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In order to investigate the asymptotic efficiency of estimators under two
different simulation techniques, normal-normal double sided Heteroscedas-
tic error structure was adopted. We explored Direct Monte Carlo method
of Zellner et al. (2010) and Metropolis Hasting Algorithm experiments, an
approach of Markov Chain Monte Carlo.

We truncated the model with one error component of two sided error struc-
ture. A Metropolis-Hasting Algorithm and Direct Monte Carlo adopted to
perform simulation on marginal posterior distribution of heteroscedastic lin-
ear econometric model. Since Ordinary Least squares is invalid and inef-
ficient in the presence of heteroscedastic, heteroscedastic linear model was
conjugated with informative priors to form posterior distribution. Maximum
Likelihood Estimation was compared with Bayesian Maximum Likelihood
Estimation, Mean Squares Error criterion was use to identify which esti-
mator and/or simulation method outperform other. We chose the following
sample sizes: 25; 50; 100; and 200. Thus 10,000 simulations with varying
degree of heteroscedastic error structures were adopted. This is subject to
the level of convergence.

In the overall, minimum mean squares error criterion revealed improving
performance asymptotically regardless of the degree of heteroscedasticity.
The results showed that Direct Monte Carlo Method outperformed Markov
Chain Monte Carlo Method and Maximum Likelihood Estimator with mini-
mum mean square error at any degree of heteroscedasticity.
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1 Introduction

Recently, numerous literatures emerged in the field of Bayesian Statistics; this is due
to the effort of people like George Casella and Christian Robert, Jim Albert, Reuven
Rubinstein, Dirk Kroese and other numerous researchers who brought into limelight
the simulation techniques of Markov Chain Monte Carlo technique into the field of
Bayesian Statistics in the early 90s. Fewer papers were published in the area of Bayesian
heteroscedastic model, chiefly amongst are the works of Arto et al. (2008) in their paper
Bayesian two-stage regression with parametric heteroscedasticity where they allowed for
unequal variances, Carlos et al. (2012) in their paper the multiplicative heteroscedastic
von Bertalanlfy model.

Most often economic problems rely on regression model which in most cases come with
errors of which the most significant of it all is heteroscedasticity of either one or two
components which may be additive or multiplicative (Oloyede, 2010). The consequence
of heteroscedasticity for Ordinary least squares estimation is quite serious. Estimator
remains unbiased, but is no longer efficient. More importantly, the standard errors
usually computed for the least squares estimators are no longer appropriate, and hence
confidence intervals and hypothesis tests that use these standard errors are invalid (Hadri
et al., 1999).

Obviously, when heteroscedasticity exists ignoring it may lead to substantial biases
and even inconsistent estimates, but correcting for it leads not only to a substantial
improvement of the statistical properties of estimators but also to improved efficiency
(Hadri et al., 1999).

Econometrics models are usually expressed in terms of an unknown vector of parame-
ters θεΘ ⊆ Rk , which fully specifies the joint probability distribution of the observations
X = (x1, , xT ). Bayesian inference proceeds from the likelihood function and prior in-
formation usually expressed as a probability density function over the parameters, (θ),
it being implicit that π(θ) depends on the conditioning set of prior information. The
posterior distribution is proportional to p(θ) ∝ π(θ)L(θ) (John , 1989).

John (2005) used Monte Carlo integration to estimate the parameters and asserted
that diffuse priors may incorporate inequality restriction which arise frequently in applied
work but are impractical if not impossible to handle in classical setting. Carlos et al.
(2012) considered a multiplicative heteroscedastic dispersion matrix. All estimates were
obtained using a sampling based approach, which allows information to be input before
hand with lower computational effort.

Ignoring heteroscedasticity disturbances in econometric models does not in general
prevent consistent point estimation, or even consistent interval estimation and hypothesis
tests (Whites, 1980), but it typically entails inefficient point estimators and hypothesis
tests with suboptimal asymptotic local power (Robinson., 1987).

