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This paper describes interconvertible rules between an aggregative index
like the Laspeyres index and a log-change index like the Törnqvist index.
Thus we can compare an aggregative index with a log-change index in the
same form. Using these rules, we formulate the logarithmic difference be-
tween the Laspeyres price index and the Törnqvist price index. One of the
rules may be combined with another. By using these combined rules, we
can change from given weights to other weights in an aggregative index (or
a log-change index) of which the value is invariable.
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1. Introduction

In this paper, we shall show interconvertible rules between an aggregative index (AGI)
such as the Laspeyres index and a log-change index (LCI) such as the Törnqvist index.
That is: we shall show two rules that will allow conversion of an AGI into an LCI, and
two other rules that will allow conversion of an LCI into an AGI. For example, the AGI
form of the Laspeyres price index can be converted into the LCI form, and the LCI form
of the Törnqvist price index into the AGI form. In this way, we can compare some AGIs
with other LCIs in the same form. Without these rules, we have no theoretical account
of the difference between an AGI and an LCI.

The Consumer Price Index (CPI) is important in practical matters. This index, for
example, is used as a compensation index, a consumption deflator, and a reference
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index for monetary policies (Boskin, 2005; Greenlees and McClelland, 2008; Hill, 2004;
McCully et al., 2007; Reinsdorf and Triplett, 2009; Zieschang, 2004). Measuring the
CPI or other price indexes, we often utilize the Laspeyres index, the Paasche index, the
Fisher index, and the Törnqvist index (see, for example, Diewert, 2004a; Greenlees and
Williams, 2009). Using our rules, we can investigate the characteristics of these indexes
in detail from various angles. For instance, the Laspeyres price index can be converted
into a geometric mean of the price ratios with the weights of the budget shares, which
is shown below.

We can assume that the CPI is approximated by the Laspeyres price index and the
true cost of living index by the Törnqvist price index. The substitution bias is then the
difference between the Laspeyres price index and the Törnqvist price index. While we
can measure this bias using actual data, we have not until now had the theoretical or
mathematical tools to directly compare their properties. Our rules will help clarify these
properties.

Furthermore, our interconvertible rules have relationships with an exact index. The
exact index derived by these may be more elegant and may have a simple formula, which
is discussed below.

To date, few attempts have been made at determining these rules. Means of combin-
ing these rules have never been examined. Our combined rules can derive many AGI
forms and LCI forms for some indexes, for example, the Laspeyres price index and the
Törnqvist price index. Thus, these additive decompositions and multiplicative decompo-
sitions are not unique; see also Balk (2008), Diewert (2002), Diewert (2004c), Reinsdorf
et al. (2002).

While we expect that our interconvertible rules will be applied over a vast area, we
shall show only three applications to index numbers: 1) the conversion of an AGI into
an LCI and an LCI into an AGI, 2) a changed form derived by a combined rule, and 3)
the derivation of exact indexes for some utility functions.

This paper is organized as follows. In Section 2, we describe some definitions for
an AGI and an LCI, and related topics. In Section 3, we show the interconvertible
rules between an AGI and an LCI. In Section 4, we explain how to combine our rules
to change from given weights to other weights in an AGI (or an LCI). Applications of
our rules as utilized to index numbers are described in Section 5, where the converted
forms of the Laspeyres price index and the Törnqvist price index, and the converted
and reconverted forms of the Fisher price index are exhibited. In addition, we explain
how to derive the exact indexes for the CES utility function and the Klein-Rubin utility
function. In Section 6, we illustrate some of the results derived by our rules using actual
data. Conclusions are given in Section 7.

2. Some Definitions

In this paper we frequently use the Laspeyres price index (PL), the Paasche price index
(PP ), the Törnqvist price index (PT ), the Montgomery price and quantity indexes (PM ,
QM ), and the Vartia-Sato price and quantity indexes (PV , QV ), which are expressed as
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follows:

PL ≡
(∑

p1iq0i

)
/
(∑

p0iq0i

)
,

PP ≡
(∑

p1iq1i

)
/
(∑

p0iq1i

)
,

logPT ≡
∑

A(w11i, w00i) log(p1i/p0i),

logPM ≡
∑ L(e11i, e00i)

L(y11, y00)
log
(p1i

p0i

)
,

logQM ≡
∑ L(e11i, e00i)

L(y11, y00)
log
(q1i

q0i

)
,

logPV ≡
∑ L(w11i, w00i)∑

L(w11i, w00i)
log
(p1i

p0i

)
,

logQV ≡
∑ L(w11i, w00i)∑

L(w11i, w00i)
log
(q1i

q0i

)
,

where psi and qti are, respectively, the price and the quantity of the ith commodity at
time s and t, s(t) = 0 is the base year, s(t) = 1 is the comparison year, esti = psiqti
is the expenditure, yst =

∑
psiqti is the total expenditure, and wsti = (psiqti)/(

∑
psiqti)

is the budget share. A(x1, x0) = (x1 + x0)/2 is the arithmetic mean of x1 and x0, and
L(x1, x0) = (x1 − x0)/(log(x1/x0)) is the logarithmic mean. The cross expenditure,
which is expressed as esti = psiqti (s 6= t), is a useful concept. Therefore, we also define
the total expenditure and the budget share as including this cross expenditure.

In this paper, all variables are assumed to be positive and only natural logarithms
are used. In addition, the summation is always made over all the commodities, so the
indexes of summation are suppressed.

