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This paper provides an attempt to utilize the geometric programming ap-
proach in multivariate stratified sample surveys in case of non-response. The
problem has been solved in two phases. In first phase the multivariate strati-
fied sample surveys in case of non-response has been formulated as geometric
programming problem (GPP) and the solution is obtained. The obtained so-
lution is the dual solution of the formulated GPP. In second phase with
the help of dual solutions of formulated GPP and primal-dual relationship
theorem the optimum allocation of sample sizes of respondents and non-
respondents are obtained. A numerical example is given to illustrate the
procedure.
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1 Introduction

In stratified sampling heterogeneous population is converted into a homogeneous popula-
tion by dividing it into homogeneous stratum. The maximum precision will be obtained
with the best choices of the sample sizes. Many authors have discussed multivariate strat-
ified sample survey problems. Among them are Neyman (1934), Geary (1949), Dalenius
(1957), Ghosh (1958), Yates (1960), Aoyama (1962), Folks and Antle (1965), Kokan and
Khan (1967), Chatterjee (1968),Chatterjee (1972), Ahsan (1978), Ahsan (1975), Ahsan
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and Khan (1977), Khan et al. (1997), Chromy (1987), Jahan et al. (1994), Jahan et al.
(2001), Jahan and Ahsan (1995), Singh (2003), Khan et al. (2003), Khan et al. (2010)
and Khowaja et al. (2011). Recent work has been done on multivariate stratified sample
survey problems using different techniques by Khan et al. (2012), Varshney et al. (2011),
Ali et al. (2013).

In multivariate stratified sample survey problems, non-response appears when the re-
quired information cannot be obtained. The problem of non-response may occur due to
the refusal by respondents or they are not at home making the information of sample
inaccessible. The problem of non-response occurs in almost all surveys. The extent of
non-response depends on various factors such as type of the target population, type of the
survey and the time of survey. For dealing the problem of non-response the population
is divided into two disjoint groups one of respondents and another of non-respondents.
For the stratified sampling it may be assumed that every stratum is divided into two
mutually exclusive and exhaustive groups of respondents and non-respondents.

Hansen and Hurwitz (1946) presented a classical non-response theory which was first
developed for the surveys in which the first attempt was made by mailing the ques-
tionnaires and a second attempt was made by personal interview to a sub sample of
the non-respondents. They constructed estimator for the population mean and derived
expression for its variance and also worked out optimum sampling fraction among the
non-respondents. El-Badry (1956) further extended the Hansen and Hurwitz’s technique
by sending waves of questionnaires to the non-respondent units to increase the response
rate. The generalized El-Badry’s approach for different sampling design was given by
Foradari (1961). Srinath (1951) suggested the selection of sub samples by making sev-
eral attempts. Khare (1987) investigated the problem of optimum allocation in stratified
sampling in presence of non-response for fixed cost as well as for fixed precision of the
estimate. Khan et al. (2008) suggested a technique for the problem of determining the
optimum allocation and the optimum sizes of subsamples to various strata in multivariate
stratified sampling in presence of non-response which is formulated as a nonlinear pro-
gramming problem (NLPP). Varshney et al. (2011) formulated the multivariate stratified
random sampling in the presence of non-response as a multi-objective integer nonlinear
programming Problem (MINLPP) and a solution procedure is developed using lexico-
graphic goal programming technique to determine the compromise allocation. Haseen
et al. (2014) discussed the random cost and random variances in multivariate stratified
sampling in presence of non-response and solved the formulated multi-objective non-
linear programming problem (MONLPP) using goal programming, fuzzy programming
and D1 distance method. Fatima and Ahsan (2012) addressed the problem of optimum
allocation in stratified sampling under randomized response model as an all integer non-
linear programming problem (AINLPP) in the presence of non-response. Raghav et al.
(2012) discussed the various multi-objective optimization techniques in the multivariate
stratified sample surveys in case of non-response. Haseen et al. (2012) discussed stochas-
tic multiobjective stratified sampling in presence of non-response.

