9, corresponds to situations where all the
variables were treated as noise. If the number of clusters was incorrectly chosen, the
number of errors increased (results not shown here), with a slight decrease in sensitivity
when the number of clusters, K, was too small and, on the contrary, a greater decrease
in specificity when K was too large. More precisely, when K = 2 or 3, the number of
variables wrongly assigned to the “noise cluster” may be large (compared with the case
of K = 4), even for relatively small values of ρ (0.2-0.6), because some of the variables
belonging to a true group are put aside, especially those coming from a small group. On
the contrary, when K = 5 or 6, the isolated variables are not all assigned to the “noise
cluster”, even for relatively large values of ρ (0.5-0.8) because they may lead to small
artificial clusters.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rho

TP(%)
TN(%)
aside(%)

Figure 2: Change in percentage of TP, TN and variables set aside, according to the
tuning parameter ρ. The results of the “K+1” strategy are given in black, and
those for the “Sparse LV” strategy in gray.

3.2 Survey of food perception, and nutritional and health status in the
elderly.

We now consider a real dataset collected during a French cross-sectional survey that
aimed to characterize elderly people with variables relative to nutrition and health,
sensory, psychological and sociological factors, eating behavior, food preferences and
attitudes. A large, multidisciplinary, questionnaire was submitted to 559 participants
older than 65 years (65-99 years old, 387 women, 172 men) (Maitre, 2014).

One of the objectives was to identify how the variables pertaining to different domains
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could be associated, so that underlying latent dimensions would be highlighted. Herein,
we consider 48 quantitative variables. Some of them are individual items, others are
constructs already published or specifically developed in this survey. The exhaustive
list of the variables is provided in the Appendix. In what follows, all the variables were
standardized, to have the same unit variance.

First, the CLV method, for directional groups, was applied. The CLV() procedure,
available in the ClustVarLV package (Vigneau and Chen, 2015), starts with a hierarchical
clustering. The dendrogram obtained is shown on the left-hand side of Figure 3. Within
the CLV() procedure, this dendrogram is cut at different levels, from a partition into
one cluster to a partition into 20 clusters (by default), and the optimization algorithm
described in section 2.1 is performed. The graph of the variation of the clustering
criterion T (Eq.1) is shown on the right-hand side of Figure 3. This graph is helpful
for choosing an appropriate number of clusters. As the clustering criterion jumps when
passing from two to one cluster, a partition into two clusters could be considered. At
a more detailed level, a change could also be observed when passing from four to three
clusters, but not from three to two clusters. Herein the solution of four clusters was
retained. It should be noted that in this case study, as in many others, e.g. in consumer
preference studies (Vigneau et al., 2014) or for gene expression data (Bryan, 2004),
natural clusters do not exist and classic measures of clustering strength and validity, like
silhouette (Rousseeuw, 1987) or gap statistics (Tibshirani et al., 2001) are of little use.
As mentioned in Bryan (2004), “in the absence of isolation, the exercise of grouping is
variously referred to as dissection or segmentation and is considerably more difficult to
define and motivate statistically than the natural clustering”.

Figure 3: Graphs obtained by the clustering into directional groups of questionnaire
variables. On the left side, the dendrogram of the hierarchical clustering stage;
on the right side, the variation of the clustering criterion after consolidation of
the partitions by means of the partitioning algorithm.

- The first cluster is made of 22 variables mainly related to health and mobility
indicators. Most of the variables related to health status have large correlation
coefficients with the latent variable of this cluster (larger than 0.7). However,



146 Vigneau, Chen

we can observe that some variables have been assigned to this cluster even if
their relationship with the latent variable of this cluster is weak (some correlation
coefficients with the first cluster latent variable are of 0.18 or -0.12).

- The second cluster groups 6 indicators including the three variables of the Authen-
ticity scale, the Geriatric Depression Scale (H GDS) and the feeling of being isolated
(SV ISOLATED).

