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In this article, we consider a generalized inverted Rayleigh distribution.
The maximum likelihood estimators (MLEs) of scale and shape parameters
are obtained. Also, we compute MLE of reliability function. Asymptotic con-
fidence intervals for the parameters and reliability function are constructed.
Simulation study is conducted to investigate performance of MLEs and con-
fidence intervals. An illustration with real data is provided.
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1 Introduction

A generalised inverted scale family of distributions is important to analyse lifetime data.
Potdar and Shirke (2013) introduced generalized inverted scale family of distributions.
Generalised inverted exponential distribution, generalised inverted Rayleigh distribution,
generalised inverted half-logistic distribution etc. are some of the members of this family
of distributions. Lin et al. (1989) and Dey (2007) studied inverted exponential distribu-
tion (IED) to analyse lifetime data. Singh et al. (2013) discussed Bayes estimators of the
parameters and reliability function of IED using Type-I and Type-II censored samples.

Generalised exponential distribution was introduced by Gupta and Kundu (1999),
Gupta and Kundu (2001a) and Gupta and Kundu (2001b). Abouammoh and Alshingiti
(2009) generalised inverted exponential distribution (GIED) by introducing a shape pa-
rameter. They discussed statistical and reliability properties of GIED. They also studied
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estimation of both scale and shape parameters. Krishna and Kumar (2013) used type-II
censored data to estimate reliability characteristics of GIED. They proposed maximum
likelihood estimation and least square estimation procedures. Potdar and Shirke (2014)
discussed inference for the scale family of lifetime distributions based on progressively
censored data. Dey and Dey (2014) and Dube et al. (2015) studied GIED for progres-
sively censored data. Dey and Pradhan (2014) discussed GIED for hybrid censored data.
Kumar and Garg (2014) estimated parameters of generalized inverted Rayleigh distri-
bution (GIRD) based on randomly censored samples. Bakoban and Abubakar (2015)
proved applicability of generalized inverted Rayleigh distribution by considering two real
data sets. Bakoban and Abubakar (2015) have studied inference of generalized inverted
Rayleigh distribution with real data applications, whereas, we have studied reliability
estimation for the GIRD. We have also studied the performance of the methods by
simulation study.

In this article, the generalised inverted Rayleigh distribution is proposed by introduc-
ing a shape parameter to the inverted Rayleigh distribution. Inferential procedures are
considered for both the parameters and reliability function. In Section 2, we introduce
the model and obtain maximum likelihood estimators (MLEs) for scale and shape pa-
rameters. We also computed MLE of reliability function in same Section. Expression for
elements of Fisher information matrix are derived in Section 3. Asymptotic confidence
intervals (CIs) for scale and shape parameters and reliability function are also discussed.
In Section 4, the performance of the MLEs and CIs are investigated through simula-
tion study. Real data application is discussed in Section 5. Conclusions are reported in
Section 6.

2 Model and maximum likelihood estimation

Consider generalised inverted Rayleigh distribution with scale parameter λ and shape
parameter α. Let X be a generalised inverted Rayleigh random variable. The cdf and
pdf of X are respectively given as

FX(x;λ, α) = 1−
[
1− e−(1/(λx))2

]α
x ≥ 0, α, λ > 0. (1)

fX(x;λ, α) =
2α

λ2x3
e−(1/(λx))

2
[
1− e−(1/(λx))2

]α−1
x ≥ 0, α, λ > 0. (2)

In the following, we discuss method of finding MLEs of α and λ as well as MLE of
reliability function R(t).

• Maximum likelihood estimation α and λ

Suppose, we observe lifetimes of n units having lifetime distribution given by equation
(2). The likelihood function for the observed data is

l(x|λ, α) =
n∏
i=1

fX (xi;λ, α) .
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l(x|λ, α) =

n∏
i=1

2α

λ2x3i
e−(1/(λxi))

2
[
1− e−(1/(λxi))2

]α−1
.

