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In this paper, we derive the reversed hazard rate of some well-known
Weibull models, which are widely used in reliability analysis. The com-
parison of reversed hazard rate along with hazard rate, and aging intensity
function is done with the help of numerical examples.
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1 Introduction

In the context of reliability theory, some well-known functions are available, viz., survival
function, hazard rate, reversed hazard rate, mean residual to study lifetime distributions
or statistical data. The notations used throughout the paper are mentioned in sequel.
We denote a continuous lifetime random variable by X with probability density function
f(·), cumulative distribution function F (·), survival function F̄ (·), hazard rate function
r(·) = f(·)/F̄ (·), reversed hazard rate function µ(·) = f(·)/F (·). r(t) is widely used
in aging analysis of a device, whereas the importance of µ(t) is found in the forensic
Science, where exact time of failure (i.e., death in case of living beings) of a system is of
importance. One can refer to Barlow and Proschan (1981), Shanthikumar and Shaked
(1994), and Shaked and Shanthikumar (2007) among others. Recently, the role of aging
intensity function (AI) in analyzing aging phenomenon quantitatively is significantly
discussed by Jiang et al. (2003), Nanda et al. (2007), and Bhattacharjee et al. (2013).
AI function L(·) is defined as L(t) = r(t)/H(t) with

H(t) =
1

t

(∫ t

0
r(u)du

)
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where defined. It can be seen that

L(t) =
−t f(t)

F̄ (t) ln F̄ (t)
, for > 0

We present a short summary of some generalized Weibull models to provide a better
fitting of certain data sets than other available distributions. Some of the families of
recent Weibull models have been highlighted in Nadarajah and Kotz (2005) and Pham
and Lai (2007).

Survival Function Notation used

F̄X(t) = exp
(
− t

α

β

)
, α, β > 0, t ≥ 0 : X ∼W2(α, β) (Weibull, 1951)

F̄X(t) = exp
(
−atβebt

)
, a > 0, β > 0, b ≥ 0, t ≥ 0 : X ∼W3(a, β, b) (cf. Lai et al., 2003)

F̄X(t) = 1− exp
{
− (β

t
)α
}
, α, β > 0, t ≥ 0 : X ∼WI(β, α) (cf. Jiang et al., 2001)

F̄X(t) = exp

[
−λ
(
t−a
b−t

)β]
, 0 6 a < t < b;λ, β > 0 : X ∼W4(a, b, λ, β) (Kies, 1958)

F̄X(t) = exp
[
1− at

α
]
, α, a > 0, t ≥ 0 : X ∼WP (a, α) (cf. Pham, 2002)

F̄X(t) = exp
[
θ
α

(1− exp(αt))
]
, t > 0, θ > 0, α ∈ R : X ∼WG(θ, α) (cf. Gompertz, 1825)

F̄X(t) = exp
{

1− e(λt)
α
}
α, λ > 0, t ≥ 0, : X ∼WS(λ, α) (cf. Smith and Bain, 1975)

* As reported in Pham and Lai (2007).

In Section 2, we derive the reversed hazard rate of some well-known Weibull models,
which are widely used in reliability analysis. The comparison of reversed hazard rate
with hazard rate, and aging intensity function is done with the help of numerical exam-
ples in Section 3. The paper ends with concluding remarks in Section 4.

2 Reversed hazard rate function

We derive the reversed hazard rate function of a family of Weibull distributions listed
in Section 1.

Theorem 2.1 If X ∼ W2(α, β), then its reversed hazard rate is a decreasing function
of t.

Proof. If X ∼W2(α, β), then

fX(t) = exp
(
− tα

β

)αtα−1

β
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so that

µX(t) =
α

β
tα−1

(
1

exp
(
tα

β

)
− 1

)
Thus,

d

dt
µX(t) =

−tα−2α
{

(α− 1)β + exp
(
tα

β

)
(tαα+ β − αβ)

}
β2
{

exp
(
tα

β

)
− 1
}2

=
−tα−2α

β2
{

exp
(
tα

β

)
− 1
}2A(t) (1)

where

A(t) = (α− 1)β + exp
( tα
β

)
(tαα+ β − αβ)

Note that
d

dt
A(t) =

α

β
tα−1 exp

( tα
β

)(
tαα+ β

)
which is non-negative for all t ≥ 0. Thus, A(t) is increasing in t. Also, A(0) = 0. Since,
A(t) is increasing in t, it follows that A(t) ≥ A(0) for t ≥ 0, giving rise to A(t) ≥ 0 for
all t ≥ 0. Thus in (1), we find that

d

dt
µX(t) ≤ 0, for all t ≥ 0.