The above pairs of indexes (PM , QM ) and (PV , QV ) are the ideal log-change indexes
(Balk, 1996; Balk, 2002–3; Balk, 2008; Montgomery, 1937; Sato, 1976; Tsuchida, 1997;
Vartia, 1976), which are the only two forms of ideal log-change price and quantity indexes
known up to the present. Using our combined rules, we can have many ideal log-change
indexes.

These PL and PP are the AGIs. We shall define these general forms as follows:

an AGI is of the form :
(∑ p1ixi∑

p0ixi

)Ω
=
(∑(p1i/p0i)z0i∑

(p0i/p1i)z1i

)Ω
.

Here, xi is any positive variable and zsi = psixi. This xi usually has a dimension
denoting quantity but it may have a different dimension. The exponent Ω is positive
and dimensionless. We shall refer to both xi and Ω as the weights of an AGI.

The above PT , PM , and PV are the LCIs. These general forms are as follows:
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an LCI ( in the logarithms) is of the form :
∑

ωi log(p1i/p0i).

The weight of an LCI is ωi, which is positive and dimensionless. The sum of the weights,∑
ωi, may or may not be equal to unity.

Our AGI is easily converted into a (weighted) arithmetic mean index (AMI) of the
price ratios as follows:(∑ p1ixi∑

p0ixi

)Ω
=
(∑ p1ixi∑

p0ixi

)Ω−1(∑ p1ixi∑
p0ixi

)
= B

∑
wxi(

p1i

p0i
) =

∑
wbi(

p1i

p0i
)

where B = ((
∑
p1ixi)/(

∑
p0ixi))

Ω−1, wxi = p0ixi/(
∑
p0ixi), and wbi = Bwxi. Thus the

sum of the weights of the AMI,
∑
wbi = B, may or may not be equal to unity. This

property corresponds to that of our LCI. Any AMI can also be converted into an AGI,
which will be shown in Appendix C.

Therefore, our interconvertible rules can be regarded as those between an AMI and
an LCI (or a geometric mean index). Our rules can also apply to some indexes and
some forms which resemble an AGI or an LCI in appearance but do not belong in this
category. These examples will be shown later.

Because the logarithmic mean plays a key role in the following discussion, we shall
briefly comment on it; see Balk (2002–3), Balk (2004), Balk (2008), Carlson (1972),
Pittenger (1985), Sato (1976), Stolarsky (1975), Tsuchida (1997), Vartia (1976). It has
the following properties: the value of L(x1, x0) is always positive, L(x1, x0) = L(x0, x1),
L(x1, x0) = x1 for x1 = x0, L(x1, x0) = x0L(x1/x0, 1), and L(λx1, λx0) = λL(x1, x0)
for any positive λ. In addition, it can be approximated by the usual three means: the
arithmetic mean, the geometric mean, and the harmonic mean (see Table 1 in Section
6 for a comparison among them). Whenever we use its approximation, we use the
arithmetic and geometric means. Besides, the following inequality for x1i and x0i plays
an important role below: ∑

L(x1i, x0i) ≤ L(
∑

x1i,
∑

x0i). (1)

3. Interconvertible Rules

In this section, we shall show interconvertible rules between an AGI and an LCI. Though
we shall show the four rules for the price indexes, the same rules also apply to the quantity
indexes. First, we describe the two rules that will allow conversion of an AGI into an
LCI. Each rule may educe the different weights of an LCI. Next, we describe two other
rules that will allow conversion of an LCI into an AGI. The derived weights may also be
different from each other.

In the sections below, the same sign may be used with different meanings, and in this
event we define it for each case. Each rule is shown in a logarithmic form for convenience
in writing. The symbol “⇒”means “be converted into”. For example, A ⇒ B means
“formula A is converted into formula B”.
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3.1. Rules that allow conversion of an AGI into an LCI

Rule 1 : Ω log
(∑

p1ixi∑
p0ixi

)
⇒ Ω

∑
αi log(p1ixip0ixi

) = Ω
∑
αi log(p1ip0i

).

Here, xi and Ω are the given weights of the AGI. The weights of the LCI, αi, are
determined in the following way:

αi = L(p1ixi, p0ixi)/L(
∑

p1ixi,
∑

p0ixi) and
∑

αi ≤ 1.

The following equations, which are used to derive PM and QM in Vartia (1976) and
Tsuchida (1997), hold:

log
(∑ e11i∑

e00i

)
=
∑ L(e11i, e00i)

L(
∑
e11i,

∑
e00i)

log

(
e11i

e00i

)
,

log(e11i/e00i) = log(p1i/p0i) + log(q1i/q0i).

From these, we have the following variant:

log
(∑ e10i∑

e00i

)
=
∑ L(e10i, e00i)

L(
∑
e10i,

∑
e00i)

log

(
e10i

e00i

)
. (2)

Letting q0i = xi in (2), we obtain the abovementioned rule. Also see (1) above.

Rule 2 : Ω log
(∑

p1ixi∑
p0ixi

)
⇒ Ω

∑
βi log

(
p1ixi
p0ixi

)
= Ω

∑
βi log(p1ip0i

).

Here, xi and Ω are as in Rule 1 above. The weights of the LCI, βi, are determined
in the following way:

βi = L(v1i, v0i)/
(∑

L(v1i, v0i)
)

and
∑

βi = 1,

where vsi = psixi/(
∑
psixi). Usually βi is not equal to αi.