Then log-likelihood function is,

L = nlog(2α)−2nlog(λ)−3
n∑
i=1

log(xi)−
1

λ2

n∑
i=1

1

x2i
+(α−1)

n∑
i=1

log
[
1− e−(1/(λxi))2

]
. (3)

When λ is known, the MLE of α is the solution of dL
dα = 0. Thus MLE of α is solution

of the equation

n

α
+

n∑
i=1

log
[
1− e−(1/(λxi))2

]
= 0. (4)

Therefore, when λ is known the MLE of α is

α̂ = − n∑n
i=1 log

[
1− e−(1/(λxi))2

] (5)

Similarly, when α is known, the MLE of λ is the solution of dL
dλ = 0. Thus MLE of λ is

solution of the equation

−nλ2 −
n∑
i=1

1

x2i
+ (α− 1)

n∑
i=1

1

x2i
[
e(1/(λxi))2 − 1

] = 0. (6)

When both parameters α and λ are unknown, the MLEs of α and λ are the solutions
of the two simultaneous equations (4) and (6). We substitute α̂ given in equation (5)
into equation (6) so as to get a nonlinear equation in λ only, which does not have closed
form solution. Therefore, we use Newton-Raphson method to compute λ̂. In Newton-
Raphson method, we have to choose initial value of λ. We use least square estimate as
an initial value of λ. The estimate of the parameters can be obtained by least square fit
of simple linear regression. Empirical distribution function is computed on the line of
Escobar and Meeker (1998).

yi = βxi with β = λ.

yi =
1√

−log
(

1−
[

(1−F̂ (xi−1))
1/α

+(1−F̂ (xi))
1/α

2

]) for i = 1, 2, ....., n.

F̂ (x0) = 0.
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The least square estimates of λ is given by

λ̂0 =

∑n
i=1 xiyi∑n
i=1 x

2
i

. (7)

We use λ̂0 as an initial value of λ to obtain the MLE λ̂ using Newton-Raphson method.
Then we obtain α̂ using equation (5). We use these MLEs α̂ and λ̂ to obtain MLE of
reliability function R̂(t).

• Maximum likelihood function of reliability function R(t)

The probability that a system survives until time t is called the reliability of the system
at time t and it is denoted by R(t). Thus, reliability function at time t is

R(t) = P (X > t) = 1− F (t). (8)

For generalised inverted Rayleigh distribution, reliability function is

R(t) =
[
1− e−(1/(λt))2

]α
t ≥ 0, α > 0, λ > 0.

Let α̂ and λ̂ are MLEs of α and λ respectively. Using invariance property of MLE, the
MLE of R(t) is

R̂(t) =
[
1− e−(1/(λ̂t))2

]α̂
t ≥ 0. (9)

Equation (9) describes MLE of R(t).

3 Interval estimation

Now, we consider Fisher information in the following.

• Fisher information matrix

Log-likelihood function L is described by equation (3). Now, Fisher information matrix
of θ = (α, λ)′ is

I(θ) = −E


d2L
dα2

d2L
dαdλ

d2L
dλdα

d2L
dλ2

 , (10)

d2L

dα2
= − n

α2
,

d2L

dαdλ
=

d2L

dλdα
= − 2

λ3

n∑
i=1

e−(1/(λxi))
2

x2i
(
1− e−(1/(λxi))2

) ,
d2L

dλ2
=

2n

λ2
− 6

λ4

n∑
i=1

1

x2i
− 4(α− 1)

λ6

n∑
i=1

e(1/(λxi))
2

x4i
[
e(1/(λxi))2 − 1

]2
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+
6(α− 1)

λ4

n∑
i=1

1

x2i
[
e(1/(λxi))2 − 1

]2 . (11)

To obtain expectation of the above expression is a tedious job. Therefore, we use the
observed Fisher information matrix, which is given as,

I(θ̂) =

 −
d2L
dα2 − d2L

dαdλ

− d2L
dλdα −d2L

dλ2


α=α̂,λ=λ̂.