- Eleven variables are in the third cluster, which is mainly characterized, positively,
by the psychological sub-scales for health interest, restricted food behavior and
high frequencies of consumption of fruit, fish and vegetables.

- The fourth cluster includes 9 variables related to food preferences and habits,
characterizing an eater style with meat, delicatessen, accompanied with a glass of
wine (here, French elderly people were concerned).

Compared with the partition into two clusters, it was observed that the first and second
clusters, related to physical and psychological health, respectively, were aggregated. The
third and fourth clusters, related to food behavior and food preferences, respectively,
were merged into the same cluster in the partition into two clusters.

The proposed strategies of CLV clustering, i.e. the “K+1” strategy and the “Sparse
LV” strategy, were also applied to this dataset. These are part of an alternated optimiza-
tion algorithm (available using the CLV kmeans() function of the ClustVarLV package)
which requires an intialization step. For both strategies, as for the classic CLV proce-
dure, the initial partition was defined by cutting the dendrogram previously obtained
(shown in Figure 3). Various values of the tuning parameter, ρ, from 0 to 1 by steps
of 0.05, were investigated. Figure 4 shows the number of variables set aside with the
“K+1” strategy and the number of variables having a zero loading with the “Sparse LV”
strategy, as a function of the parameter ρ.

Concerning the “K+1” strategy, if the value of ρ was greater than the largest correla-
tion coefficient, in absolute value, between a variable within a cluster and the associated
latent variable, then the involved cluster was emptied. This was the case for the fourth
cluster with ρ = 0.65. Indeed, in the initial partition, the largest correlation coefficient
with the latent variable of this cluster was 0.646. If ρ = 0.80, all the clusters were emp-
tied. From a practical point of view, choosing a value of ρ greater than 0.65 does not
seem to be a sound choice (87.5% of the variables were put aside and interpretable latent
dimensions were lost). On the contrary, if ρ = 0.20, the solution was nearly the same
as with the classic CLV procedure. By considering ρ = 0.4, one third of the variables
was discarded overall. The first cluster is made of 12 items i.e. 55% of the variables
that were in this cluster with the classic CLV solution; the second cluster remains the
same with 6 items; the third cluster has 8 items i.e. 73% of the variables remain; the
fourth cluster has 6 items i.e. 67% of the previous ones. The first part of Table 3
indicates the memberships of the variables as well as their correlation coefficient with
the associated latent variable (LVK+1). Among the variables that were set aside, the
dental status (H DENT) was a binary indicator (complete set of teeth vs missing teeth)
which was probably not precise enough. The chemosensory ability variables (C OLFETOC,

C OLFDISCRIM, C GUSTOT) were not retained. It would appear that, even if the decline in
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Figure 4: Number of variables set aside with the “K+1” strategy or having a zero loading
with the “Sparse LV” strategy, as a function of the tuning parameter ρ.

sensory capacities varies among the elderly (Sulmont-Rossé et al., 2015), the relation-
ships between the measured sensory abilities and the latent dimensions exhibited herein
were rather weak. Among the psychological dimensions considered, related to eating
behavior and attitude, the external eating and emotional eating behavior scales seemed
to be less useful that the restriction eating behavior scale and the health interest scale.
Finally, it may be pointed out that not all the proposed eater style questions would be
retained in further studies.

When the “Sparse LV” strategy was used, the number of variables that obtained a zero
loading regarding the latent variables of the clusters is given in Figure 4. Compared with
the “K+1” strategy, the degree of sparsity is larger with the “Sparse LV” strategy for
intermediate values of the tuning parameter ρ. As previously, we considered a value of
0.4 for ρ. The correlation coefficients of the variables with a non-null loading regarding
the sparse CLV latent variables (LVsp) are given in the second part of Table 3. In a
given column, the empty cells correspond to variables which were assigned either to
another cluster or to the considered cluster but obtained a zero loading. One of the
main differences with the solution from the “K+1” strategy concerns the second cluster
in which the Authenticity scales have a zero loading. Thus, the correlation coefficient
between the CLV latent variables associated with the second cluster (LV2K+1 and LV2sp)
is only 0.81. This difference between the results of both strategies, for intermediate levels
of ρ, could be explained by the iterative soft thresholding step involved in the CLV with
the “Sparse LV” algorithm (see section 2.3, Eq. 7). In this case study, it can be observed
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CLV “K+1” (ρ = 0.4) CLV “SparseLV” (ρ = 0.4) Sparse PCA (17,5,4,3) PCA PCA, rotation Promax