Thus, for two-parameter Weibull, reversed hazard rate is a decreasing function of t. 2

Theorem 2.2 If X ∼W3(a, β, b), then the reversed hazard rate is a decreasing function
of t.

Proof. Here,

fX(t) = atβ−1(bt+ β)ebt−a exp(bt)t
β

µX(t) =
aebttβ−1(bt+ β)

eaebttβ − 1
,

so that
d

dt
(µX(t)) =

W (t)(
eaebttβ − 1

)2 (2)

where,

W (t) = aebttβ−2

{
− aebt+aebttβ tβ(bt+ β)2 +

(
− 1 + eae

bttβ
){
− β + (bt+ β)2

}}

= aebttβ−2

[
(bt+ β)2

{
− aebt+aebttβ tβ − 1 + eae

bttβ
}
− β

{
− 1 + eae

bttβ
}]

= aebttβ−2

[
(bt+ β)2W1(t)− β

{
− 1 + eae

bttβ
}]

(3)
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such that W1(t) =
{
− aebt+aebttβ tβ − 1 + eae

bttβ
}
. Note that,

d

dt
(W1(t)) = −a2e2bt+aebttβ t2β−1(bt+ β),

which is negative for t ≥ 0. Thus, W1(t) is decreasing in t. Also, W1(0) = 0, which gives
W1(t) ≤ W1(0) = 0. Hence in (3), we find that W (t) ≤ 0, which leads to the fact that
µX(t) in (2) is a decreasing function of t. 2

Theorem 2.3 If X ∼WI(β, α), then µX(t) is a decreasing function of t.

Proof. Here,

fX(t) =
α

t

(β
t

)α
e−(β

t
)α ,

µX(t) =
αβα

tα+1

for t > 0. Thus, µX(t) is a decreasing function of t > 0. 2

Theorem 2.4 If X ∼W4(a, b, λ, β), then the reversed hazard rate is a decreasing func-
tion of t, for a < t < (a+ b)/2.

Proof. Here,

fX(t) =
βλ(a− b)e−λ(

t−a
b−t )

β
(
t−a
b−t

)β
(a− t)(b− t)

,

µX(t) =
βλ(a− b)

(
t−a
b−t

)β
(a− t)(b− t)

(
eλ(

t−a
b−t )

β − 1
) ,

so that

d

dt

(
µX(t)

)
=

βλ(a− b)
(
t−a
b−t

)β
(a− t)2(b− t)2

(
eλ(

t−a
b−t )

β − 1
)2W (t) (4)

where,

W (t) =

[{
− 1 + eλ(

t−a
b−t )

β
}

(a+ b− 2t+ aβ − bβ)− (a− b)βλeλ(
t−a
b−t )

β

(
t− a
b− t

)β

]

=

[{
− 1 + eY

}
(a+ b− 2t+ aβ − bβ)− (a− b)βeY Y

]
= β(a− b)(eY − 1− Y eY ) + (eY − 1)(a+ b− 2t)

= f1(t) + f2(t) (5)

where Y ≡ Y (t) = λ
(
t−a
b−t

)β
, f1(t) = β(a− b)(eY − 1− Y eY ), and f2(t) = (eY − 1)(a+

b − 2t). It is to be noted that f1(t) ≥ 0 for all a < t < b, since (a − b) ≤ 0 and
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(eY − 1− Y eY ) ≤ 0 for all t ≥ 0. and f2(t) ≥ 0 for a < t < (a+ b)/2. Thus, from (5), we

conclude that W (t) ≥ 0, so that in (4) we have d
dt

(
µX(t)

)
≤ 0, for a < t < (a + b)/2.

Consequently, µX(t) is a decreasing function of t for a < t < (a+ b)/2. 2

Theorem 2.5 Let X ∼WP (a, α), then the reversed hazard rate is a decreasing function
of t if α < 1.

Proof. Here,

fX(t) = at
α
tα−1α ln(a)e1−a

tα

,

so that

µX(t) =
eat

α
tα−1α ln(a)

eat
α − e

(6)

Note that,

d

dt
µX(t) =

at
α
etα−2α ln a

{
(α− 1)(ea

tα − e)− {e+ (at
α − 1)ea

tα}tαα ln(a)

}
(e− eatα )2

=
at
α
etα−2α ln a

(e− eatα )2
W (t) (7)

where

W (t) =

{
(α− 1)(ea

tα − e)− {e+ (at
α − 1)ea

tα}tαα ln(a)

}
(8)

Let g(t) = ea
tα

for t ≥ 0. Here, g
′
(t) = at

α
ea
tα

tα−1α ln a, so that g(t) is a decreasing

(increasing) function of t if a < (>)1. Hence, g(t) ≤ (≥)g(0) if a < (>)1, i.e., ea
tα − e ≤

(≥)0 if a < (>)1. Similarly, let h(t) = at
α

for t ≥ 0. Here, h
′
(t) = at

α
tα−1α ln a, so

that h(t) is a decreasing (increasing) function of t if a < (>)1. Hence, h(t) ≤ (≥)h(0) if
a < (>)1, i.e., at

α − 1 ≤ (≥)0 if a < (>)1.
Let us consider the two cases separately: Case 1. α < 1, a < 1, and Case 2. α < 1, a > 1.