Unless the form of heteroscedasticity is of interest in itself, it may be better to avoid
attempting to parameterize it , and methods have been proposed that do not claim to
account optimally for a particular form of heteroscedasticity , but have good efficiency
properties with respect to heteroscedasticity of at best loosely defined form Robinson.
(1987). Since the efficiency of parameters from the model depends on the nature of
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the error variance estimator, a great deal of effort has been put in it to develop tech-
niques for obtaining consistent estimates of each residual variance in linear models when
heteroscedasticity is suspected (Senyo, 1993). Surekha et al. (1984) observed that the
efficiency of the EGLS estimator rests more on the choice of estimator and sample size
rather than on the specification of the correct residual variance structure.

Goldfeld et al. (1972) tried different specifications of heteroscedastic error structures,
and from Monte Carlo Study results concluded that the overall performances of all other
competing estimators was observed to be somewhat sensitive to the heteroscedastic error
structure. Mackinnon et al. (1985) also used sampling experiments to show that, in a
lot of situations, traditionally, heteroscedasticityconsistent covariance matrix estimators
can sometimes produce more grossly misleading results that the usual ordinary least
squares covariance matrix estimator that neglects the presence of heteroscedasticity .

The close similarly between the performance of heteroscedastic error model estimators
based on additive error structure and those based on exponential family error structure
is not surprising. This is so because the exponential error structure specification encom-
passes the additive specification. It can, therefore, be said that the better performance
of heteroscedastic error model estimators based on the exponential error structure is due
to its ability to approximate in a better fashion the true unknown heteroscedastic error
structure than any other structure. Thus, its encompassing ability makes it a more gen-
eral approximation of what the true unknown underlying heteroscedastic error structure
may be (Senyo, 1993).

Senyo (1993) recommended that when true error structure is not known a priori, the
applied researcher should hypothesize and use exponential heteroscedastic error struc-
tures in order to obtain more efficient parameters of the model. One of the simulation
approaches that does not suffer from the computational problems of MCMC method is
a direct Monte Carlo procedure (Zellner et al., 2002).

In this paper, multiplicative double sided error structure with one component was
incorporated. Many attempts have been made in the literature to look into the efficiency
of estimators in linear model using Monte Carlo simulation, but we endaevour to carry
out simulation using MCMC and DMC Simulation methods; this paper also examined
the efficiency of the estimators from small sample to large sample. These are the gaps,
this study decides to fill.

2 Model Designs

Let y = Xβ+u with u ∼ [N(0, σ2i Ω)] where Ω is a positive definite matrix of order n .A
case where u ∼ [N(0, σ2I)] is a homoscedastic model with constant variance, but when
u ∼ [N(0, σ2i Ω)] indicates unequal variances of the diagonal element of matrix n × n
which is regarded as heteroscedastic error structure.

y = β0 + β1X1 + β2X2 + u (1)

Let X denote X1 and X2 with multiplicative heteroscedasticity using Harvey. (1976)
which can be expressed as σ2i = σ2exp(β1X1 + β2X2)

δ where δ is an unknown parameter
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which determine the degree of heteroscedasticity. Adopting a full Bayesian inference,
we examine the likelihood function, prior distribution for the parameters and hyper-
parameters in the model and with MCMC algorithm. The likelihood function of θand σ,
where θ = (β0, β1, β2, δ)give the sample vectorX1, X2 = (1, 2, , n)′ and y = (y1, y2, , yn)′

is expressed as

L (θ, σ|X, y) =
(
2πσ2

)−n/2 n∏
i=1

exp

{
− 1

2σ2

n∑
i=1

[yi − xβ]2
}

(2)

Incorporating multiplicative heteroscedastic into our likelihood estimator we derived
from the product of the error density function.

L (θ, σ|X, y) =
(
2πσ2

)−n/2 n∏
i=1

w−δ/2exp

{
− 1

2σ2

n∑
i=1

w−δ[yi − xβ]2
}

(3)

To derive the full Bayesian density, we truncate the error density function eq 3 with
multinomial distribution density. Marginal posterior density is obtained by integrating
the joint posterior density with respect to each parameter, thus, expert opinion can be
adopted by assuming the set of parameters β0, β1, β2, δ and σ as independent marginal
distribution.

