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With a flexible probability density function (p.d.f) and five parameters at its dis-
posal, the five parameter lambda distribution (FPLD) is suitable for distributional
modelling. However, little research has been carried out on this distribution to date.
And although the most recent published work focuses on how to apply newly devel-
oped estimation techniques, the literature does not address how to accomplish para-
metric estimation using existing well-established estimation methods. Hence, this
research shows how to estimate the FPLD using the methods of moments, probabil-
ity weighted moments (PWMs) and linear moments (L-moments) with the specific
goal of determining whether any one method is superior to the others. To illustrate
the proposed methods, the FPLD was fitted to the Standard Normal distribution.
The results show that Standard Normal distribution was easily approximated by the
FPLD using all three estimation techniques. Overall, the methods of PWMs and
L-moments were deemed to be superior to the method of moments despite the fact
that neither outperformed the other according to the goodness of fit tests.

keywords: lambda, probability weighted moments, method of moments, linear
moments, normal distribution.

1 Introduction

In recent times, the practice of fitting a probability distribution using two-parameter models like
the normal distribution has been overused. This development is particularly alarming because it
gives the misleading impression that any empirical distribution can be summarised by just two
characteristics, however, this is not always the case. For instance, while the centre and variability
of a distribution is captured by the two parameters, information on the shape of the distribution
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has been lost. Thus, a two parameter model is a grossly inadequate means of encapsulating all
the information contained within a distribution. In order to go beyond these characteristics to
include say skewness or kurtosis, a new model with at least three parameters readily available is
required. As its name suggests, the Five Parameter Lambda Distribution (FPLD) meets this basic
requirement with a count of five parameters. This makes it an attractive option for distributional
modelling.

Statistical distributions are usually defined by either a probability density function (p.d.f) or
cumulative distribution function (c.d.f), however, the FPLD is instead specified by a quantile
function

Q(p) = λ1 +λ2 pλ4−λ3(1− p)λ5 , (1)

where λ1 is the location parameter, λ2, λ3 are linear scale parameters and the parameters λ4,λ5
determine the shape of the quantile function. In terms of application, Equation (1) is relevant
for not only simulations, but also for order statistics, optimal grouping, inequality measures,
heavy tail behaviour analysis, loss distributions, osculatory interpolation and Quantile-Quantile
plotting (Tarsitano, 2005). Our research will however focus on an alternative form that was
originally suggested by Gilchrist (2000):

Q(p) = λ1 +
λ2

2

[
(1−λ3)

(
pλ4−1

λ4

)
− (1+λ3)

(
(1− p)λ5−1

λ5

)]
. (2)

In Equation (2), λ1 and λ3 and are the respective location and skew parameters; albeit since
λ3 acts a relative weight of the tail, it also influences the distribution’s shape which is usually
determined independently by λ4 and λ5. The parameter λ2 behaves as a multiplier to the quan-
tile function of the transformed random variable Z = X−λ1; λ2 is therefore the scale parameter.
Observe that when λ2 = 0, the FPLD degenerates to a one-point distribution Q(p) = λ1. Equa-
tion (2) is therefore valid only when λ2 > 0 and −1 ≤ λ3 ≤ 1 since these conditions ensure the
equation is a continuous and monotonically increasing function of p (Tarsitano, 2010).

The fact that F(x) = p and x = Q(p) implies

f (x) =
dF (x)

dx
=

dp
dQ(p)

=

(
dQ(p)

dp

)−1

. (3)

Therefore, the p.d.f of the FPLD is derived from the derivative of Equation (2) to be

f (x) =
2

λ2

[
(1−λ3) pλ4−1 +(1+λ3)

(
(1− p)λ5−1

)] . (4)

According to Tarsitano (2010), the density will be zeromodal if {max(λ4,λ5)> 1 ∧ min(λ4,λ5)< 1},
unimodal with continuous tails if {max(λ4,λ5)< 1}, unimodal with truncated tails if {min(λ4,λ5)> 2},
U-shaped if λ4 > 1,λ5 > 2 and S-shaped if {max(λ4,λ5)> 2 ∧ min(λ4,λ5)> 1}. Table 1 gives
a synopsis of the behavior of the distribution (Tarsitano, 2010).