LV 1K+1 LV 2K+1 LV 3K+1 LV 4K+1 LV 1sp LV 2sp LV 3sp LV 4sp sPC1 sPC2 sPC3 sPC4 PC1 PC2 PC3 PC4 RC1 RC2 RC3 RC4

H DISEASE NB -0.53 -0.47 -0.49 0.44 -0.15 0.13 0.42 -0.72 0.31 0.02 -0.10

H MNA 0.80 0.81 0.84 0.73 0.30 -0.03 -0.10 0.71 0.10 0.18 0.16

H SPPB 0.80 0.85 0.82 0.71 0.14 0.02 -0.33 0.83 -0.08 -0.02 0.01

H IADL 0.73 0.79 0.73 0.68 -0.12 0.07 -0.33 0.72 0.01 -0.25 -0.11

H DENT -0.32 -0.14 -0.16 0.02 -0.29 -0.10 -0.13 0.08

H GDS 0.71 0.86 -0.62 -0.59 -0.21 0.34 -0.10 -0.42 -0.22 -0.09 -0.46

H MMS 0.44 0.39 0.40 0.45 0.04 0.14 -0.03 0.35 0.18 0.01 -0.08

H MED TASTE DISORDER -0.49 -0.43 -0.43 -0.40 -0.09 0.03 0.43 -0.68 0.30 0.06 0.02

A NATURALITY -0.56 0.19 -0.06 -0.31 0.26 -0.09 0.30 -0.09 -0.36

A IDENTITY -0.60 0.35 0.43 -0.05 -0.27 0.16 0.16 0.31 -0.12 0.33

A ORIGIN -0.58 0.29 0.37 -0.06 -0.29 0.04 0.22 0.16 -0.15 0.30

C OLFETOC 0.34 0.40 0.02 0.00 -0.02 0.31 0.14 -0.04 0.04

C OLFDISCRIM 0.19 0.02 -0.04 0.06 0.09 0.12 0.00 0.08

C GUSTOT 0.21 0.07 0.04 -0.24 0.37 -0.17 0.01 -0.06

P RESTRICTION 0.66 0.80 0.74 0.49 -0.29 0.20 0.20 0.08 0.55 -0.25 -0.16

P EMOTION 0.77 0.30 -0.17 0.54 -0.13 0.26 0.15 -0.12 -0.55

P EXTERNALITY 0.57 0.21 0.06 0.54 0.02 0.13 0.19 0.15 -0.46

P PLEASURE 0.30 0.29 0.16 0.28 0.06 0.35 0.34 0.03

P SELF ESTEEM -0.53 -0.72 -0.64 0.19 0.34 -0.46 0.18 0.11 0.06 0.24 0.59

P HEALTH INTEREST 0.72 0.75 0.91 0.43 -0.25 -0.08 0.49 -0.19 0.75 -0.20 0.18

F STYLE BEVERAGE 0.45 0.25 -0.01 0.50 -0.12 -0.05 0.20 -0.24 0.44 0.24

F STYLE MEAT 0.66 -0.81 0.80 -0.02 0.54 0.12 0.16 0.02 0.00 0.58 0.08

F STYLE FRUIT 0.45 0.32 -0.20 0.06 0.15 0.04 0.36 -0.19 -0.04

F STYLE FAT -0.55 -0.49 -0.35 0.29 0.04 -0.20 0.01 -0.44 0.28 -0.05

F STYLE PASTRY -0.14 0.19 0.26 0.12 -0.15 0.05 0.27 -0.17

F STYLE FAT FREE 0.00 -0.08 0.10 0.34 -0.31 0.38 0.02 -0.02

F STYLE READY TO EAT -0.26 0.20 0.13 0.17 -0.27 0.03 0.29 -0.04

F STYLE FISH VS MEAT -0.60 0.79 -0.66 0.17 -0.42 -0.13 0.04 -0.04 0.22 -0.44 0.04

F STYLE DESSERT 0.10 -0.17 0.21 0.02 -0.01 0.16 -0.13 -0.23

F STYLE DELICATESSEN 0.61 -0.29 0.55 -0.15 0.56 0.14 0.10 -0.01 -0.12 0.60 0.03

F PAST WHY APPETITE -0.23 0.08 -0.14 -0.04 -0.10 -0.19 0.06 0.12

