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Burr model is especially suitable for the life-testing of the products that
age with time. Trimmed samples are widely utilized in several areas of statis-
tical practice, especially when some sample values at either or both extremes
might have been adulterated. In this article, the problem of estimating the
parameter of Burr distribution type II based on trimmed samples under infor-
mative and uninformative has been addressed. The problem discussed using
Bayesian approach to estimate the shape parameter of Burr type II distri-
bution. Elicitation of hyperparameter through prior predictive approach has
also been discussed. Posterior predictive distributions along with posterior
predictive intervals and credible intervals have also been derived under differ-
ent priors. A comparison has been made using the Monte Carlo simulation.
A real life data example has also been discussed.

Keywords: Inverse Transformation Method, Doubly Censored Samples,
Loss Functions, Posterior Predictive distributions, Credible Intervals.

1 Introduction

Burr [9] introduced a family of twelve cumulative distribution functions for modeling
lifetime data. The two important members of the family are Burr types II and XII. The
two important distributions, Burr type II and Burr type XII, are interrelated through
simple transformation. Trimmed samples are widely employed in several areas of statis-
tical practice, especially when some sample values at either or both extremes might have
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been contaminated. The problem of estimating the parameters of Burr distribution type
IT based on a trimmed sample and prior information has been considered in this paper.
Many authors have discussed different methods of estimation for Burr type XII distri-
bution. Al-Hussaini and Jaheen [1] and Al-Hussaini et al. [3] used different methods for
obtaining. Bayes estimates of the shape parameters, reliability and failure rate functions
based on type II censored samples. Al-Hussaini et al. [2] studied the maximum likeli-
hood, uniformly minimum variance unbiased, Bayes and empirical Bayes estimators for
the parameter k and reliability function when c is known. Wingo [22] derived the theory
for the ML point estimation of the parameters of the Burr distribution when Type II
singly censored sample is at hand. Ali-Mousa [4] obtained empirical Bayes estimation of
the parameter and the reliability function based on accelerated Type II censored data.
Gupta et al. [12] discusses analysis of failure time data by Burr distribution. Wang
et al. [21] derived the maximum likelihood estimation of the Burr XII distributions
parameter with censored and uncensored data. Ali-Mousa and Jaheen [5] explore the
maximum likelihood and Bayes estimates for two parameters and the reliability function
of the Burr Type XII distribution based on progressive type Il censored samples. Feroze
and Aslam [11] studied Bayesian analysis of Gumbel type II distribution under doubly
censored samples using different loss functions. The random variable X has Burr type
II distribution and its pdf is given by

f(z,0)=0e"(1+ €_I)7(0+1) , —oo<zx<oo, 60>0, (1)

then the distribution function of the corresponding distribution is

F(z,0)=(1+e¢%)", 6>0. 2)

The objective of this paper is to obtain the estimators of the unknown shape parame-
ters of Burr type II based on doubly censored type II. The rest of paper is organized as
follows. In section 2, the posterior distributions have been derived under non-informative
and informative priors. Estimation of shape parameter has been discussed in section 3.
Method of Elicitation of the hyper-parameters via prior predictive approach has been
discussed in section 4. Posterior predictive distribution and posterior predictive intervals
and credible intervals have been derived in section 5. Simulation study has been per-

formed in section 6. The conclusions regarding the study have been presented in section
7.

2 Prior and Posterior Distributions

Doubly type II censoring is used when the samples are censored at two test termination
points, that is, the observations below and above a particular point cannot either be
observed or not feasible to be observed. The likelihood function under the doubly type
II censored samples can be defined as:

Consider a random sample of size ‘n’ from Burr type II distribution, and let z(,) <
ZTes1) < oo < Ty be the ordered observations that can only be observed. The
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remaining the "w — 1”7 smallest observations and the "n — s” largest observations have
been censored. Then the likelihood function for the Type II doubly censored sample
T4y < T(rg1) < oo < T(,_g) takes the following form:

z rf {F }T_l {1 - F(x(s)’e)}n_sa

n!
(r—1!(n—2s)!
n!

