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Copula functions have been widely used in actuarial science, finance and
econometrics. Though multivariate copulas allow for a flexible specification
of the dependence structure of economic variables, they are not particu-
larly tempting in high dimensional contexts. A factor model which involves
copula functions has already proved to be a powerful tool in credit risk appli-
cations.We exploit a recent approach to obtain a factor copula model based
on a vine structure, which enables to model the dependence and conditional
dependence of variables through a representation of a cascade of arbitrary bi-
variate copulas. The contribution of this paper consists into applying the vine
copula model in order to derive a non linear three-factor model. In particu-
lar, we draw the three-factor model of Fama and French (1992). According
to the Inference for Margins (IFM) method, we have computed, separately,
the margins and the copula parameters via maximum likelihood estimation.
Finally, tail dependence measures are given for the implied estimated copula.

keywords: Factor copula model, Vines, Tail dependence, Tail density func-
tions.

1 Introduction

The factor approach is a powerful tool in market and credit risk modelling, e.g. for the
pricing of CDO, due to its capability in describing, in a both flexible and tractable way,
the joint default for a large number of names. One of the most prominent theoretical
contributions proposed in literature is the three-factor model of Fama and French (1992),
an extension of the well-known Capital Asset Pricing Model (CAPM) (Lintner, 1965;
Sharpe, 1964). According to this model, the cross-section of expected stock returns can
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be explained along a linear three-factor model composed of three common factors: a
broad market premium, the spread between small and big market capitalization stocks,
and the spread between value and growth stocks.

In particular, the size factor rose from a work of Banz (1981), who verified a negative
relationship between average return and firm size. The role of the third factor in ex-
plaining the cross-section of average returns was documented by Chan et al. (1991) in
the Japanese market.

The factor models proposed in theoretical and empirical applications are often embed-
ded into a stochastic correlations framework, implying marginal and joint normality of
the stocks and factor returns and of the idiosyncratic cross-sectionally and serially inde-
pendent error terms. Moreover, the classical factor models assume the independence of
common factor returns but Oh and Patton (2011) have already dropped this assumption.
It is widely recognized the evidence of skewness and time conditioning in the univariate
behavior of stock returns and, overall, in their whole and tail dependence structure,
see e.g., Campbell et al. (2002), Dias and Embrechts (2010), Engle (2002), Longin and
Solnik (2001), Patton (2006), to name just a few. Furthermore, Richardson and Smith
(1993) show the departure from normality of the asset returns and CAPM residuals.
Finally, Chollete and Ning (2010) find evidence of joint tail dependence in several US
risk factors.

In order to exploit the cross-section of expected stock returns in non linear way, possibly
asymmetrical, a factor approach which involves copula functions is proposed.

A factor copula model allows for computational efficiency, overall in high dimensional
contexts, and a flexible specification of the dependence structure, not limited to inde-
pendence or linear dependence.

Introduced by Vasicek (1987) to evaluate the loan loss distribution, and after applied by
Li (2000) to multi-name credit derivatives, in terms of Gaussian factor copula, the model
was later generalized by Andersen and Sidenius (2004), Gregory and Laurent (2005), Mc-
Neil et al. (2005) and van der Voort (2005), which introduced non linear versions. Other
extensions include Hull and White (2010), which proposed a two-parameter version of
their ”implied copula” model (Hull and White, 2004, 2006). Many of these models are
based on simulation or calibration techniques and are not directed to the estimation of
copula parameters. Besides, the extension of copula in a multivariate framework requires
additional assumptions and it is not an easy task (see Oh and Patton, 2011).

