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This study aims to compare two sets of data with each having a linear
relationship between the independent and dependent variables. The prob-
lem is solved by testing the equality of two regression functions. The test
statistics based on empirical distribution function: the Kolmogorov-Smirnov
and Kuiper type statistics are considered, under the alternative hypotheses
comprised of a constant shift and an affine shift. Additionally, the rejection
proportion is calculated using the bootstrap method. The test statistics are
also applied to the analysis of two sets of data, the characteristics of which are
found to be consistent with the p-value after 1,000 trials of bootstrapping..

keywords: regression function, linear relationship, empirical distribution
function, bootstrap procedure, error distribution.

1 Introduction

A large number of studies comparing two independent sets of data using the t-test have
been carried out for a variety of purposes, such as examining the effects of two fertilizers
on the difference in corn yields per acre with controlled cultivation fields. This is con-
sidered quantitative data with the dependent variable Y and qualitative (categorical)
with an independent variable X, and no assumption is made about the nature of the
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relationship. A different problem is one in which two sets of data with each having
a linear relationship between the independent variable X and the dependent variable
Y, such as comparing the expenditure per household of thai citizens in the first year
(Yi1, i = 1, ..., n1) with that in the second year (Yi2, i = 1, ..., n2),Xi1, Xi2 represent the
income per household of thai citizens from the first year and the second respectively.
Generally, the linear relationship between the independent and dependent variables can
be investigated with regression analysis using the following regression equation (1):

Y = Xβ + ε = f(X,β) + ε. (1)

Where Xβ = f(X,β) is the linear regression function, Y is an (n × 1) vector of the
observations, X is an (n × p) matrix of the level of the independent variables, β is a
(p× 1) vector of the regression coefficients, and ε is an (n× 1) vector of random errors.
The error in equation (1) are normally and independently distributed with mean zero
and constant variance σ2[NID(0, σ2)]. The vector of fitted valued Ŷ correspondent to
the observed value Yij is :

Ŷ = Xb = f(X, b). (2)

This research focuses on the difference between two sets of data with the independent
variable X and the dependent variable Y having the simple linear regression relationship,
Y = Xβ+ε = f(X,β)+ε ,where Xβ = f(X,β) is the linear regression function, Y is an
(n× 1) vector of the observations, X is an (n× 2) matrix of the level of the independent
variables, β is a (2 × 1) vector of the regression coefficients, and ε is an (n × 1) vector
of random errors, that is, if Y 1 represent the vector of the expenditure per household in
the first year and Y 2 represent the vector of the expenditure per household in the second
year, X1, X2 represent (n×2) matrix of the income per household, f1(X,β) and f2(X,β)
will represent the expected values of Y in the first and the second years respectively, if
f1(X,β) = f2(X,β) it can be concluded that the expenditure per household from two
years are not different.

This problem has been examined in some research, Clogg et al. (1995) discussed for
comparison of the regression coefficients of two models in the situation where one is
nested in the other. Comparison of this are of interest when ever two explanations of
given phenomenon are specified as linear model.Brame et al. (1998) discussed a test
for the equality of two independent equations with respect to the maximum-likelihood
regression coefficient where the maximum-likelihood estimate of regression coefficients is
derived for the respective populations from which the two largest independent samples
are drawn. Moreno et al. (2005) presented a test for testing the equality of regression
coefficients in heteroscedastic normal regression models. This research addresses the
problem of testing whether the vector of regression coefficients are equal for two in-
dependent normal regression models when the error variance are unknown.This study
assume two normal regression: Y 1 = X1β1 + ε1, ε1 ∼ N(0, σ21I), and Y2 = X2β2 + ε2,