(7“ — 1) (n — 3)
(s ey} (1= oy Y
iL' 9 O(S ( >05 r+l, 9{21 r <1+e z(z’))+(r71)ln<1+efz(r)>+kln(1+e*$(s))}

=0

L(z,0) =

L(z,0) =

I {Oe—m(i) (1+e—x<i))—(9+1))

9

xe(xkj ( )eR-@w (3)

where ¢, = {37 In(1+e @)+ (r—1)ln(14+e*™) +kln(l+e ")} and R =
s—r+1.

2.1 Posterior Distributions Under Uninformative Prior

The uniform distribution is assumed to be:

p(@) <1, 6>0. (4)
The Jeffreys prior is derived to be:
p(0) %, 0> 0. (5)
The informative prior for the parameter 6 is assumed to be exponential distribution:
p(0) =we ™, 6>0. (6)
The informative prior for the parameter 6 is assumed to be gamma distribution:
p(8) = Fb;) 0t 9> 0. (7)

Now, the generalized expressions for posterior distributions, Bayesian estimators, pos-
terior risks, posterior predictive distributions, posterior predictive intervals and credible
intervals have been presented in the following. The expressions under priors given in
(4), (5), (6) and (7) can be derived by putting j =0,l =0,m =0, j=1,1=0,m =0,
i=0,l=1,m=0,3j=0,l=0,m =1, respectively in the generalized results.

Combining the prior distribution and the likelihood function (3), the generalized pos-
terior density of 6 is derived as:

1k n;s)aR j+m(a—1) —G(Qpirk—i—lw—&-mb)

p(0]z) = S k(n ) T(R+1—j+m(a—1)) ’ ®)

"pl T k+lw+mb)R+1 gtmla=1)
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3 Estimation of Parameter

From a decision-theoretic view point, in order to select the best estimator, a loss function
must be specified and is used to represent a penalty associated with each of the possible
estimates. In this section we provide the Bayes estimates for the parameter 6 based on
three loss functions.

3.1 Bayes Estimator and Posterior Risks under Quasi-Quadratic Loss
Function (QQLF)

The quasi-quadratic loss function is of the form:
. P 0\ 2
L(Q,H)z(e_c —e_c> , c # 0.
The Bayes estimator and the posterior risk under QQLF are given below:

)} o (err) =B () = [()]

For simulation study we consider ¢ = 1.
The Bayes estimator and posterior risks under this loss function are:

N -1
QQQLF = . In {E (efce

n—s 1 k (mn—s ) |
A - ( ) ( i ) (1+wi,r,k+l’w+mb)R+1*J+m(a71)
9 = log n—s (_1)k (n—s T ‘ ’
o g ("pi,r,k'i‘lw—‘f-mb)R+1*J+m(a71)
n—s -1 k (n—s . |
<é) Zk:(] ( ) ( k ) (2+¢i,7‘7’€+lw+mb>R+1*J+m(a71)
p(0) = )

n:s -1 k (n—s 1 _
S 0 (5 s

- k (m— 1
Z:(s) (_1) (nk S) (144, k+lw+mb)R+1—j+m(a—l)
— k (n— 1
ho (=1 (") (et mp) T 7D

3.2 Bayes Estimator and Posterior Risks under Squared-Log Error
Loss Function (SLELF)

The squared-log error loss function is of the form:
. . 2
L (9,9) - (me . 1n9) :

which is balanced with lim L <9,é) — oo as § — 0 or oo A balanced loss function
takes both error of estimation and goodness of fit into account but the unbalanced loss
function only considers error of estimation. This loss function is convex for g < e and

concave otherwise, but its risk function has a unique minimum with respect to 6. The
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Bayes estimator for the parameter 6 of Burr Type-II distribution under the squared-log
error loss function may be given as:

Osrprr = exp {E(Inf|z)}, p (éSLELF) = E[(In6|2))? - [E (Ing| 2)]2,

where ¢ (z) = 11:/((;)) is the digamma function and

¥ (@) = 0y losT @)} = 5 {0 |

is the tri-gamma function.
The Bayes estimator and posterior risks SLELF are:

Zn—s (_1)k (n—s) F(R—l—l—j—l—m(a—‘l)) {exp{q,[;(R—l—l—j—i—m(a—l))} }
6 — k=0 k (%’,r,k-‘rlw-i-mb)R+17]+m(a71) Vi e Hw+mb
= n—s (_1)k (n—s) T'(R+1—j+m(a—1))
k=0 k (wl . k+lw+mb)R+17j+m<a71)

n—s n—s I'(R+1—j5+m(a—1 .
s U () ey eV R+ 1= +m (e — 1)
k=0 k (wiyr,k+lw+mb)R+1_]+m(a—l)