Then, a flexible approach to obtain multivariate copulas can be represented by vines
(Bedford and Cooke, 2001), based on the factorization of the multivariate copula den-
sity in terms of bivariate linking copulas and lower-dimensional margins. Vines were
proposed at first by Joe (1996), as Pair Copula Construction (PCC), later discussed by
Bedford and Cooke (2001; 2002), which introduced a graphical representation denoted
as regular ”vine”, and by Kurowicka and Cooke (2004; 2006) which defined two partic-
ular classes of vine calling them D-vine and C-vine and, finally, developed by Aas et al.
(2006) and Aas and Berg (2009), which described statistical inference techniques. In the
light of these reasons, adopting a vine structure to draw a multivariate factor copula
model allows to:
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- depart from linear dependence and gaussian distribution, both via more general
marginal distributions and in the dependence structure;

- estimate the copula parameters in a computationally feasible way for high-dimensional
continuous variables;

- obtain a flexible specification due to a free selection of copulas involved at various
levels of the path-structure from any class and without restrictions on parameters,
implying a better description of the joint behavior of the data with different tail
dependencies, possibly asymmetric;

- verify the presence of independence between common factors and among variables
conditionally on common factors, hypothesized by the classical factor copula ap-
proaches.

Brechmann and Czado (2011), Heinen and Valdesogo (2009; 2011) have applied a vine
copula model in order to obtain a non linear version of the CAPM, considering an ex-
tension which includes the sector effects.

Our proposal is to apply the three-factor model of Fama and French (1992) employing a
vine copula structure, with GARCH models for margins. It is the first time that a non
linear factor model which involves more than one factor is built in this way. According
to the Inference for Margins (IFM) method, we have estimated, separately, the margins
and the copula parameters via maximum likelihood estimation. In the first, GARCH
models for margins are applied and then, given the conditional independence of the
transformed standardized residuals with respect to common factors, vine copulas are
estimated, providing the parameters of an implied copula for the asset returns. Finally
we have computed tail dependence measures for the ”implied copula” obtained.

The paper is organized as follows. In Section 2 an overview of the three-factor model
of Fama and French (1992) is given. Section 3 deals with a theoretical specification of
the existing factor copula models. Section 4 describes basic concepts of vine copulas
and their use in the factor approach. Section 5 reviews tail dependence measures of
vine copulas. Section 6 provides empirical results of the analysis applied to the industry
portfolio co-movements conditioned on three common factors. In Section 7, outlook and
concluding remarks close.

2 One-factor copula model

In this section a brief review of the three-factor model of Fama and French (1992) is
given. The three-factor model was proposed in order to capture the pattern in U.S.
average returns associated with size and value versus growth. The Fama and French
factors are constructed using the 6 value-weight portfolios from the intersection of two
sizes (expressed by Market Equity - ME) and three Book-to-Market Equity (expressed
as ratio of Book Equity and Market Equity - BE/ME).

Let R;; be the portfolio return at time ¢, Rp; the risk free rate, R+ the market return,
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SmB; the average return on the three Small minus the three Big portfolios and HmL;
the average return on the two High BE/ME (value) minus the two Low BE/ME (growth)
portfolios, then the three-factor model is given by

Rit — Rpt = o+ Bi[Ryt — Rpt| + iSmBy + v HmLy + i

where the left side of the equation denotes the excess of portfolio returns with respect
to the risk free asset return, §; is the systematic risk for the portfolio i, €; represents
the idiosyncratic error term for the portfolio i at time t, « is a constant coefficient and,
finally, ¢; ; are factor loadings for portfolio i.

Although the three-factor model explains the cross-section of expected values in stock
returns better than the one-factor model, we need a more general model which goes
beyond linear dependence, gaussian distribution, both in the margins and in the depen-
dence structure, and orthogonal common factors. In this way, copula functions can be
a useful tool to specify a non linear three-factor model.

The factor models postulate that a limited number of common factors suffices to com-
pletely explain the dependence structure of the system (see Cherubini et al., 2011).
The key concept is ”conditional independence”: conditioning on a specific scenario of
the common factors, the economic variables are considered independent each-other.
Considering a single common factor Y, the conditional joint co-movement of n random
variables X; is measured by the product of the marginal conditional probabilities of the
variables with respect to the common factor, given by