ε2 ∼ N(0, σ22I), the hypothesis is H0 : β
1

= β
2

versus H1 : β
1
6= β

2
.The Bayesian

approach are applied in this problem. Nevertheless, such studies do not involve a real
comparison of two sets of data having a relationship between the independent variable X
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and the dependent variable Y. To solve the problem in question. Pardo-Fernndez (2007)
presented the test base on Kolmogorov-Smirnov and Cramer-von Mises type statistics
for comparing the equality of k-error distributions,and formulate the test hypotheses
H0 : Fε1 = Fε2 =, ...,= Fεk, H1 : Fεi 6= Fεj for some i,j, j ∈ 1, ..., k, while Pardo-
Fernndez et al. (2007) presented the test statistics for testing the difference between
k-regression curves using the principles of the Kolmogorov-Smirnov and Cramer-von
Mises type statistics in the framework of non-parametric curve estimation. Mohdeb
et al. (2010) presented a new methodology for comparing regression function f1 and f2
in the case of homoscedastic error structure and fixed design. The test statistics based
on the empirical fourier coefficients of the regression function f1 and f2 are considered.
Feng et al. (2014) discussed a test concern about robust comparison of two regression
curves, and a robust testing procedure is recommended under a framework of the gen-
eralized likelihood(GLR). These papers are mainly devoted to testing for the equality
of two or more regression curves. Therefore, testing for the equality of two regression
function is the best way to compare the difference between two sets of data of which
the relationship between the independent and dependent variables. The objective of
the present research is to compare the difference between two sets of data of which the
relationship between the independent and dependent variables is in the form of a simple
linear regression. This is examined by testing the difference between two simple linear
regression functions using the following hypotheses:

H0 : f1(X,β) = f2(X,β) versus H1 : f1(X,β) 6= f2(X,β). (3)

According to Pardo-Fernndez et al. (2007), if the empirical distribution function of
the residuals of each regression function is similar, the null hypothesis H0 : f1(X,β) =
f2(X,β) will be confirmed. On the other hand, should the empirical distribution function
of the residuals of each regression function be different, the alternative hypothesis H1 :
f1(X,β) 6= f2(X,β) will be confirmed. In this study, the estimator of the error ε̂ij =

Yij − Ŷij , j = 1, 2, i = 1, ..., nj the estimator of the error under the null hypothesis ε̂ij =
Yij − Ŷ 0

ij where Ŷ 0
ij = f(X, b) is the common predicted value under the null hypothesis.

The common linear regression function under the null hypothesis is estimated from the
overall of two sets of data. f1(X,β) and f2(X,β) are the estimator of the first linear
regression function and the second respectively, The test statistics based on empirical
distribution: Kolmogorov-Smirnov and Kuiper type statistics are applied in comparing
two sets of data based on a test of equality between two linear regression functions.

In the following section, the details of testing procedure is given, then the bootstrap
and simulation studies are presented. The application of the data and conclusions are
also included in the next section.
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2 Materials and Method

Figure 1: Illustrate the expectation of the error when varies the regression function

From Figure1. For j = 1, 2, i = 1, ..., n1. f1(X,β) and f2(X,β) are the first and the
second linear regression function respectively, f(X,β) is the common linear regression
function when the null hypothesis is confirmed. This function is estimated form overall
of two sets of data, E(εij) is the expectation of the error in each regression function
fj(X,β), and E(εij) = 0, at the same time E(ε0ij) is the expectation of the error from

common regression function f(X,β), normally E(ε0ij) > 0, E(ε0ij) = 0 wheref(X,β) =
f1(X,β) = f2(X,β).The idea of the testing procedure is to construct the estimator of
the error in each population and the estimator of the error under the null hypothesis,
and defined the empirical distribution functions of these estimated residual. In this
research, ε̂ij = Yij − Ŷij is an estimator of the error in each linear regression function,
ε̂ij = Yij − Ŷ 0

ij is an estimator of the error under the null hypothesis, the estimator of
the distribution of errors in each regression function is:

F̂εj(y) =
1

nj

nj∑
i=1

I(Yij − Ŷij ≤ y), j = 1, 2, i = 1, ..., nj ,−∞ < y <∞. (4)

The distribution of errors when the null hypothesis is confirmed is:

F̂ 0
ε (y) =

1

nj

nj∑
i=1

I(Yij − Ŷ 0
ij ≤ y), j = 1, 2, i = 1, ..., nj ,−∞ < y <∞. (5)

According to Akritas and Keilegom (2001), Pardo-Fernndez (2007), and Pardo-Fernndez
et al. (2007), if the null hypothesis is confirmed, both F̂εj(y) and F̂ 0