Let us first study Case 1., in which we find, e ≥ eat
α

for t ≥ 0, so that

e+

(
at
α − 1

)
ea
tα

> ea
tα

+

(
at
α − 1

)
ea
tα

≥ ea
tα

+

(
at
α − 1

)
ea
tα

≥ ea
tα

(1 + at
α − 1)

≥ 0.

Hence,
[{
e + (at

α − 1)ea
tα
}
tαα ln(a)

]
≤ 0. Further,

{
(α − 1)(ea

tα − e)

}
≥ 0, thus in

(8), we conclude W (t) ≥ 0 for Case 1. Using (7), in Case 1 (i.e., α < 1, a < 1), we
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find µX(t) is a decreasing function of t. In Case 2, we note that in (8), W (t) ≤ 0, since{
(α− 1)(ea

tα − e)
}
≤ 0 and

[{
e+ (at

α − 1)ea
tα
}
tαα ln(a)

]
≥ 0. Hence, in Case 2 (i.e.,

α < 1, a > 1), we find µX(t) is a decreasing function of t. Thus, we conclude that, µX(t)
is a decreasing function of t for α < 1, and for any a > 0. 2

Theorem 2.6 Let X ∼WG(θ, α), then the reversed hazard rate is a decreasing function
of t if α ≥ 0, θ > 1. Further, reversed hazard rate is a decreasing function of t if α < 0.

Proof. Here,

fX(t) = θeαt+
θ
α
(1−eαt)

so that

µX(t) =
θeαt+

θ
α

e
θeαt

α − e
θ
α

(9)

Note that,

d

dt
µX(t) =

θeαt+
θ
α

{
− αe

θ
α + e

θeαt

α (α− θeαt)

}
{
e
θeαt

α − e
θ
α

}2 (10)

It is easy to note that if α ≥ 0, eαt ≥ α for t ≥ 0. Further, θeαt ≥ α if θ > 1. Therefore,
from (10), we conclude µX(t) is a decreasing function of t, if α ≥ 0 and θ > 1. Next, we

proceed to study µX(t) if α < 0. Let G(t) =
(
e
θ
α − e

θeαt

α

)
. Here, d

dtG(t) = −θeαt+
θ
α
eαt ,

so that G(t) is a decreasing function of t. Note that, G(t) ≤ G(0), for t ≥ 0, gives rise

to e
θ
α ≤ e

θeαt

α . Also, α
(
e
θeαt

α − e
θ
α

)
≤ 0 if α < 0. Thus, in (10), we find d

dtµX(t) ≤ 0 if

α < 0. Hence, we conclude that µX(t) is a decreasing function of t if α < 0. 2

Theorem 2.7 Let X ∼WS(λ, α), then the reversed hazard rate is a decreasing function
of t if α < 1.

Proof. Here,

fX(t) =
α(λt)α

t

{
e1−e

(λt)α+(λt)α
}

so that

µX(t) =
α(tλ)αe1+(λt)α

t
{
ee

(λt)α − e
} (11)

Note that,

d

dt
µX(t) =

α(tλ)αe1+(λt)α

{
(α− 1)(ee

(λt)α − e)− {e+ (e(λt)
α − 1)ee

(λt)α}α(λt)α

}
t2
{
e− ee(λt)α

}2

=
α(tλ)αe1+(λt)α

t2
{
e− ee(λt)α

}2W (t) (12)
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Figure 1: Estimates of r(t), µ(t), L(t) versus t, plotted for the data in Table 1.

where

W (t) =

{
(α− 1)(ee

(λt)α − e)− {e+ (e(λt)
α − 1)ee

(λt)α}α(λt)α

}
(13)

Let p(t) = ee
(λt)α − e for t ≥ 0. Here, p

′
(t) = αλ(λt)αee

(λt)α+(λt)α , so that p(t) is a

increasing function of t. Thus, p(t) ≥ p(0) gives (ee
(λt)α − e) ≥ 0 for all t ≥ 0. In (13), we

find W (t) ≤ 0 for t ≥ 0, if α < 1 so that using (12), we conclude µX(t) is a decreasing
function of t ≥ 0. 2

