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In social and behavioural sciences the optimal use of rating scales is an
important issue. Discussions on the number of response categories that op-
timizes the psychometric proprieties of the scales and sums up the global
amount of information deriving by the response patterns are the aim of sev-
eral studies. In a parametric context, this paper faces two specific topics:
verify if the number of modalities affects the interpretation of responses and
suggest a transformation of the observed ratings distribution when a com-
parison of results with a different numbers of response categories is neces-
sary. Analysis is carried out within the statistical framework introduced for
the study of feeling and uncertainty components in the process of responses
which generate ordinal scores. Some empirical evidences and a simulation
experiment support the usefulness of the approach.
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1 Introduction

In several surveys the interpretation of rating scales introduced for analyzing individual
evaluations, attitudes and opinions is a common and important issue. Discussions have
been conducted to examine the effects of different numbers of response categories on the
reliability and validity of rating scales and on the optimal number of response alternatives
(Cox, 1980; Cicchetti et al., 1985; Schutz and Rucker, 1975; Matell and Jacoby, 1971;
Lozano et al., 2008).

From a different point of view, other recent approaches focus on the interpretation
of the scales with same number of categories. They are concentrated on subjective
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interpretation of ordinal scale by considering the anchoring vignettes. These are (usually
brief) descriptions of hypothetical people or situations that survey researchers can use
to correct inter-personally incomparable survey responses (King et al., 2004; King and
Wand, 2007).

Analyses also concern the structure and the choice of the scale. With respect to
questions where the respondent is asked to provide the agreement to a statement (Likert,
1932) which provides a description of ordered response levels (for example: strongly
disagree, disagree, neither agree nor disagree, agree, strongly agree), the scale used to
measure specific ordinal issues may be also a numerical one.

In the former category, several researchers use the “Equal-Appearing Intervals” scaling
method (Thurstone, 1927) to produce what is argued to be an interval scale.

In the second category, related to the choice of the scale, Cummins and Gullon (2000)
state that using an expanded scale is desirable for subjective quality of measurement and
that the appropriate scale format may be a 10-point, end-defined scale. Generally, several
dimensions (more than 7) of scales allow to deal factors as social desirability, response
set (stereotyped answers), semantic factors. Garner (1960) suggests that maximum
information is obtained by using more than 20 response categories. Other Authors argue
that reliability is maximized with 7 response alternatives (Symonds, 1924; Ramsay, 1973;
Nunnally, 1970; McKelvie, 1978) or 5 (Jenkins and Taber, 1977; Lissitz and Green, 1975;
Neumann, 1979) by stressing the idea than a grater categorization implies a greater loss
of information. The general thought is that the discriminating power is lowest for the
scales with a low number of categories (less than 4) (Preston and Colman, 2000) because
respondents prefer formats with a larger number of response sets, as this permits them
to more clearly express their point of view. Finally, Cox (1980) argues that the number
7 plus or minus 2 appears to be a reasonable range for the optimal number of response
alternatives.

Some authors argued that the response may vary if different number scale points
are used (Dawes, 2008) since this influences what is commonly denoted in psychological
literature as response style (Baumgartner and Steenback, 2001; Buckley, 2009; Cronbach,
1998).

Moreover, respondents may not perceive all the adjacent levels as equidistant. Thus,
when using a 10 values scale it can be argued that the psychological distance between 5
and 6, that in some countries is associated to the pass mark, can be larger than those
associated to other adjacent values. Another form of distortion may arise from the
fact that respondents may refrain from using extreme values of the scale when a more
generous number of scale points is provided, while they are usually more concentrated
in the central value. Middle category endorsement in odd-number scale is extensively
analyzed by Kulas and Stachowski (2009). Mostly, odd numbers of response categories
have generally been preferred to even numbers because they allow the middle category
to be interpreted as a neutral point (Green and Rao, 1970; Neumann and Neumann,
1981).