(12)

The asymptotic variance-covariance matrix of the MLEs is the inverse of I(θ̂). After
obtaining inverse matrix, we get variance of α̂, variance of λ̂ and covariance between α̂
and λ̂. We use these variances to obtain confidence intervals for α and λ respectively.

• Confidence interval for α and λ

Assuming asymptotic normal distribution of the MLEs, CIs for α and λ are con-
structed. Let α̂ and λ̂ are the MLEs of α and λ respectively. Let σ̂2(α̂) and σ̂2(λ̂) is the
estimated variances of α̂ and λ̂ respectively. Therefore, 100(1− ξ)% asymptotic CIs for
α and λ are respectively given by,(

α̂− τξ/2
√
σ̂2(α̂), α̂+ τξ/2

√
σ̂2(α̂)

)
and

(
λ̂− τξ/2

√
σ̂2(λ̂), λ̂+ τξ/2

√
σ̂2(λ̂)

)
, (13)

where τξ/2 is the upper 100(1−ξ/2)th percentile of standard normal distribution. Escobar
and Meeker (1998) reported that the asymptotic CI based on log(MLE) has better
coverage probability. An approximate 100(1− ξ)% CI for log(α) and log(λ) are(

log(α̂)− τξ/2
√
σ̂2(log(α̂)), log(α̂) + τξ/2

√
σ̂2(log(α̂))

)
and

(
log(λ̂)− τξ/2

√
σ̂2(log(λ̂)), log(λ̂) + τξ/2

√
σ̂2(log(λ̂))

)
, (14)

where σ̂2(log(α̂)) is the estimated variance of log(α̂) which is approximately obtained

by σ̂2(log(α̂)) ≈ σ̂2(α̂)
α̂2 . σ̂2(log(λ̂)) is the estimated variance of log(λ̂) which is approx-

imately obtained by σ̂2(log(λ̂)) ≈ σ̂2(λ̂)

λ̂2
. Hence, an approximate 100(1 − ξ)% CIs for α

and λ are respectively given by,α̂ e
(
−
τξ/2

√
σ̂2(α̂)

α̂

)
, α̂ e

(
τξ/2

√
σ̂2(α̂)

α̂

) and

λ̂ e
(
−
τξ/2

√
σ̂2(λ̂)

λ̂

)
, λ̂ e

(
τξ/2

√
σ̂2(λ̂)

λ̂

) .

(15)
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Equations (13) and (15) provides CIs for α and λ. Now, we discuss CIs for reliability
function.

• Confidence interval for R(t)

Let R̂(t) is the MLE of reliability function R(t) and σ2(R̂(t)) is the variance of R̂(t).
To construct confidence interval for R(t) based on R̂(t), we have to compute variance of
R̂(t) ; It is obtained by using the following lemma.

Lemma (3.1) : LetX1, X2, ...., Xk be the random variables with means θ1, θ2, ....., θk,
and define X = (X1, X2, ......, Xk) and θ = (θ1, θ2, ......, θk). Suppose h(X) is differ-
entiable function then variance of h(X) is approximated as

V [h(X)] ≈
k∑
i=1

[
h′i(θ)

]2
V (Xi) + 2

k∑
i=1,i>j

k∑
j=1

h′i(θ)h
′
j(θ)COV (Xi, Xj).

where h′i(θ) =
d

dxi
h(x)|x1=θ1,...,xk=θk .

Proof : Please refer to Casella and Berger (2002) pp.241-242.