The following equation is used to derive PV and QV in Sato (1976), Vartia (1976),
and Tsuchida (1997):

log
(∑ e11i∑

e00i

)
=
∑( L(w11i, w00i)∑

L(w11i, w00i)

)
log

(
e11i

e00i

)
from which we have the following variant:

log
(∑ e10i∑

e00i

)
=
∑ L(w10i, w00i)∑

L(w10i, w00i)
log

(
e10i

e00i

)
. (3)

Letting q0i = xi and ws0i = psixi/(
∑
psixi) = vsi in (3), we obtain the above rule.
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3.2. Rules that allow conversion of an LCI into an AGI

Rule 3 :
∑
γi log

(
p1i
p0i

)
⇒ Ω log

(∑
p1ixi∑
p0ixi

)
.

Here, γi are the given weights of the LCI. The weights of the AGI, xi and Ω, are
determined in the following way:

xi =
γi

L(p1i, p0i)
,Ω = L(

∑
p1ixi,

∑
p0ixi), and Ω ≥

∑
γi =

∑
L(p1ixi, p0ixi).

The derived
∑
p1ixi and

∑
p0ixi are dimensionless.

Substituting e10i = p1ixi and e00i = p0ixi in (2), and equating γi = L(p1ixi, p0ixi), we
have ∑

γi log(
p1i

p0i
) =

∑
L(p1ixi, p0ixi) log

(
p1ixi
p0ixi

)
= L(

∑
p1ixi,

∑
p0ixi) log

(∑ p1ixi∑
p0ixi

)
. (4)

From γi = L(p1ixi, p0ixi) = xiL(p1i, p0i) and (1), we obtain Rule 3. The second equa-
tion in (4) is called the aggregation property of the log-change index by Tsuchida (1997).

Rule 4 :
∑
γi log

(
p1i
p0i

)
⇒ (

∑
γi) log

(∑
p1izi∑
p0izi

)
.

Here, γi are the same as above. The weights of the AGI, zi, are given as follows:

zi = δi/L(p1i, p0iB) (5)

where δi = γi/(
∑
γi) and logB =

∑
δi log(p1i/p0i). Note that the two values,

∑
p1izi

and
∑
p0izi, are non-dimensional; and B = (

∑
p1izi)/(

∑
p0izi).

This rule is obtained the following relationships in which the third equation is the
reverse of Rule 2:∑

γi log(
p1i

p0i
) = (

∑
γi)
∑

δi log(
p1i

p0i
)

= (
∑

γi)
∑( L(v1i, v0i)∑

L(v1i, v0i)

)
log
(p1izi
p0izi

)
= (

∑
γi) log

(∑ p1izi∑
p0izi

)
(6)

where vsi and zi are implicitly given by δi = L(v1i, v0i)/(
∑
L(v1i, v0i)) and vsi =

psizi/(
∑
psizi).

Solving for zi in (6) requires a somewhat complicated procedure. Since this procedure
has no connection with the main subject, we omit its discussion. Here, we shall only
prove that zi in (5) are the solutions of (6).

From B and v0i = p0iδi/(L(p1i, p0iB)
∑
p0izi), we get v1i/v0i = p1i/(p0iB) and

v0iL(p1i, p0iB) = p0iδi/(
∑
p0izi). Hence,

L(v1i, v0i) = v0iL(v1i/v0i, 1) = v0iL(p1i, p0iB)/(p0iB) = δi/(
∑

p1izi)
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and
L(v1i, v0i)/(

∑
L(v1i, v0i)) = δi/(

∑
δi) = δi,

as desired.
It should also be added that the general solutions of (6) are

zi = Cδi/L(p1i, p0iB)

where C is any pre-determined value such as
∑
γi,
∑
psi,

∑
psiqsi, and so on. C is set

to be unity for simplicity.

4. Combined Rules

In this section, we show how to combine the abovementioned rules to change from given
weights to other weights in an AGI (or an LCI). Using these combined rules, we can
easily derive many sets of weights for an AGI (or an LCI) of which the value is invariable.
Although there are eight combined rules in all, four of them are momentous. These four
are discussed in this section, and the other four in Appendix A. Since interconvertible
rules always have positive weights, the derived weights under combined rules are also
positive.

We write a combined rule as “Rule 2
⊗

Rule 3”. This means the following rules:

Ω log
(∑ p1ixi∑

p0ixi

)
⇒ Ω

∑
βi log

(p1i

p0i

)
=

∑
γi log

(p1i

p0i

)
⇒ Ψ log

(∑ p1izi∑
p0izi

)
where γi = Ωβi, and the derived weights βi and (zi,Ψ) are determined by Rule 2 and
Rule 3, respectively. That is: first, we use Rule 2; second, we use Rule 3 with the result
of Rule 2.

4.1. Combined rules that change from the given weights to others in
an AGI

Given the initial weights (xi,Ω) of the AGI, we can derive other weights (zi,Ψ) that
satisfy the following equation:(∑ p1ixi∑

p0ixi

)Ω
=
(∑ p1izi∑

p0izi

)Ψ
. (7)

In this changing, there are two cases: one is nondecreasing of the exponent such as
(8), and the other is nonincreasing such as (9);

0 < Ω ≤ Ψ, (8)
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and

Ω ≥ Ψ > 0. (9)

We have (7) and (8) if we use Rule 2
⊗

Rule 3, and (7) and (9) if we use Rule 1
⊗

Rule 4. These inequalities are due to (1).

These are not so unusual. For example, the Laspeyres price index is written as follows:

PL ≡
∑
p1iq0i∑
p0iq0i

=
(∑ p1i(q0i + xi)∑

p0i(q0i + xi)

)Ω

where xi are any positive quantities and Ω is post-determined according to the pre-
determined values of xi, and (q0i + xi,Ω) are new weights of PL. Our combined rules
explain how to derive these new weights systematically.