F PAST WHY HEALTH 0.57 0.64 0.32 0.42 0.44 -0.20 0.10 0.10 0.17 0.37 -0.20 -0.07

F PAST WHY LIKING -0.56 0.53 -0.56 0.20 -0.39 -0.12 -0.15 0.14 0.04 -0.45 -0.01

FV FOOD SELECTIVITY -0.46 -0.38 -0.40 -0.44 -0.14 -0.17 -0.17 -0.21 -0.34 -0.16 0.02

FV CONS MEAT RED 0.00 0.25 -0.05 0.17 -0.07 0.08 0.27 0.16

FV CONS DELICATESSEN 0.51 -0.49 -0.33 0.45 -0.05 0.00 -0.08 -0.30 0.46 0.13

FV CONS FISH 0.41 0.19 -0.16 -0.07 0.35 -0.21 0.47 -0.12 0.13

FV CONS FRUITS 0.43 0.32 -0.09 -0.04 0.20 0.03 0.36 -0.08 0.11

FV CONS VEG 0.18 0.03 0.13 0.33 -0.15 0.42 0.11 0.00

FV NB FOOD DAILY 0.15 0.17 0.32 0.25 -0.06 0.33 0.27 -0.16

FV NB FOOD DAILY 40 0.40 0.29 0.05 0.18 0.23 0.02 0.38 0.10 -0.06

SV ISOLATED 0.60 0.71 0.47 -0.30 -0.14 0.49 -0.07 -0.22 -0.06 -0.02 -0.54

SV DIFF EATING -0.46 -0.38 -0.37 -0.39 -0.20 -0.08 -0.03 -0.32 -0.14 -0.17 -0.03

SV MEAL SATISFACTION 0.51 0.45 0.48 0.50 0.14 -0.17 0.14 0.28 0.28 0.07 0.29

SV SOCIAL CONTACT -0.08 0.01 -0.25 0.16 -0.18 0.08 0.00 0.27

SV SOCIAL ACTIVITIES 0.51 0.48 0.48 0.50 -0.02 0.08 -0.09 0.42 0.14 -0.08 -0.04

SV SOCIAL OUTING 0.78 0.83 0.82 0.73 0.09 -0.02 -0.24 0.75 0.03 -0.05 0.07

R GOOD APPETITE 0.45 0.35 0.39 0.42 0.25 0.24 0.14 0.26 0.28 0.27 -0.07

Table 3: Correlation coefficients of each variable with the components defined using var-
ious strategies: the “K+1” strategy of CLV (K = 4, ρ = 0.4), the “Sparse LV”
strategy of CLV (K = 4, ρ = 0.4), the Sparse PCA (K = 4, # sparse coeffs.:
17, 5, 4, 3), the classic PCA (K = 4) and the oblique rotated components
(K = 4, Promax). An empty cell indicates that the variable is not assigned to
the cluster or has a zero loading in the component. For the two last methods,
the correlation coefficients less than 0.4, in absolute value, are in italic.
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that choosing a slightly lower tuning parameter for the “Sparse LV” strategy than for
the “K+1” strategy led to very comparable solutions. For instance with ρ = 0.3, the
latent variables obtained with the “Sparse LV” strategy were highly correlated with the
corresponding latent variables obtained with ρ = 0.4 for the “K+1” strategy.