An extensive literature, instead, discusses about the inclusion of don’t know option in
a response scale (see the seminal work of Converse (1964), and Beatty and Herrmann
(1995); Poe et al. (1988); Lietz (2010), among others).
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Another matter related to the scale effects concerns the comparison. It is sometimes
found that data on the same topics are collected by means of different scales. This
circumstance creates serious problems in case of comparison. In longitudinal research
designs, in analysis concerning different countries or simply in studies related to different
fields as education, medicine, marketing, or many areas of social research, for example,
a m-point scale may be replaced by a new m∗-point scale, or vice versa, and researchers
may wish to establish a basis for continuity to enable comparisons to be made among
different data.

In this paper we confine our attention to the analysis and comparability of scales with
more than 3 categories. Specifically, we analyze the scale usage problems in two different
perspectives:

• verify if the number of categories affects the interviewed’s response;

• introduce a model-based method for transforming the expressed responses on dif-
ferent scales.

To deal with both issues a mixture model for the analysis of ordinal variables will be
introduced. The basic idea is to capture the fundamental components which are present
in the process of selection of a level/category in a parsimonious manner by means of
a parametric probability distribution introduced for the analysis of ordinal variables.
The idea behind the mixture model is to weigh the feeling and uncertainty components
present in the process of selection of a rating score. These features deserve careful
consideration since they turn out to be useful in different circumstances when ordinal
data have to be compared.

The paper is organized as follows: in Section 2 the setting and notation of the se-
lected mixture model is presented. Section 3 discusses the effect of changing a scale on
the responses’ distribution and Section 4 performs a simulation experiment to enforce
the empirical evidence. Then, Section 5 introduces a proposal to compare rating distri-
butions obtained by different scales according to a model-based approach. Some final
remarks end the work.

2 Method and setting

The finite discrete mixture which is the main tool of this paper has been denoted as
cub model (the acronym stems from the C ombination of a discrete U niform and shifted
B inomial random variable) and it has been introduced by Piccolo (2003) to analyze or-
dinal data as the result of a data generating process (Iannario and Piccolo, 2012, 2015).
This approach differs from the more common models for ordinal data (for instance,
cumulative models: McCullagh (1980); Agresti (2010); Tutz (2010)) since it explicitly
considers the discrete probability of the ordinal categories without considering the cumu-
lative probabilities derived from the latent variable. As a consequence, cub models are
ceteris paribus more parsimonious since they do not require the estimation of thresholds
in the fitting procedure. In addition, as we will discuss later, parameters are immediately
related to the psychological components of human decisions and a visual representation
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simplifies this interpretation (see Gambacorta and Iannario (2013), for a comparison of
the two approaches).

The starting point for introducing cub models is a formal setting of the behaviour of
respondents when faced with rating scales. Generally, the interviewee performs a com-
parative judgment based on his/her background, interest, personal feeling, attractive-
ness, satisfaction, awareness towards the item. At an unconscious level, he/she evaluates
the desirability of responding accurately (the so-called “communicative intent” of Brad-
bum et al. (1979)), but possible indecision, fuzziness and blurriness quite often surround
the final selection.

To simplify such a complex cognitive process we refer to the main factors present in
the selection of an ordinal category as feeling and uncertainty, respectively, and advocate
for them two discrete probability mass functions. Assume that each subject generates
an ordinal response Yi and P r (Yi = j) is the probability that he/she selects the j-th
category, where j belongs to the support {1, 2, . . . ,m} and m is a known integer. All
information on the i-th subject are collected in the i-row ti of a matrix T , for i =
1, 2, . . . , n.

The stochastic component of a cub model is defined by:

Pr(Yi = j | θ) = πi bj(ξi) + (1− πi) pUj , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (1)

where bj (ξi) =
(
m−1
j−1
)
ξm−ji (1− ξi)j−1 and pUj = 1/m, j = 1, 2, . . . ,m are the proba-

bility mass functions of the shifted Binomial and discrete Uniform random variables,
respectively.