Geometric programming (GP) is a smooth, systematic and an effective non-linear pro-
gramming method used for solving problems of sample surveys and engineering design
that takes the form of convex programming. The convex programming problems occur-
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ring in GP are generally represented by an exponential or power function. Duffin and
Zener has done the work in the field of engineering design problems in the early 1960s
which was further extended by Duffin et al. (1967). Engineering design problems were
also solved by Liu (2008) and Shaojian et al. (2008) with the help of GP. Ojha and
Biswal (2010) have worked on posynomial GPPs with multiple parameters. Ojha and
Das (2010) have done work on multi-objective GPP with cost coefficients as continuous
function with weighted mean. Islam and Roy (2005) discussed the modified GPP and its
applications. Dupačová (2010) worked in the field of stochastic geometric programming
with an application. Shafiullah et al. (2014) discussed fuzzy geometric programming in
multivariate stratified sampling in presence of non-response with quadratic cost.

Davis and Rudolf (1987) applied GP to optimal allocation of integrated samples in
quality control. Ahmed and Bonham (1987) applied GP to optimum allocation problems
in multivariate double sampling. Maqbool et al. (2011) has discussed the GP approach
to find the optimum allocations in multivariate two-stage sampling design. Shafiullah
et al. (2013) has worked on GP approach for finding optimum sample sizes in three-stage
sample surveys.

In this chapter we have utilized and suggested the GP approach in multivariate strat-
ified sample surveys in case of non-response. The multivariate stratified sample survey
in case of non-response has been formulated and solved in two phases. In first phase
the multivariate stratified sample surveys in case of non-response has been formulated
as GPP and the solution is obtained. The obtained solution is the dual solution of the
formulated GPP. In second phase with the help of dual solutions of formulated GPP and
primal-dual relationship theorem the optimum allocation of sample sizes of respondents
and non-respondents are obtained.

2 Formulation of the problem

In stratified sampling the population of N units is first divided into L non-overlapping
subpopulation called strata, of sizes N1, N2, . . . , Nh, . . . , NL with

∑L
h=1Nh = N and

the respective sample sizes within strata are denoted by n1, n2, . . . , nh, . . . , nL with∑L
h=1 nh = n.

Let for the hth stratum :

Nh : denote the stratum size,

Ȳh : stratum mean,

S2
h : stratum variance,

Wh = Nh
N : stratum weight,

Nh : be the sizes of the respondents,
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Nh2 = Nh −Nh1 : be the sizes of non-respondents groups,

nh, h = 1, 2 . . . , L : units are drawn from the hth stratum.

Further, let out of nh, nh1 units belong to the respondents group.

nh2 = nh − nh1 : units belong to the non-respondents group,

n =
∑L

h=1 nh : the total sample size.

A more careful second attempt is made to obtain information on a random subsample
of size rh out of nh2 non-respondents for the representation of the non-respondents group
from the sample. rh = nh2

kh
;h = 1, . . . , L subsamples of sizes at the second attempt to be

drawn from nh2 non-respondents group of the hth stratum, where kh ≥ 1 and 1
kh

denote
the sampling fraction among non-respondents. Since Nh1 and Nh2 are random variables
hence their unbiased estimates are given as N̂h1 = nh1Nh

nh
: unbiased estimates of the

respondents group.

N̂h2 = nh2Nh
nh

: an unbiased estimate of the non-respondents group.

V ∗ : the upper limits on the variances of each stratum.

ȳjh1; j = 1, . . . , p : denote the sample means of jth characteristic measured on the nh1
respondents at the first attempt.

ȳjh2(rh); j = 1, . . . , p : denote the rh sub sampled units from non-respondents at the
second attempt.