By comparison, the third part of Table 3 shows the results obtained using the sparse
PCA (Zou et al., 2006) for the first fourth principal components. Defining the value
for the penalty parameter for each component is a tricky problem. As an alternative
the spca() procedure included in the R package elasticnet makes it possible to define
the number of loadings to be kept. Herein, for each component, this was chosen as the
number of variables whose correlation with the ordinary Principal Component (PC) was
greater than 0.4, in absolute value (given in the fourth part of Table 3). Thus, the
sparse Principal Components (sPC) have 17, 5, 4 and 3 non-null loadings, respectively.
It can be noticed that the variables associated with the first sPC are mainly those of
the first cluster (related to physical health and mobility), but also include some of the
second cluster (related to psychological health), namely H GDS, A IDENTITY and H ORIGIN

but not H NATURALITY. The other variables that were assigned to the second cluster,
P SELF ESTEEM and SV ISOLATED, are retrieved on the third sPC associated with eating
behavior items that were not retained previously. The second sPC has similarities with
the fourth cluster (related to food preferences), while the last sPC involves important
variables of the third cluster (related to food behavior). Let us note that one variable,
F PAST WHY HEALTH (indicating a change in food consumption for health reasons), has
a non-null loading for two sparse PCs. This cannot occur with the CLV approach,
whatever the strategy used, because it is based on a crisp partition of the variables.

The CLV approach, as well as the sparse PCA method, provide a useful tool to define
simple and interpretable latent components, unlike Principal Components. Indeed, each
of them is a linear combination of all the variables. In order to exhibit simple struc-
tures better in a dataset, rotation of the Principal Components has also been suggested
(Jolliffe, 2002). The last part of Table 3 gives the results of the Promax (oblique ro-
tation) transformation of the first four PCs. By highlighting the variables that have a
correlation coefficient greater than 0.4, in absolute value, with the Rotated Components
(RC), it appears that there is a concordance with the variables in the clusters obtained
with the “K+1” strategy of CLV. In fact, the correlation coefficients between the latent
variables of the clusters and the corresponding Rotated Components vary from 0.70 to
0.96. Nevertheless, the sparsity property inherent in the CLV latent variables enables
an easier interpretation of the extracted components.

4 Conclusion

We have proposed two modifications of the CLV method, a “K + 1” strategy and a
“Sparse LV” strategy, to take into account atypical or noise variables. These variables
can be pure white noise information but, within the context of clustering, this notion also
applies to isolated or scattered variables, which do not fit the underlying group structure
well. With the “K + 1” strategy, an additional cluster (“noise cluster”) is defined and
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is assumed to contain all these atypical variables. With the “Sparse LV” strategy, the
loadings of the variables that are not well-associated with the latent variables of each
cluster are set to zero. From an algorithmic point of view, both approaches correspond to
a modification of the assignment step or the latent variables estimation step, respectively,
of a Clustering around Latent variables (CLV) procedure. The tuning parameter used in
both strategies (ρ) represents a correlation threshold and can easily be chosen between
0 and 1.

Both approaches perform well, and in a similar manner, on the basis of a simulated
dataset. They also show a logical behavior when the number of clusters is incorrectly
chosen. For more complex situations, like in the real case study presented here, both
approaches may lead to solutions that can differ slightly for the same value of the tuning
parameter. However, herein, the four clusters defined, as well their associated latent
variables, highlight the same latent traits associated with physical health, psychological
health, food behavior and food preferences, respectively. The Principal Components
Analysis (PCA), the sparse PCA or the Rotated Principal Components also make it
possible to reveal these dimensions, more or less efficiently.