Then, the systematic components of the model link parameters and subjects in a direct
way by means of:

logit(πi) = xiβ; logit(ξi) = wiγ; i = 1, 2, . . . , n, (2)

where (xi,wi) is the information set extracted from the i-th row ti of T to specify the
relationships of πi and ξi with the corresponding subjects’ covariates xi and wi. The
logistic function logit(p) = log (p/(1− p)), for any real p ∈ (0, 1) is generally the most
common link function. Notice that, given the parameterization (2), the covariates in xi

and wi may coincide, overlap or be completely different.
To interpret the parameters of the model, let us consider that the propensity of the

subject to give a completely random response increases with (1−πi) whereas the agree-
ment with the item increases with (1 − ξi) since ξi → 0 implies a distribution which
gives high probabilities to greater values of the categories. As a consequences, we may
interpret (1 − πi) and (1 − ξi) as direct measures of feeling and uncertainty of the i-th
subject, respectively.

When the model is fitted to the whole sample and without covariates, we get πi ≡ π
and ξi ≡ ξ, ∀i and a global model for the sample of respondents becomes:

Pr(Y = j | θ) = Prj (θ) = πbj (ξ) + (1− π) pUj , j = 1, 2, . . . ,m. (3)

Now, θ = (π, ξ)′ belongs to the parameter space

Ω (θ) = {(π, ξ) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1} .
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The identifiability of model (2) has been proved for any m > 3 (Iannario, 2010) whereas
m = 3 implies a saturated model. Since the parameter space is the (left open) unit
square and there is a one-to-one correspondence between the probability mass function
(3) and a point in the unit square with coordinates (1− π, 1− ξ), the interpretation of
cub model is immediate. In particular, it allows for an easy comparison when different
models are built with respect to subjects’ characteristics (gender, education, marital
status, job, etc.) or varying time, space and contexts.

Asymptotic inference related to estimation and testing for cub models are obtained
by Maximum Likelihood methods and EM procedures for finite mixtures, as fully dis-
cussed by Piccolo (2006). An updated program to perform a full statistical inference for
cub models and several variants is freely available in the R environment (Iannario and
Piccolo, 2014).

Moreover, we mention that several extensions have been advanced for cub models as,
for instance, the inclusion of objects’ covariates (Piccolo, and D’Elia 2008), a shelter
component (Iannario, 2012a), a multilevel option (Iannario, 2012b), the presence of
overdispersion (Iannario, 2015) and the modelling of “don’t know” responses (Manisera
and Zuccolotto, 2014).

3 Changing the scales and uncertainty component

In this Section we assume that preference and agreement towards the item are collected
as continuous covariates and, for practical reasons, people split their range by selecting
a specific option within a discrete set of ordinal categories. It is legitimate to ask if
the feeling and uncertainty measures are modified by such a subdivision: i) a priori,
to suggest a convenient number of categories when the survey has to be planned; ii) a
posteriori, to assess a correct interpretation of the results for a given subdivision.

If cub models are considered as an adequate parameterization for the analysis of ordi-
nal data, a general result may be derived. In fact, the parameter π is strictly related to
the uncertainty which may be also interpreted in terms of heterogeneity of the distribu-
tion. A discrete Uniform distribution is the extreme case of a totally uncertain response
and it corresponds to the maximum heterogeneity (such a random variable attains the
maximum entropy among all discrete distributions defined over a finite support). On the
contrary, uncertainty and heterogeneity both decrease if the distribution is concentrated
in a single category or a limited number of categories.

For a discrete random variableX characterized by the probability distribution function
(p1, p2, . . . , pm) over the support {1, 2, . . . ,m}, a convenient measure of this concept is
the (normalized) Gini heterogeneity defined by:

GX =

1−
m∑
j=1

p2i

 m

m− 1
, (4)

which satisfies: 0 ≤ GX ≤ 1. Then, for a cub model, it has been shown (Iannario, 2009,
2012c) that

GCUB = 1− π2 (1−GSB) , (5)
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where GCUB and GSB are the Gini indexes for cub and shifted Binomial random vari-
ables, respectively. The last identity shows that, for a given ξ, heterogeneity (as measured
by the Gini index) is inversely related to π and thus it is directly related to uncertainty
(as measured by 1− π).

Now, let X and W two random variables defined over the supports {1, 2, . . . ,m} and
{1, 2, . . . ,m,m+1} with probability mass functions (p1, p2, . . . , pm) and (q1, q2, . . . , qm, qm+1),
respectively. Assume that pj ≡ qj , j = 1, 2, . . . ,m− 1 whereas pm = qm + qm+1. Thus,
the two distributions are identical but for the last category of X whose probability is
split over the last two categories in the case of W . Then, it is immediate to prove that:

GW = GX + 2qm qm+1 ≥ GX .