2.1 Numerical examples

One can estimate F̄X(t), rX(t), µX(t), and LX(t) with the help of logical estimates, as
highlighted in the present section. Let N units be put to test at t = 0. Further, let
the number of units having survived at ordered times tj be Ns(tj). The estimates for
F̄X(t), rX(t) and µX(t) are respectively given as follows,

ˆ̄FX(t) =
Ns(tj)

N
, for tj < t < tj + ∆tj ,

r̂X(t) =

{
Ns(tj)−Ns(tj + ∆tj)

}
Ns(tj)∆tj

, for tj < t < tj + ∆tj
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Figure 2: Estimates of r(t), µ(t), L(t) versus t, plotted for the data in Table 1.

µ̂X(t) =

{
Ns(tj)−Ns(tj + ∆tj)

}
{
N −Ns(tj)

}
∆tj

, for tj < t < tj + ∆tj

Thus, a estimate for LX(t), for t > 0, is

L̂X(t) =
−t
{
Ns(tj)−Ns(tj + ∆tj)

}
Ns(tj)∆tj ln

Ns(tj)
N

, for tj < t < tj + ∆tj .

A failure data of seventy compressors collected from Ebeling (2004) are observed
at 5-month intervals with failures as shown in Table 1. Estimates of r(t), µ(t), L(t)
computed for the failure data in Table 1 are plotted in Figure 1.

The hypothetical data given in Table 2 depict failures in one thousand B-52 bombers
(i.e., N = 1000) performing various 24-hr missions (cf. Shooman, 1968). r(t), µ(t), L(t)
computed for the failure data in Table 2 are plotted in Figure 2.

3 Concluding Remarks

We look at the system properties of some well known Weibull models, each one of
these has wide applications in appropriate scenario. Similar results can be studied for
other Weibull models. The comparison of L(t), h(t), µ(t) is studied for two numerical
examples. The Figure 1 and Figure 2 show that the AI function considerably differs
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Table 1: Failure data of compressors

Time till failure Ns(tj)
Ns(tj)

N
Ns(tj)−Ns(tj + ∆tj) f̂X(t) r̂X(t) µ̂X(t) L̂X(t)

0-5 70 1.00 3 0.0085714 0.0086 - -

5-10 67 0.957 7 0.02 0.0209 0.4666667 0.47714t

10-15 60 0.857 8 0.022857 0.0267 0.16 0.17321t

15-20 52 0.743 9 0.025714 0.03460 0.1 0.11640t

20-25 43 0.614 13 0.0371429 0.0605 0.0962963 0.12415t

25-30 30 0.429 18 0.051429 0.1200 0.09 0.1416t

30-35 12 0.171 12 0.034286 0.2 0.0413793 0.11341t

Table 2: Failure data of B-52 bombers

Time till failure Ns(tj)
Ns(tj)

N
Ns(tj)−Ns(tj + ∆tj) f̂X(tj) r̂X(tj) µ̂X(tj) L̂X(tj)

0-2 1000 1 222 0.111 0.111 - -

2-4 778 0.778 45 0.0225 0.028920308 0.101351 0.1152t

4-6 733 0.733 32 0.016 0.021828104 0.0599251 0.0703t

6-8 701 0.701 27 0.0135 0.019258203 0.045150 0.0542t

8-10 674 0.674 21 0.0105 0.015578635 0.0322086 0.0395t

10-12 653 0.653 15 0.0075 0.011485452 0.0216138 0.0270t

12-14 638 0.638 17 0.0085 0.013322884 0.023481 0.0297t

14-16 621 0.621 7 0.0035 0.005636071 0.009235 0.0118t

16-18 614 0.614 14 0.007 0.011400651 0.018135 0.0234t

18-20 600 0.6 9 0.0045 0.0075 0.01125 0.0147t

20-22 591 0.591 8 0.004 0.00676819 0.00978 0.0129t

22-24 583 0.583 3 0.0015 0.002572899 0.0035971 0.0048t
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from failure rate and reversed hazard rate functions for the given data sets. Failure rate
function considers only the risk of instantaneous failure whereas aging intensity function,
which is the ratio of the instantaneous failure rate to the failure rate average, measures
the average risk of failure with time. Sometimes, one may be interested in improving
the average aging behavior of a system than that of instantaneous failure rate, which
justifies the significant role of AI function in reliability analysis.The present work can
be extended for other Weibull distributions to help researchers to conclude about the
nature of reversed hazard rate and other aging properties.
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