Here we shall define an inverse correspondence of the combined rule. If one combined
rule [A] changes from the first set of weights in an AGI (or an LCI) to the second set of
weights in an AGI (or an LCI), and if, in addition, another combined rule [B] changes
from the second set to the first set; then we say that the combined rule [A] (or [B])
is in inverse correspondence to [B] (or [A]). The above Rule 2

⊗
Rule 3 is in inverse

correspondence to Rule 1
⊗

Rule 4 and vice versa (see Table 4 in Section 6).

We can also use the combined rules iteratively. Thus, we have many sets of weights,
(xi,Ω), (zi,Ψ), . . ., (di,Φ), that satisfy the following (10) and (11), or (10) and (12):(∑ p1ixi∑

p0ixi

)Ω
=
(∑ p1izi∑

p0izi

)Ψ
= . . . ,=

(∑ p1idi∑
p0idi

)Φ
, (10)

0 < Ω ≤ Ψ ≤ . . . ,≤ Φ, (11)

Ω ≥ Ψ ≥ . . . ,≥ Φ > 0. (12)

4.2. Combined rules that change from the given weights to others in
an LCI

Given the weights αi of the LCI, we can derive other weights βi that satisfy the following
(13) and (14), or (13) and (15):∑

αi log(p1i/p0i) =
∑

βi log(p1i/p0i), (13)

0 <
∑

αi ≤
∑

βi, (14)∑
αi ≥

∑
βi > 0. (15)

We have (13) and (14) if we use Rule 3
⊗

Rule 2, while we have (13) and (15) if we
use Rule 4

⊗
Rule 1. Owing to (1), there are two inequalities (14) and (15). The two

combined rules are in inverse correspondence to each other (see Table 4 in Section 6).

We may also use Rule 3
⊗

Rule 2 or Rule 4
⊗

Rule 1 iteratively. Therefore, we have
many weights of the LCI; say the Törnqvist price index, of which the value is invariable.
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5. Application to Index Numbers

5.1. Converted forms of the price indexes

5.1.1. Laspeyres price index

Applying Rule 1 to the Laspeyres price index, we have

logPL ⇒
∑ L(e10i, e00i)

L(y10, y00)
log
(p1i

p0i

)
. (16)

This converted form in (16) is shown in Balk (2004), Tsuchida (1997), and Vartia (1976).

In addition, applying Rule 2, we have

logPL ⇒
∑ L(w10i, w00i)∑

L(w10i, w00i)
log
(p1i

p0i

)
≈
∑

A(w10i, w00i) log
(p1i

p0i

)
(17)

where we used the approximation L(w10i, w00i) ≈ A(w10i, w00i). This converted form is
shown in Balk (2004) and Tsuchida (1997), and is identical with the resultant one in
Reinsdorf et al. (2002) that is explained in Appendix B.

The difference between the Laspeyres price index and the Törnqvist price index is
called the substitution bias and was measured using actual data (for example, Aizcorbe
and Jackman, 1993; Cage et al., 2003; Manser and McDonald, 1988). If we use the
approximation in (17), we can account for the substitution bias theoretically. This
logarithmic difference is written as follows:

logPL − logPT ≈
1

2

∑
(w10i − w11i) log

(p1i

p0i

)
=

1

2

∑
(w10i − w11i)

(
log

p1i

p0i
− logPP

)
= −1

2

∑
L(w10i, w11i)

(
log

p1i

p0i
− logPP

)(
log

q1i

q0i
− logQP

)
(18)

where we used the following two equations and QP is the Paasche quantity index.∑
(w10i − w11i) logPP = 0

and

log(w10i/w11i) = − log(q1i/q0i) + logQP .

The Paasche price and quantity indexes can be regarded as weighted means of the price
and quantity ratios. Thus, the abovementioned difference approximates the negatively
one-half weighted logarithmic covariance of these ratios. If the weighted logarithmic
covariance is negative, as is very frequently the case in the consumer goods market,
then PL will be greater than PT . This approximation error is due to L(w10i, w00i) ≈
A(w10i, w00i). These errors are shown in Section 6.
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Whenever the value of x is close to unity, we can use the approximation that is given
by log x ≈ x − 1. If this approximation can be used for all logarithmic terms in (18),
then

PL − PT ≈ −
1

2

∑
w11i

(p1i

p0i
− PP

)(q1i

q0i
−QP

)
(19)

where we used the following relation:

L(w10i, w11i) =
w11i((w10i/w11i)− 1)

log(w10i/w11i)
≈ w11i.

From the result, we may recall Bortkiewicz’s notable formula of the difference between
PL and PP . This formula is that QL(PP − PL) becomes the weighted covariance of
the price and quantity ratios, where QL is the Laspeyres quantity index (Balk, 2008;
Bortkiewicz, 1923; Diewert, 2004a). See also the difference between PP and PT , which
will be explained below.

5.1.2. Paasche price index

Applying Rule 1 to the Paasche price index, we have

logPP ⇒
∑ L(e11i, e01i)

L(y11, y01)
log
(p1i

p0i

)
.

This converted form can be found in Balk (2004).
And applying Rule 2, we have

logPP ⇒
∑ L(w11i, w01i)∑

L(w11i, w01i)
log
(p1i

p0i

)
≈
∑

A(w11i, w01i) log
(p1i

p0i

)
(20)

where we used the similar approximation above. This converted form is implicitly shown
in Balk (2004) and also the same as the resultant one in Reinsdorf et al. (2002) that is
explained in Appendix B.