P(Xy <y, Xp<an |V =y) = [[P(Xi<ai |V =)
=1

where the unconditional joint distribution is

1 n
P(X1<$1,"',Xn<$mY<y)=/HP(Xz'<iUz‘!Y=y)dy
0 =1

Let Fx and Fy be the continuous marginal cumulative distribution functions (cdf) of a
bivariate copula C see, e.g., for definition and theory (see, e.g., for definition and theory
Cherubini et al., 2004; Joe, 1997; Nelsen, 2006), then each conditional probability is a
partial derivative of C with respect to the conditioning variable or common factor v

PX<z|Y=y) = AliygoP(XS%\ySYSyﬂLAy)
_ 0C(Fx(),v)
- T o |szY(y)

Since each joint probability is defined in terms of copula as

Fy (y)

0 aw
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and assuming the conditional independence between variables, we obtain

" OC(Fx, (xi),v
P(Xlgajl,"',anxn‘Y:y):H();£H|va(y) (1)

i=1
and the joint co-movement in terms of product of conditional copulas with respect to
the common factor
W) 5 00 (Fx, (2:), w)
ow

P(X1§$1,,Xn§$n,Y§y):/ d’UJ

0 i=1
By using different conditional copula pairs, e.g. by means of a vine structure (see Section

3), one can easily get a more flexible joint distribution, especially in high dimensions.
Formally, the one-factor copula model follows (Oh and Patton, 2011)

Xi=hY,g) for i=1,---,n
Y ~ Fy(e), E; 1id FE(H), Y L &; \4)
(X1, , X)) =X ~F, =C(G1(0),--- ,Gn(0);0)

where the implied copula C'(€) has an unknown form. This generalization reveals that
this structure nests a variety of well-known copulas in the literature, see for instance
table 1 (see Oh and Patton, 2011). The copula structure involved is too linked to the h
function choice. Adopting a vine structure allows for a flexible choice of h for each X;.
Our goal is to apply the three-factor model of Fama and French (1992) by means of vine
copulas. In general, assuming k& common factors denoted as Y = [Y1, ..., Yi]/, we get

Xi=h(Yg, &)
YK ~ Fy = C(Fyl, s ,Fyk), E; 71d FE, Yk 1 &g; Vi, k (2)

where C' is the copula which allows for the dependence between margins F.

3 Pair-Copula Constructions (PCC) and vines

Vines are graphical representations of the Pair-Copula Constructions (PCC) which are
based on the decomposition of a multivariate density into a cascade of bivariate con-
ditional and unconditional copula densities. Their simple construction, based on pair-
copulas as building blocks of the structure, combined to high flexibility, due to the free
choice of each pair-copula type from any class and without restrictions on parameters,
allows easily to derive higher-dimensional copulas. Let X = (Xi,..., X,,) a vector of n
random variables with marginal densities f;(z;), joint cdf F(.) and marginal cdf’s F;(x;),
then the factorization of the joint density f(.) is obtained as

flxy,...,xn) = flzplzr,. .y 2n—1) - f(21, ..., Tn_1)

= Hf(xt|x1,...,xt_1)-f1(x1) (3)
t=2
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By applying Sklar’s theorem (1959), we get the relationship among an n-dimensional
joint density and the copula and marginal densities as

f@r,. . mn) = c1n(Fi(1), .. Fulzn)) - [ filae) (4)
t=1

This relationship allows to achieve a PCC decomposition of an n-dimensional density
function.

Considering n = 3 random variables with absolutely continuous joint and marginal cdf’s,
then, a possible decomposition of the joint density f(.) is

f(x1, 22, 23) = f(xs]@1, 22) - f22|21) - f1(21) (5)

where

f(@s|z1, w2) = ¢1 32(F (21|22), F(23]|22)) - f(23]22) (6)
and
fxileiz1) = flaim, )/ fio1(xiz1)
= ci—1i(Fici(xiz1), Fi(zs)) - fi(zs), i=2,3 (7)
since from (4)
flxict, ) = cim1i(Fi—1(viz1), Fi(xi)) fim1(wi—1) fi(wi), i=2,3

By replacing the conditional density term in (5) with (6) and (7), the final decomposition
of a 3-dimensional PCC can be expressed as

flz1,22,23) = cpgp(F(21|r2), F(2s|r2)) - c12(F1(z1), Fa(w2)) -
ca3(Fa(z2), F3(x3)) - fi(w1) - fa(w2) - f3(x3) (8)

where ¢ 2 and cg 3 are the baseline copulas and ¢y 32 is the conditional copula.