To date only two papers, both written by Tarsitano (2005, 2010), were found at the time of
writing this literature review. Tarsitano (2005) conducted a comprehensive study of Equation (1)



262 Mahdi,Cadogan

Table 1: Behaviour and shapes of the FPLD

Cases Condition Comment

Special λ3 < 0 and λ4 = λ5 Skewed to the left (i.e. negatively skewed)
λ3 = 0 and λ4 = λ5 Symmetric about λ1

λ3 > 0 and λ4 = λ5 Skewed to the right (i.e. positively skewed)
λ3 =−1 λ4 controls the kurtosis of left tail
λ3 = 1 λ5 controls the kurtosis of right tail

General λ3 =−1 and λ4 = 1 Uniform distribution
λ3 = 1 and λ5 = 1 Uniform distribution
λ4 = 1 and λ5 = 1 Uniform distribution
λ3 = 0 and λ4,λ5 = 2 Uniform distribution
λ4→ 0 and λ5→ 0 Skew logistic distribution
λ4→ ∞ and λ5→ 0 Exponential distribution
λ4→ 0 and λ5→ ∞ Reflected exponential distribution
λ4→ ∞ and |λ5|< ∞ Generalized Pareto distribution
|λ4|< ∞ and λ5→ ∞ Power-function distribution

by estimating it using six methods: percentile, moments, probability weighted moments, min-
imum Cramér-Von Mises, maximum likelihood and pseudo least squares. The purpose of his
investigations was to identify the most appropriate method for estimating the FPLD from data
grouped in histograms or frequency tables. This was achieved by using Monte Carlo simula-
tions for nine combinations of sample sizes and a number of classes. The pseudo least squares
method was deemed the best suited candidate. Tarsitano (2010) lamented the non-evolution of
parametric estimation techniques despite advances in computing and technology. To advance the
literature and correct this perceived deficiency, Tarsitano (2010) devised two procedures based
on nonlinear least squares and least absolute deviations. In either approach, the linear param-
eters of Equation (2) were first estimated for fixed values of the nonlinear parameters and then
optimized using a controlled random search algorithm that terminated when the prefixed toler-
ance was exceeded. Like its forerunner ordinary least squares, nonlinear least squares’ objective
is to minimize the sum of the squared difference between each ordered statistic (or observation)
and its mathematical expectation. However, instead of using an approximation of the expected
value, the mean is computed from a closed-form expression. In comparison, the method of least
absolute deviations adopts the median instead of the mean as the measure of location. Subse-
quently, this method is less susceptible to outliers and influential data points. Moreover, instead
of minimizing the squared difference, the objective becomes to minimize the absolute deviation
or error for all the ordered statistics, hence the name. Tarsitano (2010) applied both schemes
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to simulated and real data sets and found that the nonlinear least squares’ estimators outper-
formed the least absolute deviation’s estimators in terms of their bias and mean squared error.
Nonetheless, in larger samples, both methods were found to have performed comparably.

1.1 Research Objective and Organization of Paper

The purpose of this work is to demonstrate the estimation of the FPLD using the selected meth-
ods of moments, probability weighted moments (PWMs), and linear moments (L-moments) and
to determine whether any one method is superior in fitting the model. This paper is organized
as follows: Section 2 describes how to apply the methods of moments, PWMs and L-moments
to fit the FPLD; this is followed by a demonstration of FPLD modelling using samples of data
randomly generated from the Standard Normal distribution in Section 4; after which we offer
our conclusions and recommendations.

2 Estimation Methods

The selected estimation methods, namely: the methods of moments, PWMs and L-moments,
were originally developed to be used with distributions defined by either a p.d.f or c.d.f. These
methods are aptly called “matching methods” because they seek to match specific population
properties of the distribution being fitted, in this case the moments, PWMs and L-moments,
with their corresponding properties computed from a sample of data. As a result, we describe
rather extensively how to adapt these methods to fit the FPLD model which is readily defined
by a quantile function. However, due to the fact that the FPLD quantile function is implicitly
defined, suitable initial values for each procedure must be found and then improved under an
appropriate optimization scheme.

2.1 Method of Moments

In their introductory paper, Ramberg and Schmeiser (1974) described an algorithm that exclu-
sively used moments to estimate the parameters of the GLD by simply equating the first four
theoretical moments of the distribution to the sample moments of the empirical data. Therefore
the parameters λ1,λ2,λ3,λ4 and λ5 of Equation (2) can be similarly found by equating the mean
α1, variance α2, skewness α3, kurtosis α4 and the fifth standardised moment α5 of the FPLD to
the empirical mean α̂1, variance α̂2, skewness α̂3, kurtosis α̂4 and the fifth standardised moment
α̂5 of a sample. That is, these parameters are computed such that:

α1 ≡ E (X) = α̂1 (5)

α2 ≡ E
(
(X−µ)2

)
= α̂2 (6)

α3 ≡
E((X−µ)3)

σ3 = α̂3 (7)

α4 ≡
E((X−µ)4)

σ4 = α̂4 (8)

α5 ≡
E((X−µ)5)

σ5 = α̂5 (9)
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Rewriting the Equation (2) as