Using the estimator of Hansen and Hurwitz (1946), the stratum mean Ȳjh of the
hth stratum of jth characteristic in the hth stratum may be estimated by

¯yjh(w) =
nh1ȳjh1 + nh2ȳjh2(rh)

nh
(1)

It can be seen that ȳjh(w) is an unbiased estimate of the stratum mean Ȳjh for jth

characteristic with a variance.

v
(
ȳjh(w)

)
=

(
1

nh
− 1

Nh

)
S2
jh −

Wh2S
2
jh2

nh
+
W 2
h2S

2
jh2

rh
(2)

where S2
jh is the stratum variance of jth characteristic in the hth stratum; j = 1, 2, . . . , p;h =

1, 2, . . . , L given as:

S2
jh =

1

Nh − 1

Nh∑
i=1

(
yjh1 − Ȳjh

)2
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where yjh1 denote the value of the ith unit of the hth stratum for jth characteristic.

Ȳjh = 1
Nh

∑Nh
i=1 yjhi : the stratum mean of yjhi.

S2
jh2 : denotes the stratum variance of the jth characteristic in the hth stratum among

non-respondents, given by:

S2
jh2 =

1

N̂h2 − 1

N̂h2∑
i=1

(
yjhi − Ȳjh2

)2
,

Ȳjh2 = 1
N̂h2

∑N̂h2
i=1 yjhi among non-respondents.

Wh2 = Nh2
Nh

is stratum weight of non-respondents in hth stratum.

If the true values of S2
jh and S2

jh2 are not known they can be estimated through a
preliminary sample or the value of some previous occasion, if available, may be used.

Furthermore, the variance of ȳj(w) =
∑L

h=1Wȳjh(w), (ignoring fpc) is given as:

V (ȳj(w)) =

L∑
h=1

W 2
hv(ȳjh(w))

=
L∑
h=1

W 2
h

(
S2
jh −Wh2S

2
jh2

)
nh

+
W 2
hW

2
h2S

2
jh2

rh
(3)

where ȳj(w) is an unbiased estimate of the overall population mean Ȳi of the jth charac-

teristic, Wh = Nh
N is the stratum weight and v

(
ȳjh(w)

)
is as given in Eq. 2.

Assuming a linear cost function the total cost C of the sample survey may be given as:

C =

L∑
h=1

ch0nh +

L∑
h=1

ch1nh1 +

L∑
h=1

ch2nh2

where ch0 is the per unit cost of making the first attempt,

ch1 =
∑p

j=1 cjh1 is the per unit cost for processing the results of all the p character-

istics on the nh1 selected units from respondents group in the hth stratum in the first
attempt and

ch2 =
∑p

j=1 cjh2 is the per unit cost for measuring and processing the results of all

the p characteristics on the rh units selected from the non-respondents group in the hth

stratum in the second attempt.

Also, cjh1 and cjh2 are per unit costs of measuring the jth characteristic in first and
second attempts respectively. As nh1 is not known until the first attempt has been made,
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the quantity Wh1nh may be used as its expected value. The total expected cost Ĉ of
the survey may be given as:

Ĉ =
L∑
h=1

(ch0 + ch1Wh1)nh +
L∑
h=1

ch2rh. (4)

The problem therefore reduces to find the optimal values of sample sizes of respondents
n1, n2, n3, n4 and non-respondents r1, r2, r3, r4 which may be expressed as:

Min Ĉ =
L∑
h=1

(ch0 + ch1Wh1)nh +
L∑
h=1

ch2rh

subject to
L∑
h=1

W 2
h

(
S2
jh−Wh2S

2
jh2

)
nh

+
W 2

hW
2
h2S

2
jh2

rh
≤ V ∗

nh, rh ≥ 0.

nh, rh are integers h = 1, 2, . . . , L.



(5)

3 GP approach in Case of Non-Response in Sample
Surveys

In geometric programming technique posynomial functions are minimized subject
to several constraints. Posynomial functions can be defined as polynomials in several
variables with positive coefficients in all terms and the power to which the variables are
raised can be any real number. In sample surveys, the cost function and the variance
functions are to be considered in the form of posynomials. Geometric programming
always transforms the primal problem of minimizing a “posynomial” subject to “posyn-
omial” constraints to a dual problem of maximizing a function of the weights on each
constraint. Generally, constraints are less than strata, so the transformation simplifies
the procedure.