Since factor models assume the conditional independence of variables (see eq. 1) given
common factor(s), it results that c; 3o in (8) should be equal to one. The conditional
distribution functions, which appear in (8), are obtained as

00 3(Fa(x2), F3(x3))
OF5(x2)

0C1 2(F1(21), Fa(x2))
0F(x2)

F(z1|z2) = and F(x3|re) =

Due to many possible combinations of pair copula decomposition, Bedford and Cooke
(2001) introduced a graphical model, denotes as regular vine, in order to organize and
visualize them, with the following characteristics:

- an n-dimensional vine is represented by n — 1 trees;

- j—th tree has (n + 1 — j) nodes and (n — j) edges;
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- each edge corresponds to a pair-copula density;
- edges in j—th tree become nodes in (j + 1)—th tree;

- two nodes in (j + 1)—th tree are joined by an edge only if the corresponding edges
in j—th tree share a node;

- the complete decomposition is defined by the n(n — 1)/2 edges and the marginal
densities.

Kurowicka and Cooke (2004) defined two particular classes of regular vine:

- ?C-vine” (Canonical vine) (fig. 1) for which each tree has a unique node that is
connected to n — j edges;

- ?D-vine” (fig. 2) for which no node in any tree is connected to more than two
edges.

Figure 1 about here
Figure 2 about here

Here we are interested in the C-vine structure, based on the specification of a conditioning
pilot variable at each level of the construction, characterized by the highest dependence
with remaining variables. The density function of a C-vine is expressed as

n—1ln—j

fn ) = T[T egringr (Pl 1), Fzjula, 1)

j=1i=1
T fean). (9)
k=1

The conditional distribution functions, F(.|.), which appear in (9), are computed using
the following expression (see Joe, 1996)

ac:r:,vﬂv,j (F({B‘V,j% F(Uj ’v*j))
OF (vj|v_;)

where v_j denotes the vector v excluding the component v;. The equation (9) shows
that multivariate copulas can be obtained as product of iteratively conditioned bivariate
copulas, where ¢; ;1,1 denotes the baseline copula and ¢; ;141 is the conditional
copula (for j=1,...,n—1and [ =2,...,n).

In general, for any vector v_;, x and v; are conditionally independent given v_j if and
only if

F(x|v) = W] (10)

Cx,vj\v,j (F(:C|V,j),F<’Uj‘V7j)) =1 (11)

When (11) is verified, v_j is a vector of common factor(s) able to explain the cross
co-movements of the random variables z and v; (see Granger et al., 2006).

Our goal is to apply the three-factor model of Fama and French (1992) by means of vine
copulas, verifying also the presence of a remaining dependence between common factors
and among variables conditionally on common factors.
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4 Tail dependence of vine copulas

Tail dependence is a useful copula-based measure which defines the relationship in ex-
treme values of variables.
This measure of concordance between less probable values is different for each family of
copulas since, while it exists for some of them, in a symmetric or asymmetric way, there
are families that cannot allow tail dependence.
Joe (1997) and Joe et al. (2010) showed that vine copulas can have a flexible range of
bivariate lower and upper tail dependence functions when asymmetric bivariate copulas
with upper/lower tail dependence are used in the first level of vine.
Assuming that the bivariate linking copulas have continuous second-order partial deriva-
tives, then a vine copula is tail dependent if all the bivariate baseline (base tree) linking
copulas are tail dependent. If some baseline copulas are tail independent, then the
vine copula is tail independent. Some margins of the vine, however, might still be tail
dependent (Joe et al., 2010; Li and Wu, 2011).

The lower and upper tail dependence functions, denoted as b*(.;C) and bY(.; C) are
defined as (Joe et al., 2010)

L . N T i <1< _ n
b (w; C) .—Jg& " , Yw = (wi,...,w,) € R}
and
7(1 — i1l <1<
Y (w; C) := lim ¢l —uw _z_n)’ Vw = (wi,...,w,) € RY

u—0t U

where C is an n—dimensional copula function and C is its joint survival function.