X = λ1 +
λ2

2

{
k1 pλ4− k1− k2 (1− p)λ5 + k2

}

where k1 =
1−λ3

λ4
and k2 =

1+λ3
λ5

, observe that a linear transformation Z = 2(X−λ1)
λ2

+ k1− k2 =

k1 pλ4 − k2 (1− p)λ5 simplifies our calculations as the noncentral moments E (X r) are now lin-
early related to E (Zr) by

E (X r) = E
([

λ1 +
λ2

2
{Z− k1 + k2}

]r)
. (10)

Given

E (Zr) =
∫

∞

−∞

zr f (z) dz

=
∫ 1

0

(
k1 pλ4− k2 (1− p)λ5

)r
dp, (11)

expanding the integrand on the right using the binomial theorem gives

E (Zr) =
∫ 1

0

{
r

∑
j=0

(
r
j

)
k(r− j)

1 pλ4(r− j) (−1) j k j
2 (1− p)λ5 j

}
dp

=
r

∑
j=0

[
(−1) j

(
r
j

)
k(r− j)

1 k j
2 B(λ4 (r− j)+1,λ5 j+1)

]
. (12)

However, E (Zr) exists if and only if the beta function B(·) is defined, that is,

λ4 (r− j)+1 > 0 and λ5 j+1 > 0

for all j = 0,1,2, . . . ,r. This condition prevails only when λ4 >−1
r and λ5 >−1

r , and since our
intention is to calculate the first five moments of the FPLD, this means the shape parameters must
be restricted to λ4 > −1

5 and λ5 > −1
5 . Therefore expanding Equation (12) for r = 1,2,3,4,5

yields:
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E (Z) = A (13)

= k1B(1+λ4,1)− k2B(1,1+λ5) ;

E
(
Z2)= B (14)

= k2
1B(1+2λ4,1)−2k1k2B(1+λ4,1+λ5)+ k2

2B(1,1+2λ5) ;

E
(
Z3)= C (15)

= k3
1B(1+3λ4,1)−3k2

1k2B(1+2λ4,1+λ5)

+3k1k2
2B(1+λ4,1+2λ5)− k3

2B(1,1+3λ5) ;

E
(
Z4)= D (16)

= k4
1B(1+4λ4,1)−4k3

1k2B(1+3λ4,1+λ5)

+6k2
1k2

2B(1+2λ4,1+2λ5)−4k1k3
2B(1+λ4,1+3λ5)

+ k4
2B(1,1+4λ5) ;

E
(
Z5)= E (17)

= k5
1B(1+5λ4,1)−5k4

1k2B(1+4λ4,1+λ5)

+10k3
1k2

2B(1+3λ4,1+2λ5)−10k2
1k3

2B(1+2λ4,1+3λ5)

+5k1k4
2B(1+λ4,1+4λ5)− k5

2B(1,1+5λ5) .

and subsequently substituting Equation (13) and r = 1 into Equation (10) gives

α1 = λ1 +
λ2

2
{A − k1 + k2} . (18)

Since µ = α1,

X−µ =
λ2

2
{Z−A }

so that in general

E ([X−µ]r) =
λ r

2
2r E ([Z−A ]r) . (19)

Thus, using the binomial expansions for r = 1,2,3,4,5 and appropriate substitutions of Equa-
tion (13) through Equation (17) yields the following expressions for the moments of the FPLD:
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α2 =
λ 2

2
(
B−A 2

)
4

, (20)

α3 =
λ 3

2

(
C −3A B+2A 3

)
8σ3 , (21)

α4 =
λ 4

2
(
D−4A C +6A 2B−3A 4

)
16σ4 , (22)

α5 =
λ 5

2

(
E −5A D +10A 2C −10A 3B+4A 5

)
32σ5 . (23)

But rearranging Equation (20) and generalising gives (λ2/2σ)i =
(
B−A 2

)−i/2 for any integer
i. Hence, when i = 3,4 and 5, Equation (21), Equation (22) and Equation (23) simplify to

α3 =
C −3A B+2A 3

(B−A 2)
3/2

, (24)

α4 =
D−4A C +6A 2B−3A 4

(B−A 2)2 and (25)

α5 =
E −5A D +10A 2C −10A 3B+4A 5

(B−A 2)
5/2

. (26)

Notice that A (Equation (13)) to E (Equation (17)) are functions of the parameters λ3,λ4 and λ5
only. This makes finding the estimates somewhat easier since we are essentially attempting to
solve the reduced system of nonlinear equations:

α3 = α̂3

α4 = α̂4

α5 = α̂5

for λ3,λ4 and λ5 in the subregion delimited by −1 ≤ λ3 ≤ 1 and −0.20 < λ4,λ5 ≤ 3. Tar-
sitano (2010) identified the region (−0.999,3)× (−0.999,3) as being promising for solutions
however the restrictions were enforced to ensure the moments existed. Finally once the val-
ues for λ3,λ4 and λ5 are found, the remaining parameters are then computed from the formulas
below:

λ2 =

√
4α̂2

B−A 2 and λ1 =α̂1−
λ2

2
(A− k1 + k2) .
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2.2 Probability Weighted Moments

Let X be a real-valued random variable with cumulative distribution function F (x) and quantile
function Q(x). Greenwood et al. (1979) defined PWMs of order t,r,s as

Mt,r,s = E
(

X t {F (X)}r {1−F (X)}s
)

where t,r,s are real numbers. However, since X = Q(P) = F−1 (P),

Mt,r,s = E
(

Qt (P){P}r {1−P}s
)

in terms of the quantile function; putting t = 1 and s = 0 gives the unique set of beta-PWMs of
order r

βr = E
(

Q(P)Pr
)
=
∫ 1

0
Q(p) pr dp. (27)

The method of PWMs equates population and sample PWMs to obtain a number of equations
that are solved for the estimates of the parameters of a distribution. Since the number of equa-
tions needed depends on the numbers of parameters in the model being fitted, estimation of the
FPLD by this method requires our interest in at least the first five PWMs of this distribution.
Evaluation of the integral in Equation (27) gives

βr =
∫ 1

0

[
λ1 +

λ2

2

{
k1

(
pλ4−1

)
− k2

(
(1− p)λ5−1

)}]
pr dp

=
λ1

r+1
+

λ2

2

{
k1

(
1

λ4 + r+1
− 1

r+1

)
− k2

(
B(r+1,λ5 +1)− 1

r+1

)}
. (28)

Thus, substituting r = 0,1,2,3,4 into Equation (28) and simplifying yields the following ex-
pressions for the FPLD population PWMs:

β0 = λ1 +
λ2 (1−λ3)

2λ4

(
1

λ4 +1
− 1
)
− λ2 (1+λ3)

2λ5

(
B(1,λ5 +1)−1

)
(29)

β1 =
λ1

2
+

λ2 (1−λ3)

2λ4

(
1

λ4 +2
− 1

2

)
− λ2 (1+λ3)

2λ5

(
B(2,λ5 +1)− 1

2

)
(30)

β2 =
λ1

3
+

λ2 (1−λ3)

2λ4

(
1

λ4 +3
− 1

3

)
− λ2 (1+λ3)

2λ5

(
B(3,λ5 +1)− 1

3

)
(31)

β3 =
λ1

4
+

λ2 (1−λ3)

2λ4

(
1

λ4 +4
− 1

4

)
− λ2 (1+λ3)

2λ5

(
B(4,λ5 +1)− 1

4

)
(32)

β4 =
λ1

5
+

λ2 (1−λ3)

2λ4

(
1

λ4 +5
− 1

5

)
− λ2 (1+λ3)

2λ5

(
B(5,λ5 +1)− 1

5

)
(33)
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Now let xi:n represent the value of the ith ordered statistic of a sample of size n. Then the
sample PWMs β̂r are given by

β̂r =
1
n ∑

i
(pr

i )xi:n,

where pi =
i
n is taken to be the probability of the the ith ordered statistic occurring. Thus,

equating Equation (29) through Equation (33) with their corresponding β̂r-statistics produces a
system of five equations

βr = β̂r, r = 0,1,2,3,4, (34)

that must be solved simultaneously for estimates of the parameters λ1,λ2,λ3,λ4 and λ5 in or-
der to fit the FPLD to the sample distribution. However, since this nonlinear system is too com-
plex to solve analytically, the estimates found at the end of the method of moments procedure
were used to start the numerical algorithm. The final output of the algorithm was then checked
to ensure that the obtained PWMs estimates for the FPLD satisfied the constraints λ̂2 > 0 and
−1≤ λ̂3 ≤ 1.

2.3 Linear Moments

Although L-moments are linear functions of the expectations of order statistics, Hosking (1986)
showed that they can be alternatively defined via the beta- PWMs by

Λr+1 =
r

∑
k=0

(−1)r−k
(

r
k

)(
r+ k

k

)
βk, r = 0,1,2, . . .

which is in turn equivalent to

Λ1 = β0 and Λr =
r−1

∑
j=0

(pr, j)β j, r = 2,3, . . . (35)

where

pr, j = (−1)r−1− j
(

r−1
j

)(
r+ j−1

j

)
=

(−1)r−1− j (r+ j−1)!

( j!)2 (r− j−1)!
.