ε (y) are the estima-
tors of Fεj(y). In contrast, if the alternative hypothesis is confirmed, the distribution
of the error will be estimated from a different linear regression function, In this study,
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the distribution of errors for each population is compared using the two-dimensions pro-

cess V̂ (y) = (V̂1(y), V̂2(y)) when V̂j(y) = n
1/2
j (F̂ 0

ε (y) − F̂εj(y)), j = 1, 2, i = 1, ..., njthe

Kolmogorov-Smirnov type statistic Zks =
∑2

i=j supy|n
1/2
j (F̂ 0

ε (y) − F̂εj(y))| and Kuiper

type statistic Zku =
∑2

i=j [supy|n
1/2
j (F̂ 0

ε (y) − F̂εj(y))| − infy|n1/2j (F̂ 0
ε (y) − F̂εj(y))|] are

applied. According to Pardo-Fernndez et al. (2007), let fj(X,β) be a continuous func-
tion. For j = 1, 2, i = 1, ..., nj , F

0
ε y = Fεjy, −∞ < y < ∞, if and only if f(X,β) =

f1(X,β) = f2(X,β). Namely, assume F 0
ε (y) = Fεj(y). This implies that two empirical

distributions of the errors are equal, there are evidence for the equality of the 1st moment,
E[Yij − f(X,β)] = E[Yij − fj(X,β)] = 0, then f(X,β) = fj(X,β). In the same way,

the 2nd moment have originate from the 1st moment, then f(X,β) = fj(X,β). Namely,
f(X,β) = f1(X,β) = f2(X,β). Conversely, assume f(X,β) = f1(X,β) = f2(X,β).
Claim that F 0

ε (y) = Fεj(y). Consider the 1st moment: From f(X,β) = fj(X,β)

then, E[Yij − f(X,β)] = E[Yij − fj(X,β)] = 0. Consider the 2nd moment: From
f(X,β) = fj(X,β) then, E[Yij − f(X,β)]2 = E[Yij − fj(X,β)]2. From the 1st moment

and the 2nd moment, if f(X,β) = f1(X,β) = f2(X,β). then F 0
ε y = Fεjy. Therefore,

a comparison of two sets of data with each having a linear relationship between the in-
dependent and dependent variables can be examined through the equality of two linear
regression functions by considering the equality of the distribution of errors. As regards
the distribution of V̂j(y) when the null hypothesis is confirmed, according to Donsker

(1952), Donskers theorem,V̂j(y) = n
1/2
j (F̂ 0

ε (y)− F̂εj(y)) are the random elements of the
Skorokhod space D(−∞,∞), and converge in distribution to Gaussian process with zero
mean and covariance F 0

ε (y)(1− F 0
ε (y)).

3 Bootstrap and Simulation Studies

3.1 Bootstrap

According to Freedman (1981), Silverman and Young (1987), Akritas and Keilegom
(2001), and Pardo-Fernndez et al. (2007) , bootstrap method bring many benefit for
estimate the critical value of the test statistics. In this section, bootstrap procedure are
applied for estimating the critical value of the test statistics Zks and Zku. The procedures
are as follows:

3.1.1 Assume the bootstrap replication b = 1,..., B (B=300), for j =1, 2, i = 1,.., nj ,
the new response under the null hypothesis Y ∗

ij,b, b=1,..., B defined as:

Y ∗
ij,b = fj(X,β) + ε∗ij,b, j = 1, 2, i = 1, ..., nj . (6)

3.1.2 For j =1, 2, i = 1,.., nj , calculate the test statistics Zks and Zku from the
bootstrap samples Xij , Y

∗
ij,b.

3.1.3 Let Z∗
ks,b and Z∗

ku,b be the order statistics of Z∗
ks(1),...,Z

∗
ks(b) and Z∗

ku(1),...,Z
∗
ku(b)

from 300 bootstrap replications respectively, Z∗
ks(1−α)B and Z∗

ku(1−α)B approximate the

(1− α)-quantile of the distribution of Zks and Zku under the null hypothesis.
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3.1.4 The test statistics Zks and Zku are iterated for 1,000 trials, and the proportion
of rejections are displayed.