�

Using the above lemma, we obtain σ2(R̂(t)). Hence, 100(1 − ξ)% asymptotic CI for
R(t) is (

R̂(t)− τξ/2
√
σ̂2(R̂(t)), R̂(t) + τξ/2

√
σ̂2(R̂(t))

)
(16)

where σ̂2(R̂(t)) is an ML estimate of σ2(R̂(t)). Using Lemma (3.1) estimated variance
of R̂(t) is given by

σ̂2(R̂(t)) = V̂ (α̂)
[(

1− e−(1/(λ̂t))2
)α

log
(

1− e−(1/(λ̂t))2
)]2

+ V̂
(
λ̂
)[ 2α̂

λ̂3t2
e−(1/(λ̂t))

2
(

1− e−(1/(λ̂t))2
)α̂−1]2

−
4 α̂ ˆCOV

(
α̂, λ̂

)
λ̂3t2

e(−1/(λ̂t))
2
[
1− e−(1/(λ̂t))2

]α̂
log
[
1− e−(1/(λ̂t))2

] [
1− e−(1/(λ̂t))2

](α̂−1)
. (17)

Using ML estimates of σ2(R̂(t)) from equation (17), we obtain 100(1− ξ)% asymptotic
CI for R(t) from equation (16).
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4 Simulation Study

A simulation study is carried out to study the performance of MLEs of α and λ when
the generalised inverted Rayleigh distribution is lifetime distribution. We consider bias
and mean square error (MSE) to compare MLEs. Asymptotic CIs based on MLEs and
log transformed MLEs are compared with their confidence levels.

Simulation is carried out for (α, λ)=(0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1.5, 0.5) with
sample size n= 20, 30, ....., 100. Newton-Raphson method is used to compute MLE of
λ. For each sample size, 10,000 sets of samples are generated. The bias, MSE of α̂, λ̂
and reliability estimator R̂(t) are displayed in the Tables 1 to 5 for various values of α
and λ. Further, the coverage probability and lengths of 95% CIs based on MLE and log
transformed MLE of α and λ are given in Tables 6 to 10. Also, the coverage probability
and lengths of the CIs of R(t) based on MLE are given in Tables 6 to 10.

Table 1: Bias, MSE of α̂, λ̂ and R̂(t) when α=0.5, λ=0.5 and t=2.

MLE of α MLE of λ MLE of R(t)

n Bias MSE Bias MSE Bias MSE

20 0.0655 0.0340 -0.0183 0.0081 0.0088 0.0051

30 0.0411 0.0183 -0.0122 0.0055 0.0058 0.0035

40 0.0298 0.0124 -0.0089 0.0041 0.0049 0.0025

50 0.0218 0.0092 -0.0058 0.0033 0.0034 0.0020

60 0.0202 0.0074 -0.0059 0.0027 0.0029 0.0017

80 0.0140 0.0051 -0.0048 0.0020 0.0022 0.0013

100 0.0120 0.0040 -0.0038 0.0017 0.0017 0.0010
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Table 2: Bias, MSE of α̂, λ̂ and R̂(t) when α=0.5, λ=1 and t=2.

MLE of α MLE of λ MLE of R(t)

n Bias MSE Bias MSE Bias MSE

20 0.0651 0.0344 -0.0355 0.0328 -0.0035 0.0081

30 0.0425 0.0186 -0.0233 0.0220 -0.0004 0.0050

40 0.0309 0.0122 -0.0168 0.0160 -0.0002 0.0037

50 0.0230 0.0088 -0.0125 0.0132 0.0001 0.0029

60 0.0199 0.0071 -0.0118 0.0109 -0.0009 0.0024

80 0.0145 0.0052 -0.0074 0.0082 -0.0009 0.0018

100 0.0121 0.0041 -0.0078 0.0066 0 0.0014

Table 3: Bias, MSE of α̂, λ̂ and R̂(t) when α=1, λ=0.5 and t=2.

MLE of α MLE of λ MLE of R(t)

n Bias MSE Bias MSE Bias MSE

20 0.1567 0.2033 -0.0124 0.0055 0.0049 0.0079

30 0.0991 0.0979 -0.0087 0.0036 0.0032 0.0050

40 0.0760 0.0649 -0.0074 0.0026 0.0033 0.0037

50 0.0549 0.0486 -0.0052 0.0022 0.0025 0.0029

60 0.0474 0.0380 -0.0047 0.0018 0.0017 0.0024

80 0.0355 0.0259 -0.0032 0.0014 0.0014 0.0018

100 0.0274 0.0200 -0.0025 0.0011 0.0010 0.0014
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Table 4: Bias, MSE of α̂, λ̂ and R̂(t) when α=1, λ=1 and t=2.