If we use the approximation in (20), we can account for the difference between the
Paasche price index and the Törnqvist price index. This logarithmic difference is

logPP − logPT ≈
1

2

∑
(w01i − w00i) log

(p1i

p0i

)
=

1

2

∑
L(w01i, w00i)

(
log

p1i

p0i
− logPL

)(
log

q1i

q0i
− logQL

)
(21)

where we used the two equations below.∑
(w01i − w00i) logPL = 0

and
log(w01i/w00i) = log(q1i/q0i)− logQL.

When the logarithmic covariance is negative, PP will be smaller than PT .
If the approximations can be used in (21) as in (19), then

PP − PT ≈
1

2

∑
w00i

(p1i

p0i
− PL

)(q1i

q0i
−QL

)
.
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5.1.3. Törnqvist price index

By Rule 3, the converted form of the Törnqvist price index is

PT ⇒
(∑ p1ixi∑

p0ixi

)Ω

where
xi = A(w11i, w00i)/L(p1i, p0i)

and

Ω = L(
∑

p1ixi,
∑

p0ixi) ≥
∑

L(p1ixi, p0ixi) =
∑

A(w11i, w00i) = 1.

If we use L(x1, x0) ≈ A(x1, x0) repeatedly, then we derive

Ω ≈ 1

2

∑ (p1i + p0i)A(w11i, w00i)

L(p1i, p0i)
≈
∑

A(w11i, w00i) = 1.

Thus

PT ≈
∑

(p1iA(w11i, w00i)/L(p1i, p0i))∑
(p0iA(w11i, w00i)/L(p1i, p0i))

. (22)

This approximation of the converted index can be found in Reinsdorf (1994).
We may also apply Rule 4. This result is

logPT ⇒
(∑

A(w11i, w00i)
)

log
(∑(p1iδi/L(p1i, p0iB))∑

(p0iδi/L(p1i, p0iB))

)
and

PT ⇒
∑

(p1iA(w11i, w00i)/L(p1i, p0iPT ))∑
(p0iA(w11i, w00i)/L(p1i, p0iPT ))

(23)

where
δi = A(w11i, w00i)/(

∑
A(w11i, w00i)) and B = PT .

Although Reinsdorf et al. (2002) show a convertible formula for an LCI with normal-
ized weights whose sum is equal to unity, their formula yields the same result as Rule 4.
Thus, the AGI in (23) is the same as theirs. Note that Rule 4 can also apply to an LCI
with non-normalized weights.

5.1.4. CES price index

Our rules can apply to some indexes that do not belong to our AGI or LCI. An example
is the CES (or Lloyd-Moulton) price index (Balk, 1999; Diewert, 2004b; Greenlees,
2011; Greenlees and Williams, 2009; Lent and Dorfman, 2009; Lloyd, 1975; Shapiro and
Wilcox, 1997). This index is given and rewritten as follows:

PC =
(∑

w00i(ki)
r
)1/r

=
(∑w00i(ki)

r∑
w00i

)1/r
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where ki = p1i/p0i, r = 1− σ, and σ ( 6= 1) is the elasticity of substitution.
While we can apply Rule 2, we show only the result by Rule 1. Applying Rule 1 to

the last term of the above, we get

logPC ⇒
1

r

∑
αi log

(w00i(ki)
r

w00i

)
=
∑

αi log
(p1i

p0i

)
where

αi =
L(w00i(ki)

r, w00i)

L(
∑
w00i(ki)r,

∑
w00i)

=
w00iL((ki)

r, 1)

L(
∑
w00i(ki)r, 1)

.

Using the approximation L(x1, x0) ≈ A(x1, x0) repeatedly, we have

L(
∑

w00i(ki)
r,
∑

w00i) ≈ (1/2)
∑

w00i((ki)
r + 1)

≈
∑

w00iL((ki)
r, 1).

Therefore

logPC ≈
∑ w00iL((ki)

r, 1)∑
w00iL((ki)r, 1)

log
(p1i

p0i

)
.

5.2. Changed forms derived by the combined rule

As an example using the combined rules, we shall consider the Fisher price index PF .
Since logPF = (logPL + logPP )/2, and two converted forms of PL and those of PP
are previously derived, we can quickly obtain 2 × 2 = 4 converted forms of PF . Some
converted forms of PF can be found in Balk (2004) and Reinsdorf et al. (2002). In
what follows, we use Rule 2

⊗
Rule 3 and the approximation L(x1, x0) ≈ A(x1, x0) to

emphasize the similarities between PF and PT .
Firstly, we apply Rule 2 to PL and PP , and then we obtain

logPF ≈
∑

A(w11i, w10i, w01i, w00i) log(p1i/p0i) (24)

wherein we used the approximations in (17) and (20), and A(w11i, w10i, w01i, w00i) is the
arithmetic mean of the four budget shares wsti’s.

Secondly, we apply Rule 3 to the above right-hand side. Because there is a similarity
between the right-hand side and PT , this result must also be similar to the approximately
converted Törnqvist price index in (22). Thus

PF ≈
∑

(p1iA(w11i, w10i, w01i, w00i)/L(p1i, p0i))∑
(p0iA(w11i, w10i, w01i, w00i)/L(p1i, p0i))

. (25)

5.3. Derivations of the exact indexes

Following Diewert (Diewert, 1976; Diewert, 1978), the quantity index Q(q1,q0) is said
to be exact if the following two conditions are satisfied: 1) the quantity vector qt is a
solution of the maximization problem for utility function U(qt), t = 0 and t = 1; and 2)
U(q1)/U(q0) is equal to Q(q1,q0).
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The interconvertible rules have relationships with an exact index. If a utility ratio
is regarded as our quantity index, then the interconvertible rules can be applied to it1.
While an exact index sometimes has the same form as a corresponding utility ratio, it
may have the converted form from a utility ratio (Diewert, 1976; Diewert, 1978; Diewert,
1981; Diewert, 2009). This converted form of an exact index may be more elegant and
simple than the unconverted form. Furthermore, the converted form can be reconverted
under our rules. Thus, some utility functions have many exact index formulae2.