3.2 Simulation

3.2.1 Assume four regression functions in a linear form, and the shifts under the alter-
native hypothesis are made up of a constant shift and an affine shift. The model is as
follows:

(1) f1(x) = f2(x) = 2x.
(2) f1(x) = f2(x) = 2x+ 2.
(3) f1(x) = 2x, f2(x) = 2x+ 2. (constant shift)
(4) f1(x) = 2x, f2(x) = 2x+ x. (affine shift)
3.2.2 The distribution of error εi1 ∼ N(0, 1) and εi2 ∼ N(0, 1), i=1,...,n, j=1,2.
3.2.3 In all cases, the covariates Xi1 and Xi2, i = 1,...,n, j =1, 2 are uniformly dis-

tributed on the interval [0,1].
3.2.4 The sample size is determined in two way: equal in which case (n1, n2) =

(20, 20),(n1, n2) = (50, 50) (n1, n2) = (100, 100)and unequal in which case (n1, n2) =
(20, 50),(n1, n2) = (20, 100) (n1, n2) = (50, 100).

4 Results

As shown in Table 1. and Figure 2. Under the null hypothesis, the type I error is
well-approximated when the sample size becomes larger, and model (2), in the form of
Y = bx + a, will have a slightly higher rejection proportion than model (1), which does
not have a y-intercept. Next, under the null hypothesis we examine the type I error of
two methods: Zks and Zku, the value in Table1. and Figure 2. clearly shows that the
type I error of Zku is slightly lower than Zks for model (1)and model(2)for all situation.
When we consider about the type I error controlling, the performance of Zks is better
than Zku. As shown in Table 2. and Figure 3. Under the alternative hypothesis, the
power of the test statistic will get higher with a larger sample size. Additionally, the
affine shift (model (4)) results in a higher rejection percentage than the constant shift
(model (3)). Next, under the alternative hypothesis we examine the power of the test
of two methods:Zks and Zku , the value in Table2. and Figure 3. clearly shows that the
power of the test of Zku is slightly lower than Zks for all situation, and the sample size:
equal in which case or unequal in which case not effect to the performance of the test
statistics. Finally, the performance of the test statistics based on Kolmogorov-Smirnov is
better than Kuiper for all situation. Therefore, Kolmogorov-Smirnovtest statistic based
on comparing empirical distribution of error is the one choice for comparing two sets
of data with each having a linear relationship between the independent and dependent
variables.However, this research focus under the assumption of linear regression model is
true, in practice the assumption about the data may not hold, such as: error distribution,
heavy tailed of error distribution, outlier etc., the test statistic for solve these problem
should be considered.
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Table 1: Rejection proportions under the null hypothesis; models (1) and (2) of the test
statistics Zks and Zku .

sample size model zku : α = 0.05 zku : α = 0.10 zks : α = 0.05 zks : α = 0.10

(20,20) 1 0.040 0.068* 0.041 0.074*

(20,20) 2 0.042 0.071* 0.043 0.080*

(20,50) 1 0.042 0.072* 0.045 0.084

(20,50) 2 0.043 0.075* 0.049 0.085

(20,100) 1 0.045 0.075* 0.048 0.085

(20,100) 2 0.045 0.075* 0.048 0.086

(50,50) 1 0.047 0.081* 0.048 0.088

(50,50) 2 0.048 0.083* 0.052 0.089

(50,100) 1 0.050 0.089 0.051 0.101

(50,100) 2 0.050 0.092 0.051 0.102

(100,100) 1 0.050 0.098 0.052 0.102

(100,100) 2 0.051 0.101 0.052 0.102

*The type I error out of control interval.
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Figure 2: (a) Presents the rejection proportions under the null hypothesis of the test
statistic Zku, α = 0.05, (b) Presents the rejection proportions under the null
hypothesis of the test statistic Zks, α = 0.05, (c) Presents the rejection propor-
tions under the null hypothesis of the test statistic Zku, α = 0.10,(d) Presents
the rejection proportions under the null hypothesis of the test statistic Zks,
α = 0.10.
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Table 2: Rejection proportions under the alternative hypothesis; models (3) and (4) of
the test statistics Zks and Zku.