The mathematical formulation of problem (5) with the help of given information can
be expressed in equation (6) as:

Min f0(n, r) =
L∑
h=1

Chnh +
L∑
h=1

C ′hrh (i)

subject to fi(n, r) =
L∑
h=1

a1j
nh

+
L∑
h=1

a2j
rh
≤ V0j (ii)

nh, rh ≥ 0.

and nh, rh are integers h = 1, 2, . . . , L



(6)
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where C1 = (ch0 + ch1Wh1), C2 = ch2, a1j = W 2
h (S2

jh −Wh2S
2
jh2) and a2j = W 2

hW
2
h2S

2
jh2

and Voj are the upper limits on the variances of each stratum.
The following vectors can be found : (n1, n2, n3, n4 and r1, r2, r3, r4).
The restrictions nh ≥ 0 and rh ≥ 0 is obvious because the negative values of nh and

rh are of no practical use.
In the above equations we have noticed that the objective function 6(i) is linear and

the constraints 6(ii) are nonlinear and the reduced standard GP (Primal) problem can
be stated as:

Min f0(n, r)

subject to fj(n, r) ≤ 1, j = 1, 2, . . . , p

nh, rh ≥ 0.

and nh, rh are integers h = 1, 2, . . . , L

 (7)

where f0(n, r) =
∑L

h=1C1nh +
∑L

h=1C2rh and fj(n, r) =
∑L

h=1
a1j
nh

+
∑L

h=1
a2j
rh
≤ V0j

are in the form of posynomial functions, where jth posynomial function is given as:

fj(n, r) =
∑
i∈j[q]

ξi

[ L∏
h=1

npihh +
L∏
h=1

rpihh

]
,

ξi ≥ 0, nh, rh ≥ 0; j = 1, 2, . . . , p; q = 1, . . . , k

(8)

where ξi =
aij
V0j

= Ci are normalized constants in the ith constraints.

The number of posynomial terms in the function can be denoted by 2L as nh and
rh are two different variables in jth posynomial function with i = 1, 2, . . . , 2L and h =
1, 2, . . . , L. Also, the exponents pij are real constants. The objective function f0(n, r)
and the constraint function fj(n, r) for our allocation problem are given respectively in
equation 6(i) and 6(ii).

The dual form of GPP which is stated in equation (6) can be given as:

Max v(w) =

[
p∏
j=0

∏
i∈[j]

(
ξij
wi

)wi
]

p∏
j=1

( ∑
i∈[j]

wi

) ∑
i∈[j]

wi

(i)

subject to
∑
i∈[0]

wi = 1 (ii)

p∑
j=0

∑
i∈[j]

pijwi = 0 (iii)

wi ≥ 0, j = 0, . . . , p (iv)



(9)

where wi’s are dual variables.
The stepwise formulation of the problem (9) is as follows:
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Step 1: The objective function takes the form:

C0(x
∗) =

(
coeff. of 1st term

w1

)w1

× . . .×
(

coeff. of last term
wL

)wL

×(
∑
w’s in 1st constraint)

∑
(w’s in 1st constraint) × . . .

×(
∑
w’s in last constraint)

∑
(w’s in last constraint)

The objective function (i.e. cost function) for our problem is:

[
p∏
j=0

∏
i∈[j]

(
ξij
wi

)wi
]

p∏
j=1

(∑
i∈[j]

wi

) ∑
i∈[j]

wi

, j = 1, 2, . . . , p (10)

where ξij =
aij
Voj

= Ci, i = 1, 2.& j = 1, 2, . . . , p.