This result shows that, in this instance, an increase in the number of categories increases
the Gini index, therefore heterogeneity and the uncertainty of discrete distributions as
measured by 1− π for cub models.

To check the empirical validity of this result we consider two real case studies where
a continuous latent variable has been codified in a finite number m of categories. Then,
for varying m, a cub model has been fitted to these ordinal data and a sequence of
estimated models has been plotted in the parameter space, for m = 3, 4, . . . , 20.

• The first case study concerns a self-administered questionnaire collected in 2014
in which a subsample of 1108 respondents rated some issues associated to rela-
tional goods (see Gui and Stanca (2010); Uhlaner (1989), among others). Since
time spent for relationships has a significant and positive impact on individual
happiness, the analysis is referred to the self declared happiness. This variable is
collected by means of a continuous line (track bar) with a starting and an end-
ing point (extremely unhappy/happy), yielding a continuous interval measure on
which respondent marks his/her level of happiness.

• The second case study concerns the discretization of the dependent variable mental
disease of teachers and data are a subset of the Survey on Teachers’ Stress and
Health (STREH) of 247 Italian teachers collected within a psychological study
(Zurlo et al., 2010) about the key issues of the teachers’ stress. The dependent
variable is determinated by means of the sum of different tests; thus, it approaches
a continuous latent variable for central limit theorem.

In both cases, the range of the continuous variable has been discretized in m classes of
constant width, from m = 3 up to m = 20, and the estimated cub models are depicted
in Figure 1. Notice that the axes are scaled and do not represent the whole parameter
spaces. It is evident an almost systematic increase of the level of uncertainty whereas
the level of feeling may be considered stable.

To see if different scaling modifies the structure of the estimated discrete distributions

p̂
(m)
j , j = 1, 2, . . . ,m, we compute location, heterogeneity and shape indexes, for each

subdivision in m categories. More specifically, for each estimated cub models, we intro-

duce a normalized mean value (average) on [0, 1] defined by E(Y ) =
∑m

j=1 jp̂
(m)
j −1

m−1 , the
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Figure 1: Effect of changing the scale on the estimated cub models on two real data sets

already quoted heterogeneity index of Gini and the skewness and kurtosis indexes:

Skew(Y ) =
m∑
j=1

[(
j − µ
σ

)3

p̂
(m)
j

]
; Kurt(Y ) =

m∑
j=1

[(
j − µ
σ

)4

p̂
(m)
j

]
− 3.

In a sense, they capture the main futures of a discrete distribution. Figure 2 shows these
measures for the selected data sets which have been analyzed by cub models in Figure
1.

From this empirical analysis, it turns out that heterogeneity increases with m whereas
the normalized average lowers.

4 A simulation experiment

A more formal approach to verify the effect of changing scale on the ordinal responses
consists in simulating data from continuous distributions with different shapes, dscretize
them into m classes and modifying the discrete distrbution with the inclusion of a pro-
portion of totally random responses. Although the experiment has been conducted in
several combinations of parameters for many random variables we limit ourselves to
report the most significant patterns obtained in four typical cases.

In the first instance, the distributions have been selected according to the parameters
specification of Table 1. In any case, n = 1000 observations have been generated by
the latent variables over a convenient support (see last column of Table 1). Then, the
sample has been discretized by cutting the range of observed values in m classes of
equal size, for m = 3, 4, . . . , 20. 70% of results have been mixed with 30% of a discrete
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Figure 2: Main indexes of the estimated cub models obtained by changing the scale

Uniform distribution. The obtained ordinal data have been fitted by cub models and
the estimated models are plotted in the parametric space for varying m (Figure 3).

Table 1: Selected continuous distributions for the simulation experiment

Random variables Parameters Skewness Kurtosis

Gaussian µ = 0, σ2 = 1 0.000 0.000

Exponential λ = 0.5 2.000 7.000

Beta r = 5, s = 2 −0.596 −0.120

Chi-square g = 5 1.265 2.400

While it is evident the direction of the uncertainty when m increases, the skewness
of the distribution and the weight of uncertainty should be considered important issues
in modifying the estimated models. Thus, we first investigate right and left skewed
distributions and then modify the weight of uncertainty to see this separate effect.