3.3 Bayes estimator and posterior risks under precautionary loss
function (PLF)

Norstrom [20] introduced an alternative asymmetric precautionary loss function and
also presented a general class of precautionary loss functions as a special case. These
estimators are very useful when underestimation may lead to serious consequences. A
very useful and asymmetric precautionary loss function is

N 2
) (0-4)
Lour (6.0) = V20
PLF 0
The Bayes estimator and the posterior risk under Precautionary loss function are given

below: R X
OpLr = \/ Bz (07), p (9PLF> =2{/Ey)5 (0%) — Eg/, (0)}.

The Bayes estimator and Posterior risks under PLF are:

n—s (_1)k (n—s F(R+3—j+m(af1))
é _ k=0 k (wirk+lw+mb)R+371+M(a*1)
= p— (_1)k (n_s T'(R+1—j+m(a—1))
h=0 k) @ik Hhwtmb) =3 Fmle=D
n—s (71)14 (nfs) F(R+3—j+m(a‘—1))
(é) _9 h=0 R L
p - n—s (_1)k (nfs) F(R+1—j+m(a‘—1))
h=0 B ikt tmb) I Fme=D
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n—s k (n—s I'(R+2—j+m(a—1))
Yo (17 (% (g tlwmb) 2771
n—s k (n—s I'(R+1—j+m(a—1))
Yo (U7 (Wirtlwmb) FH =T (@1

4 FElicitation

Elicitation is the process of talking out the expert knowledge about some unknown
quantity of interest, or the probability of some future event, which can be used to
supplement any numerical data we may have. If the expert in question does not have a
statistical background, as often happens, translating their beliefs into a statistical form
suitable for the use in our analyses can be a challenging task as described Dey [9].

Prior elicitation is an organized and systematic approach to represent an expert’s opin-
ion as a well-defined, coherent prior. In Bayesian analysis, specification and elicitation
of the prior distribution is a common difficulty. The Bayesian approach allows the use
of objective data or subjective opinion in specifying a prior distribution. Elicitation is
the process of extracting experts’ knowledge about some parameter of interest, or the
probability of some future event and also the quantification of this prior information
accurately, which then supplements the given data. In any statistical analysis there will
typically be some form of background knowledge available in addition to data at hand.
Berger [7] gives a description of numerous different methods for the elicitation of prior
distribution. For different sampling models, different methods for specification of opin-
ions have been developed. There are various methods of elicitation available in literature
(reader desires more detail see Grimshaw et al. [13], Kadane [14], O’Hagan et al. [19],
Kadane et al. [15], Jenkinson [16] and Leon et al. [17]. Here we use the method based
on the prior predictive distribution, which is developed by Aslam [6].

4.1 Elicitation of Hyperparameter

Bayesian analysis elicitation of opinion is a crucial step. It helps to make it easy for us
to understand what the experts believe in and what their opinions are. In statistical
inference the characteristics of a certain predictive distribution proposed by an expert
determine the hyperparameters of a prior distribution.

In this article, we focus on a probability elicitation method known as prior predic-
tive elicitation. Predictive elicitation is a method for estimating hyperparameters of
prior distributions by inverting corresponding prior predictive distributions. Elicitation
of hyperparameter from the prior p(6) is conceptually difficult task because we first
have to identify prior distribution and then its hyperparameters. The prior predictive
distribution is used for the elicitation of the hyperparameters which is compared with
the experts’ judgment about this distribution and then the hyperparameters are cho-
sen in such a way so as to make the judgment agree closely as possible with the given
distribution. According to Aslam [6], the method of assessment is to compare the pre-
dictive distribution with experts’ assessment about this distribution and then to choose
the hyperparameters that make the assessment agree closely with the member of the
family. He discusses three important methods to elicit the hyperparameters: (i) Via the
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Prior Predictive Probabilities (ii) Via Elicitation of the Confidence Levels (iii) Via the
Predictive Mode and Confidence Level.