Step 2: The equations that can be used for geometric program for the weights are given
below:∑
i∈[0]

wi in the objective function= 1(Normality condition ,see equation 9(ii))

i.e. w01 + w02 + . . .+ w0h + . . .+ w0L = 1

and for each primal variable ni and ri given n variables and L terms:

L∑
i=1

(exponents on ni and ri)×(wi for each term)=0(Orthogonality condition, see

equation 9(iii))

and wi ≥ 0 (Positivity condition, see equation 9(iv))
The dual problem (9) has been formulated with the help of above steps and the
corresponding solution w∗0i is unique to the dual constraints, it will also maximize
the objective function for the dual problem. Next, the solution of the primal prob-
lem will be obtained using primal-dual relationship theorem which is given below:

Primal-dual relationship theorem: If w∗0i is a maximizing point for dual prob-
lem (9), each minimizing point n1, n2, n3, n4 and r1, r2, r3, r4 for primal problem
(6) satisfies the system of equations:

f0(n, r) =

{
w∗0iv(w∗), i ∈ J [0],
wij

vL(w
∗
0i)
, i ∈ J [L],

(11)

where L ranges over all positive integers for which vL(w∗0i) > 0.

The optimal values of respondents n∗h and non-respondents r∗h can be calculated
with the help of the primal-dual relationship theorem (11).
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4 Numerical Illustrations:

A numerical example is given to demonstrate the proposed method. The values of
S2
jh2 and S2

jh are practically unknown. Their values on some previous occasion may be
used. It is assumed that the relative values of the stratum variances among the non-
respondents at the second attempt to the corresponding over all stratum variances are
S2
jh2

S2
jh

= 0.25;h = 1, 2, . . . , L and j = 1, 2, . . . , p. This ratio has been taken as 0.25 in

the example for the sake of simplicity. Practically this ratio may vary from stratum to
stratum and from characteristic to characteristic.

Example: The data is taken from Khan et al. (2008). Consider a population of size
N = 3850 divided into four strata. The two characteristics are defined on each unit of
the population and the population means are to be estimated. The available information
is shown in the given table.

Table 1: Data for four Strata and two characteristics

h Nh S2
1h S2

2h wh1 wh2 ch0 ch1 ch2

1 1214 4817.72 8121.15 0.70 0.30 1 2 3

2 822 6251.26 7613.52 0.80 0.20 1 3 4

3 1028 3066.16 1456.4 0.75 0.25 1 4 5

4 786 6207.25 6977.72 0.72 0.28 1 5 6

On substituting the values in equation (6) from the table 1, we have obtained the ex-
pression (12) given below:

Min C = 2.4n1 + 3.4n2 + 4n3 + 4.6n4 + 3r1 + 4r2 + 5r3 + 6r4

subject to 101.4077
n1

+ 58.19923
n2

+ 46.56731
n3

+ 51.31327
n4

2.46667
r1

+ 0.612623
r2

+ 0.776122
r3

+ 1.081441
r4

≤ 1

153.8471
n1

+ 63.7968
n2

+ 19.90717
n3

+ 51.31327
n4

3.74226
r1

+ 0.671512
r2

+ 0.331786
r3

+ 1.094106
r4

≤ 1

nh,≥ 0, rh ≥ 0;h = 1, 2, . . . , L

and nh, rh are integers.



(12)

The corresponding dual problem of primal problem expression (12) is:
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max v(w∗0i) = ((2.4/w01)
w01)× ((3.4/w02)

w02)× ((4/w03)
w03)× ((4.6/w04)

w04)

× ((3/w05)
w05)× ((4/w06)

w06)× ((5/w07)
w07)× ((6/w08)

w08)

× ((101.4077)w11)× ((58.19923)w12)× ((46.56731)w13)× ((51.31327)w14)

× ((2.46667)w15)× ((0.612623)w16)× ((0.776122)w17)× ((1.081441)w18)

× ((153.8471)w21)× ((63.7968)w22)× ((19.90717)w23)× ((51.91424)w24)