We assumed a prior density. π (β0, β1, β2, δ, σ) = π (β0)π(β1)π(β2)π (δ)π (σ). Thus
multivariate normal distribution is considered for,β while inverse gamma is considered
for σ and a uniform distribution is considered for δsuch that

π (β) ∝
(
2πσ2

)−n
2 exp

{
− 1

2σ2
(β − µ)2

}
, β > 0 (4)

π(σ2) ∝
(
σ2
)−a1+1

exp
(
−b1/σ2

)
, σ2 > 0 (5)

π (δ) ∝ c (6)

c is constant

The posterior distribution of θ = (β0, β1, β2, δ, σ) considering independence among
the parameters is given by :

π (β0, β1, β2, δ, σ|X, y) ∝
(
2πσ2

)−n
2
(
σ2
)−(a1−1−n/2) exp

{
− 1

2σ2
(β − µ)2

} n∏
i=1

w−

−δ/2exp{− 1

σ4
(b1 +

1

2

n∑
i=1

w−δ(y −Xβ)2} (7)

where a1, b1 are the hyper-parameters for the inverse-gamma distribution. Hyper-
parameters are excluded for β-parameters since they would be estimated from the data
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and may be arbitrarily small leading to problems which may eventually affect the in-
ferences. Integrating the posterior π (β, δ, σ|X, y) σ, thus we have joint a posterior
distribution for (β, δ)

π (β0, β1, β2, δ, σ|X, y) ∝ (2π)−
n
2 exp

{
−1

2
(β − µ)2

} n∏
i=1

w−δ/2exp{−b1 −
1

2

n∑
i=1

w−δ(y −Xβ)2}−(a1−n/2) (8)

Metropolis Hasting Algorithm update is performed on the full conditional distribution
of σ2 ∝ IG(a1+ n

2 , b1+
1
2

∑n
i=1w

−δ(y −Xβ)2). This yields the following full conditional
density of the parameters β and:σ

π (β0|δ,X, y) ∝ exp

{
−1

2
(β0 − µ)2

} n∏
i=1

w−δ/2exp{−1

2

n∑
i=1

w−δ(y −Xβ)2}−(a1−n/2)

(9)

π (β1|δ,X, y) ∝ exp

{
−1

2
(β1 − µ)2

} n∏
i=1

w−δ/2exp{−1

2

n∑
i=1

w−δ(y −Xβ)2}−(a1−n/2)

(10)

π (β2|δ,X, y) ∝ exp

{
−1

2
(β2 − µ)2

} n∏
i=1

w−δ/2exp{−1

2

n∑
i=1

w (11)

π (σ|θ.X, y) ∝
(
σ2
)−(a1−1−n/2)exp(−b1/σ2) n∏

i=1

w−δ/2exp{− 1

σ2
(b4 +

1

2

n∑
i=1

w

−δ(y −Xβ)2}−(a1+n/2) (12)

π (δ|β,X, y) ∝
n∏
i=1

w−δ/2(b1 +
1

2

n∑
i=1

w−δ(y −Xβ)2}−(a4+n/2) (13)

2.1 Metropolis-Hasting Algorithm

The Metropolis algorithm Metropolis et al. (1949), Metropolis et al. (1953) generates a
sequence of selections from this distribution is as follows:

1. Start with any initial value θ0 satisfying (θ0) > 0.

2. Using current θvalue, sample a candidate point θ∗ from some jumping distribution,
q(θ1, θ2) which is the probability of returning a value of given a previous value
of. This distribution is also referred to as the proposal or candidate-generating
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distribution. The only restriction on the jump density in the Metropolis algorithm
is that it is symmetric, i.e.

q (θ1, θ2) = q(θ2, θ1)

3. Given the candidate point,θ∗ calculate the ratio of the density at the candidate
(θ∗) and current (θt−1) points, α = p(θ∗)

p(θt−1)
= f(θ∗)

f(θt−1)
Note: we are considering the

ratio of p(x) under two different values, the normalizing constant K cancels out.