Since a vine copula is expressed in terms of bivariate copula densities, its tail dependence
can be derived from tail density approach (Li and Wu, 2011).

Let D,, denote the n-order partial differentiation operator with respect to w=(wy, - - - , wy,),
then the lower and upper tail density functions are, respectively,

D, C(uw;,1 <i<n)

6 (w;C) = lim = lim u" e(uw;, 1 <i<n)
u—07t u u—07t
o"br (w; O)
_ ; 12
8’(01,'“,(911)”7 ( )
and
01— uw;, 1 <i <
Y (w;C) = lim D,CA-uwilsisn) lim v te(l —uw;, 1 < i < n)
u—0t u u—07t
npU (w:
- O0wi0) (13)
wy, - -+, dwn

Then, in order to obtain the tail density functions, we need to estimate the conditional
tail dependence functions.
For non empty, non-overlapping subsets S and Sz, let Cg, s, (Cs,|s,) be the conditional
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copula (survival joint function), then the conditional lower and upper tail dependence
functions, denoted as t§1|52 and tgﬂsz’ are given by (see Joe et al., 2010)

t6,s, (ws, [ws,) = Jim Cjs, (uw;, i € Siluw;,j € S2)

and

t6115, (s, |ws,) = Jim, Csy1s,(1 — uw;, i € S1|1 — uwj, j € Sa).

Let 8" = (2,..,n—1) be a subset of S = (1, ..,n), then by applying the recursive formulas
to build the vine copula structure and assuming that all bivariate baseline linking copulas
have lower tail dependence, Li and Wu (2011) proved that

55 (ws)

61LUS’ (w) 5£US’ (w)
L (ws) a9

56 (wgr) 6§ (wsr)

remarking that for i ¢ S’ and 1 <1i <n —1[ at each [ level of the vine (2 <1 <n—1)

= cin(tys (wilws), ty) s (wn|ws))

5{1}US’ (wiiyust)

0
3is (wilwsr) = 2 —tiig (wilws) = (15)
‘S a |S 55/ (wS’)
and
L 0?
1 nysr (w1, wnlwg) = mt{l,n}w/(wl,wn|w{1,n}uS’)
s (011.ny0s) (16)
6k (wgr)
The expression of the lower tail density of the 3-dimensional vine is:
Sfog(wi, wa, w3) = S1a(wr, wy) - So(ws, w3) -
c1gja (Hjp (w1 [wa), 5y (ws|ws)) (17)

where t& i2 (w;i|ws) fo 512 v, wo)dv; (i =1,3).

In high dimensional contexts, in contrast with Joe et al. (2010), the recursion involves
only univariate integrals of n-variate tail densities.

Similar results are obtained for the upper tail density function (see for more details, Li
and Wu, 2011).

Note that the expression (14) can be used to show how tail dependence of a vine depends
on its bivariate baseline linking copulas.

The existence of tail dependence for all bivariate margins of the vine copulas is guaran-
teed by the presence of tail dependence only for the baseline copulas in level 1 and it is
not necessary for the conditional bivariate copulas in n — 1 levels (as stated in Joe et al.,
2010).

This feature of vine copulas can suggest the use of conditional independence copulas
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at n — 1 level of tree (11), according to the hypothesis of conditional independence of
portfolio returns of factor models. In particular, Aas et al. (2006) recommend to trun-
cate the construction of vine copulas, allowing for product copulas, C*, at k level of
the structure when the approximation error (measured as difference between conditional
density and one, for independence conditional density) is lower than a given threshold.
Brechmann et al. (2012) use independence copulas (C+) at the k—th tree of the vine.
They choose the truncation level &k comparing the AIC and BIC values of two consecutive
models (T; and T;j41) and the smaller model (T;) is selected if the latter does not provide
a significant gain in the model fit.