The “K + 1” and the“Sparse LV” strategies seem to be similar, but they reflect two
different facets of the clustering of variables performed with the CLV method: (i) the
identification of clusters of variables as homogeneous as possible, and (ii) the reduction
in the dimensionality using the cluster latent variables. According to the first facet,
the “K + 1” strategy leads to the identification of a “noise cluster” in addition to the
main clusters. This approach is more straightforward if the main objective of the user
is the segmentation of the set of variables. However, if the CLV method is applied as
an alternative to a factor analysis, in order to extract latent variables associated with
groups of correlated variables, then the “Sparse LV” strategy is recommended.

A future research direction will be how to combine the proposed strategies with pre-
dictive modeling, to improve the prediction accuracy and enhance the model’s inter-
pretability. To date, the elimination of uninformative variables (Centner et al., 1996)
and the selection of variables using the L1-penalty (Tibshirani, 1996) are the most com-
mon strategies for achieving both these goals. Both the “K + 1” and “Sparse LV”
CLV strategies could be promising alternatives for revealing predictive and easy to in-
terpret latent components. Another direction of investigation would be to introduce
sparse clustering strategies in the context of the co-clustering (simultaneous clustering
of the observations and the variables of a data set). Considering, in particular, the ap-
proach called CDPCA (Clustering and Disjoint Principal Component Analysis) (Vichi
and Saporta, 2009), which includes the CLV method as particular case, robust cluster-
ing of the observations and the ”Sparse LV” strategy” could be combined within the
CDPCA framework.
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Appendix

List of the variables in the “Survey of food perception, and nutritional and
health status in the elderly” (section 3.2)
short name name/description reference

H DISEASES NB number of diseases

H MNA Mini Nutritional Assessment (Guigoz et al., 2002)

H SPPB Short Physical Performance Battery (Guralnik et al., 1994)

H IADL Instrumental Activities of Daily Living Scale (Lawton and Brody, 1969)

H DENT dental status (0/1)

H GDS Geriatric Depression Scale (Sheikh, 1986)

H MMS Mini Mental Scale (Folstein et al., 1975)

H MED TASTE number of drugs inducing taste disorder

A NATURALITY How much I agree that the foods I eat are natural

Authenticity scales (Camus, 2004)A IDENTITY How much of the food I eat is an image of myself

A ORIGIN How much I know about the origin of the foods I eat

C OLFETOC olfactory identification

(Sulmont-Rossé et al., 2015)C OLFDISCRIM olfactory discrimination

C GUSTOT salt detection

P RESTRICTION shortened French version of the Questionnaire

(Bailly et al., 2012)P EMOTION Dutch Eating Behavior (DEBQ)

P EXTERNALITY

P PLEASURE two subscales of the Health and Taste Attitude
(Roininen et al., 1999)

P HEALTH INTEREST Questionnaire (HTAQ)

P SELF ESTEEM French version of the Rosenberg Self-Esteem Scale (Vallieres and Vallerand, 1990)

F STYLE BEVERAGE

Eater profiles (Likert scales) (Maitre, 2014)

F STYLE MEAT

F STYLE FRUIT

F STYLE FAT

F STYLE PASTRY

F STYLE FAT FREE

F STYLE READY TO EAT

F STYLE FISH VS MEAT

F STYLE DESSERT

F STYLE DELICATESSEN

F PAST WHY APPETITE

Changes in food consumptionF PAST WHY HEALTH

F PAST WHY LIKING

FV FOOD SELECTIVITY Food selectivity (Maitre et al., 2014)

FV CONS MEAT RED

Synthetic measures for frequency of consumption

FV CONS DELICATESSEN

FV CONS FISH

FV CONS FRUITS

FV CONS VEG

FV NB FOOD DAILY Nb food consumed daily, now

FV NB FOOD DAILY 40 at 40 years old

SV ISOLATED feeling of being isolated,

SV DIFF EATING of having difficulties for eating,

SV MEAL SATISFACTION of being satisfied with their meals

SV SOCIAL CONTACT

social life constructs

SV SOCIAL ACTIVITIES

SV SOCIAL OUTING

R GOOD APPETITE feeling of having a good appetite