5.3.1. Exact index for the CES utility function

The CES utility function at time t, Ut, is

Ut =
(∑

ai(qti)
−γ
)−1/γ

where ai > 0, γ 6= 0, and γ > −1. Applying Rule 2 to the first step in the following
equation, we get:

−γ log
(U1

U0

)
= log

∑
ai(q1i)

−γ∑
ai(q0i)−γ

=
∑ L(v1i, v0i)∑

L(v1i, v0i)
log
(ai(q1i)

−γ

ai(q0i)−γ

)
.

Hence

log
U1

U0
=
∑ L(v1i, v0i)∑

L(v1i, v0i)
log
(q1i

q0i

)
. (26)

Here vti = ai(qti)
−γ/ (

∑
ai(qti)

−γ).
Whenever Ut is maximized, the following conditions are satisfied:

∂Ut/∂qti = λtpti and ytt =
∑

ptiqti

where λt is the marginal utility of the income (=the total expenditure) at time t. From
these conditions, we have vti = ptiqti/ytt in (26). Hence, we obtain the following result
in (27) wherein the Vartia-Sato quantity index QV is exact for the CES utility function
(for a similar result, see Lau, 1979; Sato, 1976):

log
(U1

U0

)
=
∑ L(w11i, w00i)∑

L(w11i, w00i)
log
(q1i

q0i

)
= logQV . (27)

Since the utility function is linearly homogeneous, there is a well-established theorem
that states:

Ut =
∑

(∂Ut/∂qti)qti = λt
∑

ptiqti = λtytt. (28)

From (27), (28), and PVQV = y11/y00, we have

QV =
U1

U0
=
y11/PV
y00

=
λ1y11

λ0y00
.

Thus, the Vartia-Sato price index PV has a desirable property for a consumption deflator
in this utility function and its reciprocal is equal to the ratio of the marginal utility of
the income, λ1/λ0.

1Our rules may be able to apply to some utility ratios that are not contained in our AGI or LCI
2This point was discussed by Diewert (1981).



Electronic Journal of Applied Statistical Analysis 407

5.3.2. Exact index for the Klein-Rubin utility function

The Klein-Rubin (or Stone-Geary) utility function at time t, Ut, is

logUt =
∑

ai log(qti − γi) =
∑

ai log cti (29)

where ai > 0,
∑
ai = 1, qti > γi > 0, and cti = qti − γi > 0.

As is well known, the following Linear Expenditure System is derived under this
function:

ptiqti = ptiγi + ai

(∑
(ptiqti − ptiγi)

)
.

From this equation, we obtain ai = p1ic1i/(
∑
p1ic1i) = p0ic0i/(

∑
p0ic0i). Here, we use

the geometric mean of the two values for ai. Thus, ai = (G(p1i, p0i)G(c1i, c0i))/G(m11,m00),
wherein G(x1, x0) = (x1x0)0.5 is the geometric mean of x1 and x0, and mtt =

∑
pticti.

From (29) and our Rule 4, we have

log(U1/U0) =
∑

ai log(c1i/c0i) = log
(

(
∑

c1izi)/(
∑

c0izi)
)

(30)

where zi = ai/L(c1i, c0iB) and B = U1/U0. Upon substituting ai and the approximation
L(c1i, c0iB) ≈ G(c1i, c0i)B

0.5 into (30), we get

U1

U0
=

∑
c1izi∑
c0izi

≈
∑
c1iG(p1i, p0i)∑
c0iG(p1i, p0i)

. (31)

Thus, the approximately exact index for the Klein-Rubin utility function in (31) has
a very simple formula. Compare the result in (31) with the Klein-Rubin’s. Note that
the Klein-Rubin formula is the constant-utility index, not the exact index. Refer to
Klein and Rubin (1947–48) and Geary (1950–51). The two terms

∑
c1iG(p1i, p0i) and∑

c0iG(p1i, p0i) are very similar to the supernumerary incomes (Samuelson, 1947–48),∑
p1ic1i and

∑
p0ic0i.

6. Some Results Using Actual Data

In this section, we explain some of the results derived by our rules using actual data.
The data used were yearly expenditures, quantities, and average prices on commodities
per household, which consisted of 127 items of the food in Japan for the years 2007–2009
(Statistics Bureau, 2010). Of the food expenditures, only the quantities of these items
including the fresh food are reported. The movements of prices and quantities of the
fresh food are more pronounced than other commodities in many developed countries
such as Japan. Thus, we expect that year-to-year approximated results similar to ours
as shown below will be found in many countries and situations.

6.1. Approximation errors

In Section 5, we described the approximate formulae of some price indexes. In there,
many approximation errors result from the difference between the logarithmic mean and
the arithmetic mean. Thus, we first show this difference.
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Table 1 compares the logarithmic mean L(x1, x0) of two variables, x1 and x0, with the
usual three means: the arithmetic mean A(x1, x0), the geometric meanG(x1, x0), and the
harmonic mean H(x1, x0). In this comparison, we always set x0 to be unity. Note that
L(x1, x0) = x0L(x1/x0, 1), A(x1, x0) = x0A(x1/x0, 1), G(x1, x0) = x0G(x1/x0, 1), and
H(x1, x0) = x0H(x1/x0, 1) hold. Thus, L(x1, x0)/A(x1, x0) = L(x1/x0, 1)/A(x1/x0, 1)
and so on.