Another way to streamline the vine structure consists in a simplification technique, which
allows to capture the residual dependence of asset returns conditioned on common fac-
tors. Simplification occurs replacing the remaining pair copulas at k level of the structure
with a gaussian multivariate copula (as in Heinen and Valdesogo, 2009) or with gaussian
bivariate copulas (see Brechmann and Czado, 2011).

5 Empirical results

Object of the analysis is the industry equity returns co-movements conditioned on Fama
and French three common factors: excess of market return (Mkt), SmB and HmL.
We have selected five industry portfolio daily returns (January 37¢ 2006 - December
30" 2011) provided by Fama and French data library. We report the SIC codes of each
variable used afterward:

1. Cnsmr = Consumer Durables and NonDurables, Wholesale, Retail, and Some
Services (Laundries, Repair Shops)

2. Manuf = Manufacturing, Energy, and Utilities

HiTec = Business Equipment, Telephone and Television Transmission

- w

Hlith = Healthcare, Medical Equipment, and Drugs

5. Other = Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment and
Finance.

Although a linear factor model is a good approximation of joint co-movements, it results
that the variable HmL is not always significant (in particular, for Manuf, HiTec and
Hith). Besides, there is evidence of non gaussian and autocorrelated residuals from all
linear regression models, also for the common factors, which are not normally distributed
and independent each other.

The estimation of the vine copula parameters can be carried out through a two-step
method, defined Inference For Margins (IFM), which computes, separately, the marginal
and the copula parameters. In the former, to take into account the conditional depen-
dence of variables, GARCH models have been applied to shape the marginal behav-
ior of each stock portfolio and factor returns. It results that all variables follow a
GJR—GARCH(2,1) model with Student’s-¢ distributed errors, except SmB and HmL
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which are GJR — GARCH (1,1) distributed with t-errors. Then, after transforming
the standardized residuals into uniform margins, by applying the empirical distribution
functions, the bivariate copula parameters are estimated through the maximization of
the C-vine log-likelihood. At each step, the estimated parameters became the starting
values to the full model estimation.

For each n dimensional random vector of variables, there are n!/2 different C-vines with
n(n — 1)/2 pair copulas (see Aas and Berg, 2009). In order to choose the best permu-
tation for the C-vine factorization, it is useful to compute the Kendall’s tau coefficient
values for all bivariate pairs, selecting the most dependent pair of assets which become
copula-nodes for each tree level (as stated in Aas and Berg, 2009).

Besides, C-vines are based on the specification of a conditioning pilot variable at each
tree level, which maximizes the sum of the absolute Kendalls tau values '. According to
the factor approach, in the base tree the pilot variable is Mkt, while in the second tree
is SmB (see table 2). In order to select the appropriate family for each bivariate copula,
we propose a sequential estimation procedure, described in Aas et al. (2006), choosing,
at first, the parametric copula with the best fit to the data for each pair of margins and,
then, maximizing the full log-likelihood by means of the parameters obtained from the
stepwise procedure as starting values. Starting values of the bivariate copula parameters
may be determined as follows (as in Aas et al., 2006):

1. Choose the copula types to use in the base tree by plotting the original data
and by applying a Goodness-of-Fit (GoF) test, after estimating the parameters of
candidate copulas.

2. Generate the observations for the second tree as conditional distribution functions
of the original data using the estimated copula parameters.

3. Determine which copula types to use in the second tree in the same way as in the
base tree.

4. Proceed iterating.

The main characteristic of a vine copula is the free specification of n(n — 1)/2 bivariate
copulas which do not have to belong to the same family and can have a flexible range of
bivariate upper/lower tail dependence parameters, different for each margin pair when
asymmetric bivariate copulas with upper/lower tail dependence are used in the base tree
of the vine (see for more details Joe et al., 2010).

Asymmetric copulas generally involved in the analysis of tail dependence are: the Clay-
ton with lower tail dependence, the Gumbel with upper tail dependence,the BB1 and
the BB7 (see Joe, 1997) with both tail dependencies.

We have also selected, for sake of comparisons, the Gaussian copula without tail depen-
dence (which is the standard market model), the Student’s-t copula with symmetrical
tail dependence and the product copula for independence. This last copula is selected
according to the bivariate independence test based on Kendall’s tau (Genest and Favre,

'Kendall’s Tau estimates are available on demand.
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2007).