4.2 Prior Predictive Distribution

The prior predictive distribution is:
o0
py) = /p(y/H)p(H) de.
0
The predictive distribution under exponential prior is:
oo
p(y) = /He_y (1+ 6_y)_(6+1) we~ Y df.
0
After some simplification it reduces as

we Y
I+e¥){w+In(l+e¥)}’

— 00 < gy < 00.

p(y):(

The predictive distribution under the Gamma prior is:

(a—1)bv"teV
l+e¥){b+In(1+e¥)}e’

p(y)z(

By using the method of elicitation defined by Aslam [6], we obtain the following hyper
parameters w = 3.65943, a = 2.20763 and b = 3.09598.

5 Credible and Posterior Predictive Intervals

The posterior predictive distribution of the future observation y is:

[e.9]

p(u/z) = / p(4/0) p (6)) db,

0

where p (0/x) is the posterior distribution under the respective prior and p (y/0) is the
data model described in section 1.

The (1 — «) 100% Bayesian Predictive Interval (L, U) is obtained by solving the two
equations

/L p(y/z)dy = % = /Oop (y/x) dy.
—00 U

On simplification these equations, predictive intervals are obtained.
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The generalized posterior predictive distribution of the future observation y is:

n—s (_1)k (n—s) e Y R+1—j+m(a—1)
k=0 kE /) (14+ev) {¢irk+lw+mb+ln(1+67y)}R+2—j+m(a—1)

22;3 (_1)k (nis) (Virk + lw + mb)—{R+1—j+m(a—1)}

Y

p(y/z) =

and the predictive interval is:

SrZe (=1 (") ik + lw +mb + In (1 + e~ L)} URH=Hma=}

Po (1R (") Wik + lw + mb) LA ma=D) =3

im0 (=D* (")
Z;(S) (_1)]€ (TL;S) (wzrk + lw + mb)—{R+1_j+m(a—l)}
«

—{Wirk + lw +mb+1n (1 + e_L)}_{R+1_j+m(“_1)}} =3

{(wzrk + lw + mb)f{RJFl*jer(a—l)}

According to Eberly and Casella [10] the credible interval can be defined as:

L o
[omdo=5. [ge/m)a=7,
0 U

where L and U are the lower and upper limits of the credible interval respectively and
is the level of significance.
The (1 — ) % credible interval for 6 has been derived as:

n—s (_1)k (n—s) L(R+1—j+m(a—1),L{th;pp+lw+mb})

k=0 k (’l/)irk+lw+mb)R+l_j+m(a_1) _ o
SIS (1) () — Lt m{a—1) T2
k=0 k (wirk+lw+mb)R+l_j+m(a_1)
n—s (_1)k (n—S) D(R+1—j+m(a—1),U{tp;ri+Hlw+mb})
k=0 k (wirk+lw+mb)R+lfj+m(a71) I}
Zn—s (_1)k’ (n—s) I'(R+1—j+m(a—1)) 9
k=0 k (wiTk+lw+mb)R+1*j+m(a*1)

The close form expressions for the limits of posterior predictive and credible intervals
are not possible, so these have been evaluated numerically.

6 Simulation Study

Monte Carlo simulation techniques are widely used in statistical research. Since real-
world data sets can often be radically non-normal, it is essential that statisticians have a
variety of techniques available for univariate or multivariate non-normal data generation.
This section shows how simulation can be helpful and illuminating way to approach
problems in Bayesian analysis. Bayesian problems of updating estimates can be handled
easily and straight forwardly with simulation. Here, the inverse transformation method
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of simulation is used to compare the performance of different estimators. The study
has been carried out for different values of (n,r) using # € (1,2 and 4). Censoring
rate is assumed to be 20%.
large samples on the estimators. Changes in the estimators and their risks have been
determined when changing the loss function and the prior distribution of while keeping
the sample size fixed. All these results are based on 1,000 repetitions. In the tables,
the estimators for the parameter and the risk, is averaged over the total number of
repetitions. Mathematica 8.0 has been used to carry out the results. The results are
summarized in the following Tables.

Sample size is varied to observe the effect of small and

Table 1: Bayes Estimates and the Posterior Risks (given in parentheses) under QQLF.