Table 1: Comparison among the different means

Variables

x1 x0 L(x1, x0) A(x1, x0) G(x1, x0) H(x1, x0)

0.5 1 0.7213 0.7500 0.7071 0.6667

0.6 1 0.7830 0.8000 0.7746 0.7500

0.7 1 0.8411 0.8500 0.8367 0.8235

0.8 1 0.8963 0.9000 0.8944 0.8889

0.9 1 0.9491 0.9500 0.9487 0.9474

1.0 1 1.0000 1.0000 1.0000 1.0000

1.1 1 1.0492 1.0500 1.0488 1.0476

1.2 1 1.0970 1.1000 1.0954 1.0909

1.3 1 1.1434 1.1500 1.1402 1.1304

1.4 1 1.1888 1.2000 1.1832 1.1667

1.5 1 1.2332 1.2500 1.2247 1.2000

Table 1 tells us that the degree of approximation of A(x1, x0) to L(x1, x0) is very close
in the range from x1(orx1/x0) = 0.8 to x1(orx1/x0) = 1.2. In this approximation, the
geometric mean is superior to the arithmetic mean and the harmonic mean. Therefore,
we can use the geometric means to approximate the logarithmic means in (16), (17),
and so forth.

The frequency distribution of the actual ratios of the budget shares and the prices
are exhibited in Table 2. Almost all ratios range between 0.8 and 1.2. Thus, these
approximations given by L(x1/x0, 1)/A(x1/x0, 1) = L(x1, x0)/A(x1, x0) ≈ 1, wherein
x1/x0 is w10i/w00i, p1i/p0i, and so forth, will show negligible discrepancies.

Some price indexes for the food expenditures in Japan and their approximations are
shown in Table 3. The approximate formulae of PL, PP , and PT are explained in
(17), (20), and (22), respectively. We computed the two approximations of PF : one
is the AGI in (25) and the other the LCI in (24). In that section, we formulated two
logarithmic differences between the Laspeyres price index and the Törnqvist price index
in (18), and between the Paasche price index and the Törnqvist price index in (21).
These approximations are also presented in that table. Reflecting the results in Table 1
and Table 2, all the approximations in Table 3 are very good. Thus, we may use these
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Table 2: Frequency distribution of the ratios for some ranges

Ratios Ranges

[0.7, 0.8) [0.8, 0.9) [0.9, 1) [1, 1.1) [1.1, 1.2) [1.2, 1.3)

2009 / 2008 (Comparison year/ Base year)

w10i/w00i 0 4 65 52 5 1

w11i/w01i 0 4 62 54 6 1

w11i/w00i 0 4 63 52 8 0

p1i/p0i 0 6 83 35 2 1

2008 / 2007 (Comparison year/ Base year)

w10i/w00i 0 3 63 50 10 1

w11i/w01i 0 3 63 50 10 1

w11i/w00i 2 6 65 40 12 2

p1i/p0i 0 2 44 63 17 1

approximations in almost all cases. The computed results imply that the two logarithmic
covariances in (18) and (21) are negative in Japanese food expenditures.

Table 3: Comparison of true values with their approximations

Price indexes 2009 / 2008 2008 / 2007

True values Approximations True values Approximations

PL 0.982626 0.982631 1.018495 1.018504

PP 0.981055 0.981059 1.017674 1.017682

PF (AGI) 0.981840 0.981847 1.018084 1.018089

PF (LCI) 0.981840 0.981844 1.018084 1.018093

PT 0.981841 0.981844 1.018084 1.018080

PL/PT 1.000800 1.000804 1.000403 1.000412

PP /PT 0.999199 0.999203 0.999597 0.999605

6.2. Iterated results by the combined rules

In Section 4, we explained the changing forms of the weights of an AGI and an LCI
using the combined rules iteratively. In the changing forms, both the exponents of an
AGI and the sums of the weights of an LCI have two cases: one is nondecreasing and the
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other nonincreasing. Since these topics have never been investigated, we shall illustrate
these results taking PL, PP , and PT as examples. The data used were the same for the
years 2008–2009.

To PL and PP , we first apply Rule 2
⊗

Rule 3 three times iteratively, and then Rule 1⊗
Rule 4 five times iteratively. At the start, their exponents Ω’s are naturally in unity.

These iterated results are exhibited in Table 4. Given that the two combined rules are
in inverse correspondence to each other, some coupled values such as the 2nd result and
the 4th result are equal. In two price indexes, one of the combined rules is seen to make
the exponent of the AGI increase, the other decrease.

To PT , we first apply Rule 3
⊗

Rule 2 three times iteratively, and then Rule 4
⊗

Rule 1 five times iteratively. At the start, the sum of the weights,
∑
ωi, is unity from

the definition. These iterated results are also shown in Table 4. Since the two combined
rules are in inverse correspondence to each other, results like those above are observed.
One of the combined rules makes the sum of the weights of the LCI increase, the other
decrease.

In computed results, the increasing and decreasing methods for the values of the two
exponents of the AGI and the sum of the weights of the LCI are similar to each other.
This finding may be interesting and deserve more than a passing notice, though this is
beyond the scope of the current discussion.