Like PWMs, L-moments exist once the mean is real and finite. Hence, a distribution may be
uniquely specified by its L-moments. Also, as with conventional moments, it is convenient to
standardize the higher order L-moments Λr, r ≥ 3 so that they are independent of the units of
measurement of X . Accordingly, the L-moment ratios of X (abbreviated L-ratios) are defined to
be

τr =
Λr

Λ2
, r = 3,4,5, . . . (36)

so that using Equation (27) and Equation (35) the first five L-moments of the FPLD are:
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Λ1 = β0

=
∫ 1

0
Q(p) dp

= λ1 +
λ2

2

{
(1+λ3)(λ4 +1)− (1−λ3)(λ5 +1)

(λ4 +1)(λ5 +1)

}
(37)

Λ2 = 2β1−β0

=
∫ 1

0
Q(p) · (2p−1) dp

=
λ2

2

{
(1−λ3)(λ5 +1)(λ5 +2)+(1+λ3)(λ4 +1)(λ4 +2)

(λ4 +1)(λ4 +2)(λ5 +1)(λ5 +2)

}
(38)

τ3 =
6β2−6β1 +β0

Λ2

=

∫ 1
0 Q(p) ·

(
6p2−6p+1

)
dp

Λ2

=
(1−λ3)(λ4−1)(λ5 +1)(λ5 +2)(λ5 +3)− (1+λ3)(λ5−1)(λ4 +1)(λ4 +2)(λ4 +3)

(λ4 +3)(λ5 +3)
{

A
}

(39)

τ4 =
20β3−30β2 +12β1−β0

Λ2

=

∫ 1
0 Q(p) ·

(
20p3−30p2 +12p−1

)
dp

Λ2

=
(1−λ3)(λ4−1)(λ4−2)E +(1+λ3)(λ5−1)(λ5−2)D

(λ4 +3)(λ4 +4)(λ5 +3)(λ5 +4)
{

A
} (40)

τ5 =
70β4−140β3 +90β2−20β1 +β0

Λ2

=

∫ 1
0 Q(p) ·

(
70p4−140p3 +90p2−20p+1

)
dp

Λ2

=
(1−λ3)(λ4−1)(λ4−2)(λ4−3)S− (1+λ3)(λ5−1)(λ5−2)(λ5−3)R

(λ4 +3)(λ4 +4)(λ4 +5)(λ5 +3)(λ5 +4)(λ5 +5){A}
(41)

where
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A = (1−λ3)(λ5 +1)(λ5 +2)+(1+λ3)(λ4 +1)(λ4 +2) ,

D = (λ4 +1)(λ4 +2)(λ4 +3)(λ4 +4) ,

E = (λ5 +1)(λ5 +2)(λ5 +3)(λ5 +4) ,

R = D(λ4 +5) ,

S = E (λ5 +5) .

In many respects, L-moments are analogous to conventional central moments. For example,
the first L-moment Λ1 is the mean and the second L-moment Λ2 is a scalar multiple of Gini’s
mean difference which is often used as a measure of dispersion. In addition, the higher order
L-moment ratios τr, in particular, τ3 and τ4, measure skewness and kurtosis respectively. For a
more detailed discussion of the interpretation of Λ1,Λ2,Λ3 and Λ4, see Hosking (1986, 1990).

The sample L-moments are computed from the sample as

lr =
(

n
r

)−1

∑
i1<

∑
i2<
· · ·
···

∑
<ir

r−1
r−1

∑
k=0

(−1)k
(

r−1
k

)
xir−k

and the sample L-ratios denoted by tr = lr
l2

. However, these computations were automated by the
function lmom.ub from the lmomco package in R.

Finally, equating the first five L-moments of the FPLD to those of the distribution of X pro-
duces the system of equations:

Λr = lr, r = 1,2

τr = tr, r = 3,4,5

which must be solved simultaneously in order to obtain the set of lambda values that ap-
proximate the unknown distribution of the random sample of data. Once again the method of
moments’ estimates were used as the initial points of the numerical procedure.

3 Assessing the Quality of Fit

While it is natural to speculate whether a particular set of λi−estimates provides a good fit
to a distribution, proving it does is often difficult because the underlying distribution is not
actually known. For this reason graphical tests were opted for as a direct means of determining
the goodness of fit because they easily display the agreement between distributional fits. To
evaluate the suitability of potential fits, the p.d.f of the FPLD fit is plotted against its theoretical
counterpart in order to visualize the proximity or closeness of both models. These overplots
of p.d.f.s were supplemented with the more powerful Quantile-Quantile (Q-Q) plots to help
overcome any indecisiveness when discriminating between fits. A Q-Q plot is a fit-observation
diagram which compares two probability distributions by plotting their quantiles against each
other, that is, the observed data is plotted against the values estimated from the fitted distribution.
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If the fitted distribution is the exact parent distribution, this relationship should appear as a
straight line through the origin with a 45◦ slope (i.e. the line y = x). Therefore, if the two
distributions are similar, then points in the Q-Q plot will lie approximately on the line. Hence
the suitability of a distribution fit may be judged effectively by the correspondence between
quantile estimates and those given by the straight line.