In order to select the copula with the best fit to the data, we have compared, at each
tree level, the log-likelihood functions through Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC). It results that the Student’s-¢ copula is more
preferred to other copula functions, this implies the prevalence of a symmetrical tail
dependence. Tables from 3 to 9 show copula parameter estimates. We can note a signi-
ficative dependence among common factors expressed by the last two copulas, contrary
to the assumptions of the linear factor models.

Moreover, we have compared the C-vine factor copula model with other multivariate cop-
ulas and the results (table 10) remark the best performance of C-vine, especially over
the standard linear gaussian model of Fama and French (1992). Besides, since a vine
copula structure can be truncated, according to the hypothesis of conditional indepen-
dence of portfolio returns, or simplified, in order to capture the remaining dependence
of asset returns conditional on common factors, we have computed the maximum likeli-
hood copula parameters of the truncated (with an approximation error lower than 0.01)
and simplified version of the full C-vine model. The best alternative to the full C-vine
model, in a factor model perspective, is the simplified C-vine with gaussian copula pairs
(table 10). This implies a conditional dependence which is not accurately captured by
the standard factor model.

Finally, we provide the tail density functions of full C'-vine model, according to equations
(14) - (17), to measure the dependence between extreme realizations of portfolio returns.
In table 11 we report the lower tail density functions of all margins which are building
blocks of the conditional copulas included in the model. Since all bivariate baselines
linking copulas are tail dependent (Student’s-t), also the vine copula is tail dependent,
although weakly (see, for the lower tail density, d123450/51 in table 11).

6 Outlook and Conclusions

In this paper we combine the factor approach with vine copulas in order to obtain the
non linear three-factor model of Fama and French (1992). This is the first contribution
which draws a three-factor model by use of vine copulas. Second, we provide empirical
estimates of tail dependence measures for the vine copulas, based on tail density func-
tions, which involve only one-dimensional integrations.

Different reasons have led to develop a three-factor copula model by means of a vine
structure. First of all, the need to consider non-linear dependence measures and some
alternatives to the elliptical distributions, both in margins and in the joint distributions.
Vines allow for a free specification of bivariate copulas involved in the model, which can
belong to distinct families with a flexible range of tail dependence parameters, different
also for each margin pair. Second, the extension of copulas in multivariate contexts
requires additional assumptions and it is not an easy task. The simple structure of vine
copulas, based only on bivariate copulas, allows to compute easily, by MLE method,
copula parameters for high-dimensional continuous variables. In brief, combining a vine
structure with the factor copula approach enables a flexible construction of high di-
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mensional, also non elliptical, joint distributions of cross-section of the expected stock
returns, able to capture possible asymmetries in tail dependence. The main result of the
application is that the vine factor copula model performs better than other multivariate
models, also more than the classical linear factor approach. Besides, it emerges the ex-
istence of a conditional dependence between variables with respect to common factors
in addition to that observed among the common factors.

Future researches will concentrate on some alternative models, which can include: the
momentum factor, defined as the amount of acceleration of stocks (see for instance
Carhart, 1997), time-varying factors or other common factors resulting from a Principal
Component Analysis (PCA) applied to the stock asset returns.
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Table 1: Example of some copula densities known in a closed form as function of h,
F, and of F. (Oh and Patton, 2011).*Gamma distribution, **Inverse Gamma

distribution
Copula h(Y,e) Iy F,
Gaussian Y +e N(0,0%) N(0,02)
Student’s-t Y12 Ig** (v/2,v/2) N(0,02)
Clayton (I+¢/Y)@ I'(a,1) Exp(1)
Gumbel —(logY/e)*  Stable(1/a,1,1,0) Exp(1)

Table 2: Kendall’s Tau Estimates. Mkt=Excess of Market return with respect to risk
free rate, SmB=Small minus Big portfolios, HmL=High minus Low portfolios