Table 4: Iterated results of the weights by the combined rules

Indexes’ Iterated results

weights Start→ 1st→ 2nd→ 3rd→
8th← 7th← 6th← 5th← 4th←

Ω of PL 1→ 1.000169→ 1.000338→ 1.000508→
0.999662← 0.999831← 1← 1.000169← 1.000338←

Ω of PP 1→ 1.000168→ 1.000336→ 1.000504→
0.999664← 0.999832← 1← 1.000168← 1.000336←∑

ωi of PT 1→ 1.000169→ 1.000337→ 1.000506→
0.999663← 0.999832← 1← 1.000169← 1.000337←

7. Conclusion

In this paper, we have shown interconvertible rules between AGIs and LCIs. So far,
few attempts have been made at determining these rules. Using these rules, we have
converted AGIs such as the Laspeyres price index and the Paasche price index into
LCIs, and also converted an LCI such as the Törnqvist price index into AGIs. From
these results, we have formulated two logarithmic differences: 1) the difference between



Electronic Journal of Applied Statistical Analysis 411

the Laspeyres price index and the Törnqvist price index and 2) the difference between
the Paasche price index and the Törnqvist price index. In addition, we have derived the
exact indexes for some utility functions using our rules.

One of the rules may be combined with another. Using these combined rules, we can
change from given weights to other weights in an AGI (or an LCI). Thus, there are many
sets of weights of an AGI (or an LCI) of which the value is invariable. As an example
using the combined rule, we have derived the approximately converted and reconverted
Fisher price indexes.

Furthermore, we compared some price indexes with their derived approximations and
illustrated the iterated results by the combined rules using actual data. All our approx-
imations are very close to the true vales.

Appendixes

A. Results of the Other Combined Rules

In this appendix, we briefly discuss the other combined rules that are not covered in
Section 4, since these draw insignificant results. The symbol “→”means “be changed
to”.

A.1. Rule 1
⊗

Rule 3

This combined rule derives the following AGI:

Ω log
(

(
∑

p1ixi)/(
∑

p0ixi)
)
→ Ω log

(
(
∑

p1izi)/(
∑

p0izi)
)

where zi = xi/L(
∑
p1ixi,

∑
p0ixi). Thus, the resultant formula turns out to be invariant.

The other combined rules discussed in this appendix have the same properties.

A.2. Rule 2
⊗

Rule 4

This derives

Ω log
(

(
∑

p1ixi)/(
∑

p0ixi)
)
→ Ω log

(
(
∑

p1izi)/(
∑

p0izi)
)

where zi = xi/(
∑
xiL(p1i, p0iB)) and B = (

∑
p1ixi)/(

∑
p0ixi).

A.3. Rule 3
⊗

Rule 1

This derives ∑
αi log(p1i/p0i)→ Ω

∑
(αi/Ω) log(p1i/p0i)

where Ω = L(
∑
p1ixi,

∑
p0ixi) and xi = αi/L(p1i, p0i).
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A.4. Rule 4
⊗

Rule 2

This derives the following result:∑
βi log(p1i/p0i)→ D

∑
(βi/D) log(p1i/p0i)

where D =
∑
βi.

B. Correspondence between Our Rules and the
Convertible Formulae Derived by Reinsdorf et al.

In this appendix, we describe the correspondence between the results derived by our
rules and the convertible formulae shown in Reinsdorf et al. (2002).

B.1. Laspeyres price index

Their formula is the right-hand side of the following:

logPL ⇒
∑ w00iL(ki, PL)∑

w00iL(ki, PL)
log
(p1i

p0i

)
where ki = p1i/p0i. Note that the following two equations hold:

log(w10i/w00i) = log ki − logPL

and

PL(w10i − w00i) = w00i(ki − PL).

From these, we have w00iL(ki, PL) = PLL(w10i, w00i); accordingly the converted form
in the above becomes the same as ours in (17). (In this case, we may apply Rule
2 to PL = (

∑
w00iki)/(

∑
w00i) to directly derive their formula. Recall that v1i =

w00iki/(
∑
w00iki) = w00iki/PL and v0i = w00i/(

∑
w00i) = w00i. )

B.2. Paasche price index

Their formula is shown by

logPP ⇒
∑ w11iL(1/ki, 1/PP )∑

w11iL(1/ki, 1/PP )
log
(p1i

p0i

)
.

The procedures similar to PL yield w11iL(1/ki, 1/PP ) = L(w11i, w01i)/PP ; accordingly
this converted form becomes identical with ours in (20). (We may also apply Rule 2 to
PP = (

∑
w11i)/(

∑
w11i/ki). )
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C. Conversion of an AMI into an AGI

Any arithmetic mean index (AMI) of the price ratios is written as follows:∑
wi

(p1i

p0i

)
= (

∑
wi)
∑( wi∑

wi

)(p1i

p0i

)
=

(∑ p1ixi∑
p0ixi

)Ω−1(∑ p1ixi∑
p0ixi

)
=
(∑ p1ixi∑

p0ixi

)Ω

wherein the following relations are given by∑
wi =

(∑ p1ixi∑
p0ixi

)Ω−1
,∑( wi∑

wi

)(p1i

p0i

)
=

∑
p1ixi∑
p0ixi

.

Here, wi, p1i, and p0i are the given variables; and Ω and xi are the unknown variables.
The sum of the weights of our AMI,

∑
wi, may or may not be equal to unity. From the

second relation, xi = Bwi/p0i is found, where B is any constant. The proof is very easy.
(Substituting xi into the right-hand side of that, we immediately obtain the left-hand
side of that.) We set B = 1 for simplicity. Using these xi and the first relation, we get
Ω. Thus any AMI can be converted into an AGI.
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