MLE of α MLE of λ MLE of R(t)

n Bias MSE Bias MSE Bias MSE

20 0.1560 0.2027 -0.0269 0.0215 -0.0082 0.0056

30 0.0983 0.0978 -0.0183 0.0142 -0.0056 0.0039

40 0.0780 0.0681 -0.0144 0.0109 -0.0032 0.0029

50 0.0522 0.0458 -0.0095 0.0086 -0.0032 0.0023

60 0.0467 0.0383 -0.0097 0.0071 -0.0026 0.0019

80 0.0373 0.0268 -0.0076 0.0054 -0.0024 0.0014

100 0.0293 0.0204 0.0062 0.0043 -0.0022 0.0011

Table 5: Bias, MSE of α̂, λ̂ and R̂(t) when α=1.5, λ=0.5 and t=2.

MLE of α MLE of λ MLE of R(t)

n Bias MSE Bias MSE Bias MSE

20 0.2899 0.6400 -0.0131 0.0046 0.0020 0.0085

30 0.1736 0.2870 -0.0089 0.0030 0.0009 0.0054

40 0.1246 0.1753 -0.0059 0.0022 0.0004 0.0040

50 0.0970 0.1270 -0.0052 0.0018 -0.0002 0.0031

60 0.0877 0.1068 -0.0049 0.0015 0.0004 0.0026

80 0.0612 0.0699 -0.0033 0.0011 0.0002 0.0019

100 0.0453 0.0529 -0.0021 0.0009 0.0001 0.0015
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Table 6: Coverage probability(CP) and lengths of 95 % CIs for α , λ and R(t) when
α=0.5, λ=0.5 and t=2.

α λ R(t)

CI based on
MLE

CI based on
Log-MLE

CI based on
MLE

CI based on
Log-MLE

n CP Length CP Length CP Length CP Length CP Length

20 0.9648 0.5989 0.9344 0.6275 0.8863 0.3371 0.9161 0.3442 0.9049 0.2660

30 0.9591 0.4636 0.9386 0.4780 0.9052 0.2801 0.9245 0.2840 0.9165 0.2207

40 0.9552 0.3914 0.9420 0.4004 0.9169 0.2447 0.9341 0.2472 0.9231 0.1926

50 0.9526 0.3439 0.9422 0.3502 0.9266 0.2207 0.9388 0.2226 0.9360 0.1733

60 0.9530 0.3127 0.9452 0.3174 0.9268 0.2013 0.9375 0.2027 0.9360 0.1586

80 0.9514 0.2670 0.9467 0.2700 0.9353 0.1750 0.9435 0.1759 0.9358 0.1378

100 0.9529 0.2377 0.9472 0.2398 0.9323 0.1568 0.9410 0.1574 0.9427 0.1236

Table 7: Coverage probability(CP) and lengths of 95 % CIs for α , λ and R(t) when
α=0.5, λ=1 and t=2.

α λ R(t)

CI based on
MLE

CI based on
Log-MLE

CI based on
MLE

CI based on
Log-MLE

n CP Length CP Length CP Length CP Length CP Length

20 0.9640 0.5987 0.9369 0.6273 0.8868 0.6753 0.9127 0.6895 0.9202 0.3232

30 0.9592 0.4649 0.9368 0.4793 0.9044 0.5602 0.9228 0.5680 0.9347 0.2649

40 0.9576 0.3923 0.9421 0.4013 0.9164 0.4893 0.9335 0.4945 0.9370 0.2298

50 0.9597 0.3447 0.9480 0.3510 0.9221 0.4405 0.9369 0.4442 0.9395 0.2057

60 0.9573 0.3125 0.9450 0.3172 0.9255 0.4025 0.9390 0.4053 0.9385 0.1879

80 0.9517 0.2672 0.9456 0.2703 0.9330 0.3506 0.9399 0.3524 0.9408 0.1629

100 0.9506 0.2377 0.9441 0.2398 0.9320 0.3136 0.9404 0.3149 0.9441 0.1457
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Table 8: Coverage probability(CP) and lengths of 95 % CIs for α , λ and R(t) when
α=1, λ=0.5 and t=2.