In addition to these visual aids, the distance between p.d.f.s,

max
1≤i≤500

∣∣ f (xi)− f̂ (xi)
∣∣ ,

was computed to measure the maximum distance between the p.d.f.s of two distributions. In this
case, the statistic obtained reflects the worst case scenario of the proximity between the true and
fitted distribution’s p.d.f.s.

4 Application

Real data can be obtained from any number of statistical distributions, it is therefore crucial that
the FPLD provides reasonably good fits to a multitude of distributions. We thus illustrate how
to fit to the Standard Normal distribution in order to demonstrate the accuracy and reliability of
the FPLD approximation. The normal distribution was selected because of its frequent use in
statistics.

The first five analytical moments and L-moments of a normal distribution with mean µ and
variance σ2 (σ > 0) are derived to be:

α1 = µ, α2 = σ2, α3 = 0, α4 = 3, α5 = 0 (42)

and

Λ1 = µ, Λ2 = π−
1
2 σ , τ3 = 0, τ4 = 0.122602, τ5 = 0 (43)

respectively. Since α3,α4,α5,τ3,τ4 and τ5 are independent of µ and σ , these quantities will
be unaffected by changes in those parameters. Hence, if the Standard Normal distribution is
approximated by the FPLD, then the skew and shape parameters λ3,λ4 and λ5 obtained from
the fit can be used to model all other normal distributions provided of course the location and
scale parameters are adjusted appropriately. On the other hand, note that the first two moments
α1,α2 (Equation (42)) and L-moments Λ1,Λ2 (Equation (43)) are directly proportional to µ and
σ . This means that the mean µ and variance σ2 of any normal distribution can be computed
directly from the sample/population moments and L-moments once their numerical values are
known. Hosking (1986) indicates there is an explicit linear relationship between the parameters
of a normal distribution and its first four PWMs, mainly:
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Table 2: Parameters of the selected theoretical distribution

Method First five parameters of the Standard Normal distribution

Moments α1 = 0 α2 = 1 α3 = 0 α4 = 3 α5 = 0
PWMs β0 = 0 β1 = 0.282095 β2 = 0.282095 β3 = 0.257344 β4 = 0.232593
L-moments Λ1 = 0 Λ2 = 1/

√
π τ3 = 0 τ4 = 0.122602 τ5 = 0

β0 = µ (44)

2β1−β0 = π
− 1

2 σ (45)

3β2−β0 =
3
2

π
− 1

2 σ (46)

4β3−β0 = 6π
− 3

2 arctan
(√

2
)

σ . (47)

However, “PWMs of higher order do not in general have analytical expressions, but can be
found using tables of expected values of normal order statistics” (Hosking, 1986). Nevertheless,
using Equation (44) in conjunction with any one of the other equations that appears in the system
above, the parameters of the normal distribution can still be estimated from computed PWMs
values. For example, the first five PWMs of a pseudo random sample of size 1000 generated
from a normal distribution with mean µ = 6 and standard deviation σ = 0.5 were calculated to
be:

β̂0 = 6.018571, β̂1 = 3.149902, β̂2 = 2.146287, β̂3 = 1.632156, β̂4 = 1.318790.

Thus, Equation (44) implies

µ̂ = β̂0 ≈ 6.0 (1 d.p.) , (48)

and rearranging Equation (45) to make σ the subject gives

σ̂ =
2β̂1− β̂0

π−
1
2
≈ 0.5 (1 d.p.) . (49)

Both results suggest the data must follow a distribution with estimates µ̂ = 6 and σ̂2 = 0.52 =
0.25. This agrees with our scenario as the sample was drawn from a N (6,0.25) population.

Previously, we discussed how to model the moments, PWMs and L-moments of the distri-
bution from a sample of randomly generated data or real data where the theoretical distribution
is fully-known. However, these quantities can also be computed analytically and subsequent
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substitution of µ = 0 and σ = 1 into Equation (42) and Equation (43) gives the theoretical popu-
lation moments and L-moment of the Standard Normal distribution. In order to obtain the PWMs
of the Standard Normal distribution, the linear relationship between PWMs and L-moments was
exploited. That is, using the numerical values of analytical L-moments for N (0,1) presented in
Table 2, Equation (35) was expanded up to the first five terms and the generated linear system
solved simultaneously for the unknown PWMs.