sample size model zku : α = 0.05 zku : α = 0.10 zks : α = 0.05 zks : α = 0.10

(20,20) 3 0.885 0.900 0.886 0.912

(20,20) 4 0.887 0.910 0.900 0.918

(20,50) 3 0.890 0.911 0.899 0.919

(20,50) 4 0.888 0.911 0.905 0.920

(20,100) 3 0.898 0.914 0.920 0.935

(20,100) 4 0.898 0.921 0.942 0.945

(50,50) 3 0.905 0.927 0.925 0.938

(50,50) 4 0.908 0.928 0.927 0.948

(50,100) 3 0.911 0.928 0.925 0.948

(50,100) 4 0.913 0.930 0.930 0.966

(100,100) 3 0.913 0.932 0.928 0.964

(100,100) 4 0.914 0.932 0.930 0.975



288 Tonggumnead U.

Figure 3: (a) Presents the rejection proportions under the alternative hypothesis of the
test statistic Zku, α = 0.05, (b) Presents the rejection proportions under the
alternative hypothesis of the test statistic Zks, α = 0.05, (c) Presents the re-
jection proportions under the alternative hypothesis of the test statistic Zku,
α = 0.10,(d) Presents the rejection proportions under the alternative hypoth-
esis of the test statistic Zks, α = 0.10.
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5 Application of the Data

This section applies the test statistic Zks and Zku to the comparison of two sets of
data from the National Statistical Officer Thailand that having a linear relationship
between the independent variable X and the dependent variable Y. The first set of data
is comprised of the average income per household (X) and the average expenditure per
household (Y) of Thai citizens in each province for 2006 and 2007, while the second
is made up of the average income per household (X) and the average expenditure per
household (Y) of Thai citizens in each province for 2004 and 2007. (National Statistical
Officer Thailand, 2009) The linear regression function is estimated using the maximum-
likelihood estimator before the p-value is calculated from the test statistics Zks and
Zkuby carrying out 1,000 times of bootstrapping. The results are shown in Figure 4. (a)
and (b).

Figure 4: (a) Illustrates the scatter plot and the linear regression function of the average
income per household with the data being transformed in the range of [0,1]
and log of the average expenditure per household . The data for 2006 are
represented by circles and the solid line, whereas those for 2007 are represented
by stars and the dash line. Figure 4. (b) Illustrates the scatter plot and the
linear regression function of the average income per household with the data
being transformed in the range of [0,1] and log of the average expenditure per
household. The data for 2004 are represented by circles and the solid line,
while those for 2007 are represented by stars and the dash line.

As shown in Figure 4. (a) when the distribution of data and the two linear regression
functions are considered, the data relating to the average income per household and the
average expenditure per household in 2006 and 2007 are nearly similar with the p-value
from 1,000 trials of bootstrapping, the p-value are 0.213 and 0.204 for the test statistics
based on Zks and Zku respectively . In contrast, an analysis of Figure 4. (b) reveals that
the corresponding data for 2004 and 2007 are remarkably different with the p-value of
0.015 and 0.011 for the test statistics based on Zks and Zku respectively.



290 Tonggumnead U.

6 Conclusions

The present study differs from previous research in that it does not involve only the
dependent variable Y and qualitative (categorical) with an independent variable X that
no assumption about the nature of the relationship, but takes into account the rela-
tionship between independent and dependent variables having a simple linear regression
relationship. The problem is solved by testing the equality of two linear regression func-
tions, based on the principle that two similar linear regression functions represent two
similar sets of data . From the simulation results using bootstrapping under the null
hypothesis, the type I error is found to be well-approximated with a increasing sample
size, consistent with Pardo-Fernndez et al. (2007). In comparison, under the alternative
hypothesis, the power of the test will become stronger when the sample size gets larger,
and the affine shift will yield a higher rejection percentage than the constant shift. For
type I error controlling, the performance of Zks better than Zku. As for the case of the
test statistics based on Kolmogorov-Smirnov type statistic and Kuiper type statistic for
testing the equality between two sets of data, the performance of the test statistics based
on Kolmogorov-Smirnov is better than Kuiper for all situation. When the test statistics
are applied to the actual data, the findings are consistent with the p-value after 1,000
trials of bootstrapping. This research is the one choice for comparing two sets of data
with each having a linear relationship between the independent and dependent variables.
Recommendations for further research are provided as follows. First, the relationship
between dependent variable Y and more than one independent variable X should be in-
vestigated. Second, in practice the assumption about the data may not hold, especially:
error distribution, heavy tailed of error distribution, outlier etc., the test statistic for
solve these problem should be considered. Third, linear models may not be practical
in actual settings mostly involving nonlinear relationships. Thus, studies along this line
should analyze the phenomenon using more than one independent variable, develops a
flexible and robust testing procedure to compare two sets of data, and consider about
a nonlinear function in order that problems involving a comparison of two sets of data
can be truly solved.
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