α λ R(t)

CI based on
MLE

CI based on
Log-MLE

CI based on
MLE

CI based on
Log-MLE

n CP Length CP Length CP Length CP Length CP Length

20 0.9654 1.3843 0.9373 1.4699 0.8988 0.2772 0.9194 0.2811 0.9170 0.3230

30 0.9636 1.0560 0.9410 1.0975 0.9168 0.2286 0.9316 0.2306 0.9326 0.2655

40 0.9592 0.8894 0.9473 0.9151 0.9269 0.1985 0.9360 0.1999 0.9360 0.2305

50 0.9552 0.7764 0.9397 0.7941 0.9274 0.1789 0.9363 0.1798 0.9354 0.2064

60 0.9552 0.7021 0.9440 0.7154 0.9347 0.1634 0.9405 0.1642 0.9446 0.1887

80 0.9565 0.5992 0.9494 0.6077 0.9364 0.1420 0.9402 0.1425 0.9433 0.1636

100 0.9528 0.5307 0.9481 0.5366 0.9387 0.1273 0.9441 0.1277 0.9463 0.1464

Table 9: Coverage probability(CP) and lengths of 95 % CIs for α , λ and R(t) when
α=1, λ=1 and t=2.

α λ R(t)

CI based on
MLE

CI based on
Log-MLE

CI based on
MLE

CI based on
Log-MLE

n CP Length CP Length CP Length CP Length CP Length

20 0.9703 1.3825 0.9422 1.4680 0.9006 0.5527 0.9234 0.5603 0.9022 0.2799

30 0.9613 1.0552 0.9418 1.0966 0.9197 0.4567 0.9307 0.4609 0.9175 0.2322

40 0.9597 0.8918 0.9406 0.9176 0.9211 0.3973 0.9330 0.4000 0.9280 0.2031

50 0.9576 0.7738 0.9437 0.7915 0.9308 0.3582 0.9372 0.3601 0.9272 0.1823

60 0.9519 0.7016 0.9435 0.7148 0.9336 0.3268 0.9380 0.3283 0.9341 0.1669

80 0.9540 0.6004 0.9451 0.6089 0.9363 0.2837 0.9433 0.2847 0.9371 0.1451

100 0.9553 0.5319 0.9483 0.5378 0.9364 0.2542 0.9431 0.2549 0.9403 0.1300
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Table 10: Coverage probability(CP) and lengths of 95 % CIs for α , λ and R(t) when
α=1.5, λ=0.5 and t=2.

α λ R(t)

CI based on
MLE

CI based on
Log-MLE

CI based on
MLE

CI based on
Log-MLE

n CP Length CP Length CP Length CP Length CP Length

20 0.9657 2.3456 0.9371 2.5221 0.8996 0.2502 0.9177 0.2530 0.9239 0.3362

30 0.9645 1.7491 0.9424 1.8309 0.9138 0.2068 0.9279 0.2083 0.9328 0.2757

40 0.9596 1.4556 0.9442 1.5052 0.9296 0.1804 0.9386 0.1814 0.9383 0.2391

50 0.9562 1.2732 0.9479 1.3074 0.9294 0.1618 0.9382 0.1625 0.9403 0.2141

60 0.9556 1.1529 0.9444 1.1786 0.9335 0.1477 0.9395 0.1482 0.9457 0.1956

80 0.9578 0.9769 0.9523 0.9929 0.9362 0.1285 0.9412 0.1288 0.9442 0.1695

100 0.9573 0.8621 0.9516 0.8734 0.939 0.1153 0.9417 0.1155 0.9468 0.1517

Bias, MSE of MLEs of various values of α, λ and reliability function R(t) are reported
in Tables 1 to 5. For small values of α and λ, MLEs show good performance. The bias
and MSE of the estimates are relatively smaller for small value of parameter. The Bias
and MSE of estimates of α are not affected due to different values of λ. Similarly, bias
and MSE of estimates of λ are not affected for different values of α. The bias and MSE
of the MLE of reliability function R(t) shows better performance for all values of α and
λ. The bias and MSE of the MLEs decrease with increase in sample size n.