Finally, the FPLD was fitted to the Standard Normal distribution by simply replacing the sam-
ple moments, PWMs and L-moments in the system of equations under each estimation routine
with the appropriate population parameters reported in Table 2.

5 The Results

The program fitStdNormMoM yielded three distinct fits of the FPLD to the Standard Normal
distribution N (0,1):

FPLDMoM1 (0,1.3665,0,0.1349,0.1349) ,

FPLDMoM2 (0,24.8878,0,5.2029,5.2029)

and
FPLDMoM3 (0,24.8879,0,5.2029,5.2029) .

Note that the above output adheres to the pattern established in Table 1 for symmetrical dis-
tributions. That is, λ̂3 = 0 and λ̂4 = λ̂5. But even though all three fits accurately found the mean
(µ = λ̂1 = 0) of the Standard Normal distribution, only the first fit FPLDMoM1 gives a reasonable
approximation of the variance (σ = λ̂2 ≈ 1). As such, this observation suggests FPLDMoM2 and
FPLDMoM3 are poor models of the Standard Normal, a deduction corroborated by Figure 1(b)
and the “Moments” rows in Table 3. Given FPLDMoM2 and FPLDMoM3 are essentially the same
fit, both models will be depicted by the same plot instead of drawing two separate diagnostic
figures.

Observe in Figure 1(a) that the p.d.f.s of the N (0,1) and FPLDMoM1 are almost identical.
Here, the fitted p.d.f peaks slightly above the Standard Normal’s curve towards the center of
the distribution. In contrast, Figure 1(b) shows the fitted FPLD models are leptokurtic which
accounts for the great disparity between the shapes of the N (0,1) p.d.f and its approxima-
tions FPLDMoM2 and FPLDMoM3. Differences between the p.d.f.s and quantiles are further-
more captured by the numerical measures presented in Table 3. As the “Moments” rows in
Table 3 suggest, of the three fits obtained from the method of moments estimation, the first fit
FPLDMoM1 appears to be the best model of the Standard Normal distribution because its good-
ness of fit metric was the smallest. This deduction is further supported by the respective Q-Q
plots. For FPLDMoM1 (see Figure 1(a)), the quantiles mostly fall on the straight line y = x,
whereas for FPLDMoM2 and FPLDMoM3 (see Figure 1(b)), the plot oscillates or “snakes” (al-
beit tightly) about the said line. Hence, according to the method of moments, the estimate
λ̂ = (0,1.3665,0,0.1349,0.1349) renders the best approximation of Standard Normal distribu-
tion by FPLD.
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(a) Graph of pd.f.s for the N (0,1) and FPLDMoM1 (left);
associated Q-Q plot (right)
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(b) Graph of pd.f.s for the N (0,1), FPLDMoM2 and
FPLDMoM3 (left); associated Q-Q plot (right).

Figure 1: Graphical assessment of the FPLD fit to the Standard Normal via the method of mo-
ments.
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(a) Graph of pd.f.s for the N (0,1), FPLDPWM1 and
FPLDLMOM1 (left); associated Q-Q plot (right).
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(b) Graph of pd.f.s for the N (0,1), FPLDPWM2 and
FPLDLMOM2 (left); associated Q-Q plot (right).

Figure 2: Graphical assessment of the FPLD fit to the Standard Normal via the method of PWMs
and L-moments.
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Table 3: Numerical measures of the goodness of fit of the FPLD to N (0,1)

Method Fit # Proximity of p.d.f.s

Moments 1 0.0028201
2 0.34101
3 0.34100

PWMs 1 0.00097457
2 0.11596

L-Moments 1 0.00097362
2 0.11597

Using this estimate the procedures fitStdNormPWM and fitStdNormLMOM each yielded two
viable FPLD models. They are

FPLDPWM1 (0,1.3794,0,0.1416,0.1416)

and
FPLDPWM2 (0,18.5495,0,4.2557,4.2557) ,

for the method of probability weighted moments and,

FPLDLMOM1 (0,1.3794,0,0.1416,0.1416)