Figure 4 (left panel) shows the results of fitting cub models for an increasing number
of categories for two Beta random variables with r = 5, s = 2 and r = 2, s = 5,
respectively. It confirms that the effect on the estimated models is almost coincident but
for the feeling parameter which modifies its level (as expected). Thus, ceteris paribus, a
modification of the skewness changes the level of the distributions. Instead, the increase
of the scale does not modifies the level in any case, and thus again it turns out that the
feeling parameter is nearly unaffected by a change of scale.

In Figure 4 (right panel) the effect of increasing the weight of uncertainty on a con-
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Figure 3: Effect of changing scales on different continuous distribution (Gaussian on top
left, Exponential top right, Beta bottom left and Chi-square bottom right)

tinuous Beta random variable with r = 2, s = 5 is shown. The plots refer to samples
where the weights of uncertainty are 0.1, 0.5, 0.9, respectively, and are represented with
a line width proportional to such weights. The profiles again confirm that a modification
in scale almost does not affect the feeling in any combination of uncertainty. On the
contrary, uncertainty increases with the subdivision of the scale but the behaviour is
more and more idiosyncratic when the weight of uncertainty is higher.

As a conclusion of the reported experiments (a subset of the largest analysis which has
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Figure 4: Effect of changing scales in case of skewness (left panel) and different weight
of uncertainty (right panel)

been conducted), it turns out that the main effect of the scale modification is to increase
uncertainty whereas the feeling component is substantially unaltered. The regularity of
these results lowers when the weight of uncertainty in the original data set is high.

5 An approach to compare ratings with different scales

In this Section we refer to surveys where some interviewees are asked to give ordered
responses by means of a m-point rating scale and other people (in different time, space,
occasion) give responses to the same or similar issues on a different scale based on m∗

categories.
The easiest method to compare these surveys is based on a simple proportional trans-

formation. More specifically, people relate information on the two surveys by means of
an arithmetic relationship between the ratings (r1, r2, . . . , rn)′ and (r∗1, r

∗
2, . . . , r

∗
n)′ based

on m and m∗ categories, respectively, according to:

r∗i =
ri(m

∗ − 1) + (m−m∗)
m− 1

⇐⇒ ri =
r∗i (m− 1) + (m∗ −m)

m∗ − 1
, i = 1, 2, . . . , n.

Since this is a linear mapping between ri and r∗i , the averages of both rating scales satisfy
the same relationship.

Standardization is another approach that has proved useful for evaluating empirical
data (Rosenthal and Rosnow, 1991), designing experiments (Cohen, 1988), and integrat-
ing results from many studies (Hedges and Olkin, 1985).

These approaches are non-parametric and thus they does not take the features of
the data generating process into account. Alternatively, if feeling and uncertainty are



Electronic Journal of Applied Statistical Analysis 339

considered as the main components of the expressed ordinal ratings, a solution should
maintain these two characteristics. More specifically, a parametric solution is suggested
in the class of cub models which allows to pass from one scale to another by considering
the whole informative content of data.

As shown in previous Sections, what is really affected by a change in the scale is the
uncertainty component whereas the feeling parameter may be considered as substantially
stable. Then, our approach is to fit a cub model for the given ratings (r1, r2, . . . , rn)′

based on m points scale which produces estimates (π̂, ξ̂). Assuming that the feeling
parameter is generally more stationary than the uncertainty one, we pass from the
probability distribution with m categories to the new one with m∗ categories by selecting
the π∗ parameter such that the heterogeneity Gini index computed on the probability
distribution of the first model be as close as possible (or coincide) to the Gini index
computed with m∗ categories.

Formally, if Gm(π, ξ) denotes the Gini index (4) for a cub random variable with m
categories and specified by the parameters (π, ξ), then this approach searches for a π∗

such that:
Gm∗(π∗, ξ) = Gm(π, ξ) .