Uniform Jeffreys

n 0=1 0=2 =4 =1 =2 =4

20 1.08337 2.12322 4.04865 1.01443 1.95923 3.81435
r=3,n—s=18 | (0.006580) | (0.003639) | (0.000547) | (0.006958) | (0.004373) | (0.000747)

40 1.05216 2.06496 4.02563 1.01290 1.97447 3.89022
r=5n—s=36 | (0.003505) | (0.001912) | (0.000218) | (0.003620) | (0.002129) | (0.000260)

60 1.02975 2.0306 4.01376 1.01348 1.98996 3.93487
r="7,n—s=>54 1 (0.002395) | (0.001317) | (0.000132) | (0.002438) | (0.001392) | (0.000149)

80 1.02634 2.01130 4.00768 1.01042 2.00628 3.94771
r=9,n—s="721 (0.001441) | (0.000991) | (0.000094) | (0.002042) | (0.001001) | (0.000102)

Table 2: Bayes Estimates and the Posterior Risks (given in parentheses) under QQLF.

Gamma Exponential

n =1 0=2 =4 =1 =2 0 =4

20 0.97708 1.64457 2.54737 0.88501 1.48056 2.24324
r=3,n—s=18 | (0.006299) | (0.004893) | (0.002141) | (0.006620) | (0.005776) | (0.003091)

40 0.98616 1.81058 3.08058 0.93687 1.71147 2.85086
r=>5mn—s=36 | (0.003417) | (0.002298) | (0.000596) | (0.003523) | (0.002565) | (0.000805)

60 0.98888 1.86267 3.32674 0.95693 1.79441 3.14724
r="7,n—s=>54 1 (0.002344) | (0.001495) | (0.000291) | (0.002394) | (0.001617) | (0.000370)

80 0.99985 1.88726 3.47249 0.97492 1.85865 3.32477
r=9,n—s="721 (0.001851) | (0.001118) | (0.000177) | (0.001634) | (0.001077) | (0.000205)
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Table 3: Bayes Estimates and the Posterior Risks (given in parentheses) under SLELF.

Uniform Jeffreys

n =1 0=2 =4 =1 =2 =4

20 1.10071 2.17676 4.30386 1.02535 2.06293 4.12472
r=3,n—s=18 | (0.060588) | (0.060588) | (0.060588) | (0.064494) | (0.064494) | (0.064494)

40 1.04721 2.09115 4.17613 1.01281 2.04231 4.05808
r=>5mn—s=36 | (0.030767) | (0.030767) | (0.030767) | (0.031743) | (0.031743) | (0.031743)

60 1.03319 2.04943 4.10180 1.01130 2.02058 4.03848
r="7,n—s=>54 | (0.020618) | (0.020618) | (0.020618) | (0.021052) | (0.021052) | (0.021052)

80 1.01956 2.04614 4.05904 1.01737 2.00386 4.02763
r=9,n—s="721 (0.015504) | (0.015504) | (0.015504) | (0.015751) | (0.015751) | (0.015751)

Table 4: Bayes Estimates and the Posterior Risks (given in parentheses) under SLELF.

Gamma Exponential

n =1 0=2 0=4 =1 =2 =4

20 0.97011 1.68530 2.64059 0.88127 1.51125 2.29533
r=3,n—s=18 | (0.056458) | (0.056458) | (0.056458) | (0.060588) | (0.060588) | (0.060588)

40 0.98476 1.83429 3.16371 0.94424 1.69771 2.92610
r=5n—s=36 | (0.029665) | (0.029665) | (0.029665) | (0.030767) | (0.030767) | (0.030767)

60 0.99212 1.88327 3.37067 0.95993 1.80120 3.19760
r="7,n—s=>54 1 (0.020117) | (0.020117) | (0.020117) | (0.020618) | (0.020618) | (0.020618)

80 0.99511 1.91491 3.53574 1.96830 1.85793 3.35824
r=9,n—s="721 (0.015218) | (0.015218) | (0.015218) | (0.015506) | (0.015506) | (0.015506)

Table 5: Bayes E

stimates and the Posterior Risks (gi

ven in parentheses) under PLF.