and
FPLDLMOM2 (0,18.5494,0,4.2557,4.2557) ,

for the method of linear moments. Since both methods are theoretically linear equivalent, it is
no surprise that these estimates are essentially the same. The closeness between the respective
p.d.f.s and quantile functions is again quantified in Table 3. As the indices in “PWMs” and
“L-moments” rows of Table 3 show, FPLDPWM1 and FPLDLMOM1 improve on the FPLDMoM1
fit to give a better approximation of the Standard Normal distribution. This fitting improve-
ment is exemplified in Figure 2(a) where the fitted p.d.f.s are practically indiscernible from
the Standard Normal density curve. On the other hand, the second pair of fits FPLDPWM2 and
FPLDLMOM2 were found to be less desirable for the same reasons given in the case of FPLDMoM2
and FPLDMoM3. In spite of this, it must be pointed out that both fits still managed to close the
gap between the p.d.f.s. Referring to Figure 1(b) and Figure 2(b), observe that the peak of the
fitted density plot fell from just above 0.7 to around 0.5 and is noticeably closer to the maximum
of N (0,1). Once again, the linearity of the Q-Q plots for FPLDPWM1 and FPLDLMOM1 (see
Figure 2(a)) strongly suggest they are the better estimates of the Standard Normal distribution
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for the respective estimation techniques. Thereby, according to the methods of PWMs and L-
moments, the estimate λ̂ = (0,1.3794,0,0.1416,0.1416) yields the better FPLD approximation.

Ultimately, in the case of the Standard Normal distribution, the method of moments was
ruled inferior to the alternative methods used to estimate the FPLD distribution. Consequently,
N (0,1) ≈ FPLD(0,1.3794,0,0.1416,0.1416). In other words, the FPLD imitates the shape of
the Standard Normal distribution whenever its parameters assume the PWMs and L-moments
estimate. This conclusion was deduced from, and supported by the selected goodness of fit
tests. Table 4 provides further verification of its reliability with a comparison of the cumulative
probabilities from the theoretical Standard Normal distribution and its approximating FPLD
model at several values of a random variable X .

It remains inconclusive as to whether PWMs or L-moments provided the closest fit to N (0,1)
because neither method dominated by having the lowest indices across their respective rows in
Table 3. Consequently, since neither of the first fits FPLDPWM1 or FPLDLMOM1were promi-
nently ahead of the other, either estimation technique can be thought of as the best candidate for
the job of modelling the Standard Normal distribution.

Table 4: Comparison of probabilities from N (0,1) and its FPLD approximation

Cumulative Probability

X Exact Approximated

-2.77 0.0028 0.0026
-0.5 0.3085 0.3082
0 0.5000 0.5000
0.3 0.6179 0.6181
1.44 0.8729 0.8727
3 0.9987 0.9988

6 Conclusion

The FPLD is an extremely useful model to have in a researcher’s toolbox when conducting em-
pirical work such as statistical modelling in the area of data analysis because its five parameters
makes it fully capable of succinctly expressing the essential features of many statistical distri-
butions. It has also been employed across a diverse number of situations in applications ranging
from as far as Monte Carlo simulations to Q-Q plotting due to the flexible nature of both its
quantile and probability density functions (Tarsitano, 2010).

In spite of this, the literature does not currently address how to use well-established estima-
tion techniques to estimate the parameters of this distribution, to be more specific the Gilchrist
(2000) parametrisation of the FPLD quantile function. Thus the purpose of this work was to
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demonstrate how to execute a parametric estimation of the FPLD by applying the methods of
moments, probability weighted moments and linear moments. Moreover, the aim was to deter-
mine whether any particular method was superior to the others. To facilitate this objective, the
FPLD was fitted to the Standard Normal distribution whereby the determination of the appro-
priateness of a fit was ascertained from selected goodness of fit tests, namely Q-Q plots, p.d.f
overplots and the distance between superimposed p.d.f.s.

The results indicated that both the methods of PWMs and L-moments were better than the
method of moments at fitting the estimated FPLD function to the chosen theoretical distribution.
This was evident from the low metrics of the proximity between p.d.f.s in addition to the linearity
of the Q-Q plots. However, neither method clearly outperformed the other, and so they were
instead deemed to perform equally well in terms of their ability to approximate the Standard
Normal distribution. As a result, even though the method of moments was useful for obtaining
initial values for the optimisation schemes for PWMs and L-moments, it was overall the worst
performer among the selected estimation methods. It is therefore the conclusion of this work
that the methods of PWMs and L-moment are both superior to the method of moments for the
purpose of estimating the FPLD.

In conclusion, the above findings show that the FPLD is extremely useful for applications
in statistical analysis given the flexible nature of its p.d.f. It is therefore recommended that
the FPLD be employed in practical experiments to model both theoretical and empirical distri-
butions. In the latter case, particularly if the underlying distribution is unknown, it is highly
recommended that the user conduct a preliminary analysis of the data, for example consult a
histogram, to identify a possible statistical model before executing the methodology outline in
this work. Furthermore, in light of the fact that neither of the PWMs nor L-moments meth-
ods seemed to outperform each other, the authors recommend the method of L-moments as the
preferred method when fitting the FPLD to any statistical distribution. This is because it was
computationally easier to apply and the estimates obtained can be interpreted to give the defin-
ing characteristics of the underlying distribution, such as the mean, variance or skewness.
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