Then, exploiting the relationship (5), it is immediate to solve the previous equation for
π∗ and obtain:

π∗ = π

√√√√√√√√√
m∗(m∗ − 1)

m(m− 1)

m∑
r=1

[br,m(ξ)]2 − 1/m

m∗∑
r=1

[br,m∗(ξ)]2 − 1/m∗

, (6)

where br,m(ξ) denotes the probability mass function of the shifted Binomial distribution
over the support {1, 2, . . . ,m}, and similarly for br,m∗(ξ).

To get an idea of the modification in π expressed by the previous formula, we compare
the values of the square root in (6) for varying ξ and form∗ = m+1,m+2, ..., whenm = 5
(Figure 5). The plots show that such a ratio changes with ξ according to (approximately)
a quartic function with two maxima around ξ = 0.1 and ξ = 0.9 (approximately) and
with a minimum at ξ = 0.5. In fact, when the distribution is almost symmetric (that is
around ξ = 0.5) the ratio is less than 1 and thus the proposed criterion reduces π, that
is it increases uncertainty in the transformed distribution. Instead, for other values of ξ
the effect of transformation is to increase π and thus to reduce the uncertainty which is
present in the distribution. This reduction may be also very high when the values of ξ
or 1− ξ are located around 0.1.

For an illustrative example, let m = 5, ξ = 0.1 and π = 0.4; then, the heterogeneity
Gini index is 0.9364 (Figure 6, left panel). Moving to a rating survey with m∗ = 9, we
don’t change the value of the parameter ξ but, in the class of cub models with the given
ξ = 0.1, we will choose a cub model such that the Gini index is as close as possible
to the heterogeneity index obtained with m = 5. This is graphically shown in Figure 6
(middle panel) where the crossing point specifies the required π∗. In this way, the new
cub model (Figure 6, right panel) preserves the main features of the previous one with
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Figure 5: Ratio of formula (6) for m = 5 and m∗ = 6, 7, . . . , 10

m∗ = 9, ξ = 0.1 and π∗ = 0.481 and it may be used for comparative purposes. Notice
that the value of π∗ is increased more than 20% since it corresponds to a value of ξ
which (approximately) generates the maximum ratio in formula (6), as shown in Figure
5. The global effect on the new probability mass function is a reduction of uncertainty
as it is evident if one compares the distributions in the left (m = 5) and right (m∗ = 9)
panel of Figure 6.

Table 2: Indexes for equivalent cub distributions

Indexes m = 5 m∗ = 9

Normalized average 0.660 0.692

Gini heterogeneity 0.936 0.936

Skewness −0.660 −0.886

Kurtosis −0.902 −0.496

To confirm the stability of the main features of these two distributions, Table 2 shows
the main indexes computed on the cub distributions with m = 5 and m∗ = 9, respec-
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Figure 6: Equivalent cub distributions with m = 5 (left panel), m∗ = 9 (right panel)
with respect to Gini index (middle panel)

tively. Thus, the proposed transformation does not modify location and heterogeneity
and substantially preserves skewness and kurtosis of the modified distribution.

6 Discussion and conclusion

The framework of cub models is useful for interpreting ordinal data in terms of param-
eter parsimony, adequate fitting and immediate visualization. We have exploited some
of these characteristics in order to propose an approach aimed to capture the main fea-
tures contained in ordinal data and to allow for the comparison of data sets originated
by different surveys in similar area of investigation. The main idea is that uncertainty
and feeling parameters are the fundamental information contained in the data and cub
modelling is a probability structure able to summarizes them in an effective manner.

In the previous Sections procedures have been applied both to real and simulated case
studies in a context of model-based analysis. They confirm that the level of the response
is substantially preserved, whereas uncertainty increases with the number of categories.
An important difference between the previous studies and an empirically based approach
relies on the fact that respondents react variously when faced with a different number
of categories.

The empirical evidence sharply shows that the uncertainty component increases with
the length of the scale. Thus, a substantive argument can be raised: “an increased
number of categories induces more uncertainty in the responses” or “uncertainty is better
emphasized when the number of categories increases?”. A correct answer to this problem
requires adequate experimental designs which we are planning for future studies.
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