Uniform Jeffreys

n =1 =2 =4 =1 =2 =4

20 1.14368 2.28236 4.52336 1.09210 2.16090 4.34216
r=3,n—s=18 | (0.057935) | (0.115626) | (0.229140) | (0.058374) | (0.115301) | (0.23142)

40 1.05932 2.18107 4.30268 1.03921 2.08901 4.18807
r=5n—s=36 | (0.028068) | (0.057791) | (0.114005) | (0.028293) | (0.056857) | (0.113987)

60 1.04795 2.11418 4.19889 1.02329 2.05645 4.13339
r=7n—s=54 | (0.018301) | (0.037929) | (0.075330) | (0.018694) | (0.037567) | (0.074781)

80 1.03258 2.06682 4.14805 1.01930 2.03417 4.07619
r=9,n—s=72|(0.013919) | (0.028055) | (0.056563) | (0.013443) | (0.027945) | (0.056049)

Table 6: Bayes Estimates and the Posterior Risks (given in parentheses) under PLF.
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Gamma Exponential
n =1 =2 =4 =1 =2 =4
20 1.03241 1.75991 2.76937 0.93927 1.58680 2.42453
r=3,n—s=18 | (0.049280) | (0.084001) | (0.132176) | (0.047576) | (0.080369) | (0.122792)
40 1.01595 1.87127 3.26288 0.97113 1.75711 3.01476
r=>5mn—s=236 | (0.026084) | (0.048043) | (0.083767) | (0.083767) | (0.046554) | (0.079872)
60 1.01414 1.89932 3.46487 0.98349 1.83841 3.29137
r="7n—s=>54 | (0.017808) | (0.033351) | (0.060840) | (0.017644) | (0.032981) | (0.059045)
80 1.00758 1.93489 3.58552 1.97772 1.86817 3.41486
r=9,n—s="721 (0.013485) | (0.025552) | (0.047567) | (0.013310) | (0.024298) | (0.044395)

Table 7: The lower limit (LL), the upper limit (UL) and the width of the 95% Credible

Intervals under Uniform.

=1 0=2 0=4
T, M, N —§ LL UL Width LL UL Width LL UL Width
3, 20, 18 0.63646 | 1.58291 | 0.94645 | 1.28008 | 3.18362 | 1.90354 | 2.59301 | 6.45160 | 3.85859
9, 40, 36 0.71975 | 1.37702 | 0.65727 | 1.45683 | 2.78720 | 1.33037 | 2.91498 | 5.57692 | 2.66194
7, 60, 54 0.76271 | 1.29703 | 0.53432 | 1.55013 | 2.63611 | 1.08598 | 3.07932 | 5.2366 | 2.15728
9, 80, 72 0.79749 | 1.26368 | 0.46619 | 1.58594 | 2.51312 | 0.92718 | 3.19365 | 5.06071 | 1.86706

Table 8: The lower limit (LL), the upper limit (UL) and the width of the 95% Credible

Intervals under Jeffreys.

=1 0=2 0=4
T, M, N —8 LL UL Width LL UL Width LL UL Width
3, 20, 18 0.59354 | 1.51450 | 0.92096 | 1.19376 | 3.04604 | 1.85228 | 2.41805 | 6.17246 | 3.75441
9, 40, 36 0.69661 | 1.34489 | 0.64828 | 1.41000 | 2.72217 | 1.31217 | 2.82127 | 5.44680 | 2.62553
7, 60, 54 0.74674 | 1.27617 | 0.52943 | 1.51769 | 2.59371 | 1.07602 | 3.01487 | 5.15238 | 2.13751
9, 80, 72 0.78518 | 1.24814 | 0.46296 | 1.56144 | 2.48221 | 0.92077 | 3.14406 | 4.99846 | 1.85440

Table 9: The lower limit (LL), the upper limit (UL) and the width of the 95% Credible

Intervals under Exponential.

=1 0=2 0=4
TN, n—S§ LL UL Width LL UL Width LL UL Width
3, 20, 18 0.52879 | 1.31508 | 0.78629 | 0.90816 | 2.25854 | 1.35038 | 1.41701 | 3.52441 | 2.10740
9, 40, 36 0.65365 | 1.25056 | 0.59691 | 1.20933 | 2.31365 | 1.10432 | 2.0681 | 3.95658 | 1.88948
7, 60, 54 0.71457 | 1.21516 | 0.50059 | 1.36345 | 2.31862 | 0.95517 | 2.42086 | 4.11680 | 1.69594
9, 80, 72 0.75876 | 1.20236 | 0.44360 | 1.44003 | 2.28167 | 0.84164 | 2.64371 | 4.20233 | 1.55862
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Table 10: The lower limit (LL), the upper limit (UL) and the width of the 95% Credible
Intervals under Gamma.