× ((3.74226)w25)× ((0.671512)w26)× ((0.331786)w27)× ((1.094106)w28) (i)

subject to

w01 + w01 + w03 + w04 + w05 + w06 + w07 + w08 = 1 (normality condition) (ii)

w01 − w11 − w21 = 0

w02 − w12 − w22 = 0

w03 − w13 − w23 = 0

w04 − w14 − w24 = 0

w05 − w15 − w25 = 0

w06 − w16 − w26 = 0

w07 − w17 − w27 = 0

w08 − w18 − w28 = 0



(orthogonality condition) (iii)

w01, w02, w03, w04, w05, w06, w07, w08 > 0

w11, w12, w13, w14, w15, w16, w17, w18,

w21, w22, w23, w24, w25, w26, w27, w28 ≥ 0


(positivity condition). (iv)


(13)
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For orthogonality condition defines in expression problem 13(iii) are evaluated with
the help of the orthogonality payoff matrix and from this payoff matrix make the or-
thogonality condition equation which as defines below:



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


×



w01

w02

w03

w04

w05

w06

w07

w08

w11

w12

w13

w14

w15

w16

w17

w18

w21

w22

w23

w24

w25

w26

w27

w28



=

w01 − w11 − w21 = 0

w02 − w13 − w22 = 0

w03 − w13 − w23 = 0

w04 − w14 − w24 = 0

w05 − w15 − w25 = 0

w06 − w16 − w26 = 0

w07 − w17 − w27 = 0

w08 − w18 − w28 = 0



.
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After solving the formulated dual problem (13) using lingo software we obtain the
following values of the dual variables which are given as:
w01 = 0.35655525, w02 = 0.2094496, w03 = 0.1798722, w04 = 0.2306042,
w05 = 0.0108412, w06 = 0.002593801, w07 = 0.003747338, w08 = 0.006339187
and v(w∗0i) = 1035.564

Using the primal dual relationship theorem (11), we have the optimal solution of
primal problem: i.e., the optimal sample sizes of respondents and non-respondents are
computed as follows:

f0(n, r) = w∗0iv(w∗) (14)

In expression (14), we first keep the r constant and calculate the values of n as:

f01(n1, r) = w∗01v(w∗) f02(n2, r) = w∗02v(w∗)

2.4× n1 = 0.365525× 1035.564 3.4× n2 = 0.2094496× 1035.564

⇒ n1 ∼= 154 ⇒ n1 ∼= 64

f03(n3, r) = w∗03v(w∗) f04(n4, r) = w∗04v(w∗)

4× n3 = 0.1798722× 1035.564 4.6× n4 = 0.2306042× 1035.564

⇒ n3 ∼= 47 ⇒ n4 ∼= 52

Now, from the expression (13), we keep the n constant and calculate the values of r as:

f01(n, r1) = w∗01v(w∗) f02(n, r2) = w∗02v(w∗)

4× r1 = 0.01084122× 1035.564 4× r2 = 0.002593801× 1035.564

⇒ r1 ∼= 4 ⇒ r2 ∼= 1

f03(n, r3) = w∗03v(w∗) f04(n, r4) = w∗04v(w∗)

5× r3 = 0.003747338× 1035.564 6× r4 = 0.006339187× 1035.564

⇒ r3 ∼= 1 ⇒ r4 ∼= 1

The optimal values and the objective function value are given below:
n∗1 = 154, n∗2 = 64, n∗3 = 47 and n∗4 = 52;
r∗1 = 4, r∗2 = 1, r∗3 = 1 and r∗4 = 1 and the optimal value of the objective in primal
problem is 1037.4

5 Conclusions

In this paper the multivariate stratified sample problem in case of non-response is for-
mulated as a geometric programming problem and the allocation of sample sizes of
respondents and non-respondents are obtained. The problem of multivariate stratified
sample in case of non-response is solved in two phases. In the first phase given problem
is formulated as GPP and the solution is obtained. The obtained solution is the dual
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solution of the formulated GPP. In second phase with the help of dual solutions of for-
mulated GPP and primal-dual relationship theorem the optimum allocation of sample
sizes of respondents and non-respondents are obtained. Many authors have discussed
the same problem with different methods and obtained the allocations but in this paper
a comprehensive study of GP approach in multivariate stratified sample surveys in case
of non-response is provided with suggestion.
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