Coverage probability and lengths of 95% CIs of α, λ and reliability function R(t)
for various values of α and λ are reported in Tables 6 to 10. When sample size is
small, coverage probability and lengths of CIs of α based on MLE are moderately large.
Increase in sample size reduces the lengths of CIs and coverage probability approach to
nominal levels. Coverage probability of CIs of α based on log transformed MLE increase
and lengths of CIs decrease as sample size increases. When sample size is small, CIs
of λ based on MLE show poor coverage probability as compared to CIs based on log
transformed MLE. When sample size is large coverage probability of CIs of λ based on
log transformed MLE are close to nominal levels. In both MLE and log-transformed
MLE case, increase in sample size considerably reduces the lengths of CIs of λ and
increases the coverage probability.

Coverage probability of CIs of reliability function R(t) is small and lengths of CIs are
moderately large for small sample size. Increase in sample size reduces the lengths of
CIs of R(t) and coverage probability approaches to nominal levels. Length of CIs of R(t)
are small for smaller values of α and λ, whereas coverage probability of CIs of R(t) does
not depend on value of α and λ.
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5 Real data application

Consider following real data which represents the number of million revolutions before
failure for each of 23 ball bearings in a life test given by Lawless (2011).

17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.4, 51.84, 51.96, 54.12, 55.56, 67.8, 68.64, 68.64,
68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4.

According to Kolmogrov- Smirnov (K-S) test criterion generalised inverted Rayleigh
distribution satisfactory fits to this data as compared to exponential distribution. For
generalised inverted Rayleigh distribution K-S statistic is 0.09928 whereas for exponen-
tial distribution it is 0.26224. For this real data set, we obtain MLEs of α, λ and
reliability function R(t) for time period t=40. We construct CIs of α and λ based on
MLE and log transformed MLE. The MLE and CIs of α and λ and their lengths are
displayed in Table 11 and 12 respectively. We also construct CI for reliability function.
MLE and CIs of reliability function with their lengths are presented in Table 13.

Table 11: MLE, Confidence intervals for α and their lengths

MLE Based on MLE Based on log-MLE

90% CI 95% CI 90% CI 95% CI

1.0320 (0.5429, 1.5211) (0.4492, 1.6148) (0.6425, 1.6577) (0.5867, 1.8153)

Length=0.9782 Length=1.1656 Length=1.0152 Length=1.2286

Table 12: MLE, Confidence intervals for λ and their lengths

MLE Based on MLE Based on log-MLE

90% CI 95% CI 90% CI 95% CI

0.0209 (0.0160, 0.0258) (0.0151, 0.0268) (0.0166, 0.0265) (0.0158, 0.0277)

Length=0.0098 Length=0.0117 Length=0.0099 Length=0.0119
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Table 13: MLE, Confidence intervals for R(t) and their lengths

MLE 90% CI 95% CI

0.7533 (0.3458, 1.1608) (0.2677, 1.2389)

Length=0.8150 Length=0.9712

Method of MLE and confidence interval based on MLE of reliability function gives
best performance for real data.

6 Conclusion

This article considers generalised inverted Rayleigh distribution having scale and shape
parameters. Point and interval estimation procedures for the parameters and reliability
function are discussed. Through simulation study, performance of estimators are studied.
In this study, both MLE and CI of parameters as well as reliability function give better
performance. Expressions given in this article can also be used for generalised inverted
scale family distributions.
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