=1 0=2 0=4
TN, n—S§ LL UL Width LL UL Width LL UL Width
3, 20, 18 0.58752 | 1.42035 | 0.83283 | 1.02876 | 2.48703 | 1.45827 | 1.64849 | 3.98577 | 2.33728
9, 40, 36 0.68884 | 1.30416 | 0.61532 | 1.29017 | 2.44260 | 1.15243 | 2.24923 | 4.25832 | 2.00909
7, 60, 54 0.73984 | 1.25089 | 0.51105 | 1.42437 | 2.40826 | 0.98389 | 2.56664 | 4.33953 | 1.77289
9, 80, 72 0.77869 | 1.22939 | 0.45070 | 1.48806 | 2.34884 | 0.86078 | 2.77376 | 4.37906 | 1.60530

7 Estimation under Real Life Data Set

In this section, we analyze a real data set and illustrate the analysis of the posterior
distribution of shape parameter of Bur type-II assuming informative and non-informative

priors. The data set is taken from Lawless [18] and it represent breaking strengths of

single carbon fibers of length 10. The sample characteristics required to evaluate the
estimates of shape parameter of Burr-type II are as follows: n = 60, r = 7, s = 54 and
S290 In (1 + e~%) = 2.68480.

7.1 Graphical Results of Posterior Distribution for Real Life Data Set

The below graphs reveal that posterior distributions under different informative and non
informative priors are slightly positively skewed.
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Posterior densities under non—informative priors
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Figure 1: Posterior densities under Uniform and Jeffreys

Table 11: Bayes Estimates and the Posterior Risks using the real Data Set.
QQLF SLELF PLF
Prior BEs PRs BEs PRs
Uniform 6.80948 | 1.5097x1076 | 7.21633 | 0.02062 | 7.36274 | 0.144293
Jeffreys 6.67487 | 1.9159x1076 | 7.07148 | 0.02105 | 7.21782 | 0.144083
Exponential | 4.58198 | 4.6903x107° | 4.74122 | 0.02062 | 4.83598 | 0.09192
Gamma 4.93422 | 2.6998x107° | 5.12029 | 0.02012 | 5.22048 | 0.097546

8 Conclusion

The simulation study has displayed some interesting properties of the Bayes estimates.
The risks of the estimates seem to be large in case when the value of the parameter is
large and small for relative smaller value of the parameter except under quasi-quadratic
loss function. However, the risks under said loss functions are reduced as the sample
size increases. Another interesting remark concerning the risks of the estimates is that
increasing (decreasing) the value of the parameter reduces (increases) the risks of the
estimates under quasi-quadratic loss function. The performance of squared-log error
loss function is independent of choice of parametric value. The effect of the increas-
ing values of the parameter is in the form of underestimation assuming informative
priors. In comparison of non-informative priors the uniform prior provides the better
estimates as the corresponding risks are smaller under quasi-quadratic and squared-log
error loss functions. On the other hand, the Jeffreys prior provides the better estimates
under precautionary loss function with few exceptions. Further, in making comparison
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Figure 2: Posterior densities under Gamma and Exponential

of informative priors the gamma prior under quasi-quadratic and squared-log error loss
functions gives the best results. While the exponential prior turns out to perform better
under precautionary loss function, therefore it produces more efficient estimates as com-
pared to the other priors. In addition, the estimates under quasi-quadratic loss function
give the minimum risks among all loss functions for each prior. It can also be observed
that the performance of estimates under informative priors is better than those under
non-informative priors. The credible intervals are in accordance with the point estimates,
that is, the width of credible interval is inversely proportional to sample size while, it is
directly proportional to the parametric value. The credible interval assuming exponen-
tial prior are much narrower than the credible intervals assuming non-informative prior.
It is the use of prior information that makes a difference in terms of gain in precision.
The results from the analysis of real life data are compatible with the simulation study.
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