Portfolio Mkt SmB HmL
Cnsmr 0.750 0.409 0.172
Manuf 0.762 0.348 0.195
HiTec 0.730 0.415 0.120
Hlth 0.637 0.393 0.108
Other 0.761 0.392 0.222

Table 3: Copula parameter estimates in the Base Tree

C-vine margin Copula d.o.f rho
ciMm Student’s-t  13.620 0.926
CoM Student’s-t  6.021 0.933
c3M Student’s-t  8.326 0.915
cap Student’s-t  7.001 0.844
CsM Student’s-t  6.551 0.930
csM Student’s-t  7.113 0.372
CHM Student’s-t  5.393 0.292

1=Cnsmr, 2=Manuf, 3=HiTec, 4=HIth, 5=0ther, M=Mkt, S=SmB, H=HmL
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Table 4: Copula parameter estimates in the Second Tree

C-vine

margin Copula d.o.f/theta  rho
cigjv Student’s-t 20.171 0.616
cogim Student's-t 7.805 0.446
csgm Student’s-t 9.309 0.605
cagm Student’s-t 12.610 0.507
csgv Student's-t 18.891 0.563
CHS|M Clayton 0.308 -

Table 5: Copula parameter estimates in the Third Tree

C-vine
margin Copula d.o.f rho
cigims  Gaussian - 0.215

copims  Student’s-t  11.668  0.347
cspims  Student’s-t 10.982  0.088
capjms  Student’s-t  13.295 0.190
csaims  Students-t 22.931  0.436

Table 6: Copula parameter estimates in the Fourth Tree

C-vine

margin Copula d.o.f rho
cisjmsa  Student's-t  14.242  0.423
Cos VS H BB1 0.659 1.033

cxsrsy Student/st 25697 0.566
cisimsH Student’s-t  36.098  0.518
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Table 7: Copula parameter estimates in the Fifth Tree
C-vine
margin Copula  d.o.f/theta  rho
Cl4|MSH5 Clayton 0.744 -
Co4|MSHS5 Clayton 0.331 -
cgamsHs  Student’s-t 21.705 0.650
Table 8: Copula parameter estimates in the Sixth Tree
C-vine
margin Copula d.o.f rho
ci3msHs4  Student’s-t 38.651  0.159
CQ3|MSH54 Student’s—t 34.939 0.009
Table 9: Copula parameter estimates in the Seventh Tree
C-vine
margin Copula d.o.f rho
Crojmsmsas  Student’s-t  34.330  0.354
Table 10: Model Comparison
Model No.Param. LogL.  AIC BIC
Multivariate Gaussian copula 28 9079 -18102 -17953
Multivariate Student’s-¢ copula 29 9404 -18750 -18596
Full C-vine 52 11757 -23410 -23134
Trunc. C-vine at T3 (approx error) 34 9047 -18025 -17844
Trunc. C-vine at T5 (AIC/BIC) 46 11479 -22866 -22622
Simpl. C-vine at T3 with gaussian pair-copulas 44 11660 -23232 -22997
Simpl. C-vine at T3 with multiv. gaussian copula 44 11095 -22102 -21868
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Table 11: Tail densities of all margins (w = 1)
Margin  dins divvs  OiMsH  OiMSH5  0iMSH54  OiMSH543  OiMSH5432
1 4.9E-04 5.3E-05 5.3E-06 1.1E-06 1.8E-07 3.6E-08 4.4E-09
2 1.1E-02 4.8E-04 4.7TE-05 2.8E-06 4.6E-07 8.9E-08 -
3 4.0E-03 3.5E-04 2.5E-05 6.2E-06 1.4E-06 - -
4 6.9E-03 3.8E-04 3.1E-05 7.2E-06 - - -
5 8.4E-03 4.9E-04 5.5E-05 - - - -
S 6.6E-03 - - - - - -
H 1.4E-02 4.0E-04 - - - - -




Electronic Journal of Applied Statistical Analysis 265

Base Tree

Second Tree

Third Tree

LA,

Figure 1: C-VINE copula for 4 variables
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Third Tree @—@

Figure 2: D-VINE copula for 4 variables