4. If the jump increases the density,(α > 1) accept the candidate point (set θt =
θ∗) and return to step 2. If the jump decreases the density (α < 1) then with
probability accept the candidate point, else reject it and return to step 2.

We can summarize the Metropolis sampling as first computing α = min
(

f(θ∗)
f(θt−1)

, 1
)

and

then accepting a candidate point with probability α(the probability of a move). This
generates a Markov chain (θ1, θ2, , θk,. . . ), as the transition probabilities from θt to θt+1

depends only on θt and not (θ0, , θt−1). Following a sufficient burn-in period (of, say,
ksteps), the chain approaches its stationary distribution and , samples from the vector
(θk+1, , θk+n) are samples from.p(x)

2.2 A direct Monte Carlo Sampling Procedure

The direct Monte Carlo procedure can be repeated many times to yield draws from the
joint posterior density in the following way. We can draw σ2i from the inverse gamma

density π
(
σ2i |D

)
and insert the drawn value in π

(
b|σ2i , D

)
and make a draw from it.

This procedure is applied for j = 1, ,mThis procedure is then repeated many times. The
algorithm is summarized as follows:

1. (Initialization) Set the number of samples Nto be generated. Set j = m.

2. Generate σ2i , k = 1, , N , and insert the drawn values in.π
(
b|σ2i , D

)
Then make a

draw from, for.

3. Increase the index by one. Draw from the conditional inverse gamma density and
then generate from,

4. Repeat Step 2 sequentially until.

3 Data Generation Processes

In an attempt to investigate the asymptotic efficiency/performance of estimators of
econometric model in the presence of heteroscedastic error structure, we adopted Markov
Chain Monte Carlo and Direct Monte Carlo Experiments. The sample sizes are specified
with 4 sets as follow: 25, 50, 100 and 200 .Harvey. (1976) multiplicative heteroscedas-
tic error structure was adopted to truncate linear econometric model. The scale of δ−
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heteroscedastic error structure is selected as 0.0 homoscedastic, 0.3 less heteroscedastic,
0.6-moderately heteroscedastic, 0.9-mildly heteroscedastic and 2-severely heteroscedas-
tic. Following Germa et al. (2000), the distribution of the main regression is assumed
to be moderately heteroscedastic when variance is proportional to x1 where x1 ranged
from 11 to 15-mesokurtos) and strongly heteroscedastic where x2 ranged from 4 to 8-
platokurtos.

The error term U is generated based on E(U) = 0and E
(
U2
)

= exp(δ0 + δ1x1 + δ2x2)
δi

δi = 0.0; 0.3; 0.6; 0.9 and 2 and δ0 , δ1 and δ2 are set at -2, 0.25 and 1 respectively.
Thereafter, we incorporated U into the model to generate variable y. The parameters
β0, β1and β2 are set at β0=10, β1 = 1and β2 = 1 respectively to generate variable y.
The number of replications of our experiment is set at 10,000 with burn-in of 1000 in
our MCMC simulation and as well as DMC. For the Bayesian experiment, a Metropolis
Hasting Algorithm was developed to simulate our heteroscedastic based models. This
was invoked in [R 2.5.2]- a statistical software. The data set class contained the poste-
rior sample for the model parameters. The n.sim option used to specify the number of
posterior simulation iteration. The BURN-IN is set at 1000 which specified the draws
that were discarded to remove the effect of the initial values. The THINING is set at 5
to ensure the removal of the effect of autocorrelation.

4 Results

Different degrees of heteroscedasticity δ = 0 [homoscedasticity] ; δ = 0.3 [weak het-
eroscedasticity]; δ = 0.6 [mild heteroscedasticity]; δ = 0.9 [strong heteroscedasticity]
and δ = 2 [severe heteroscedasticity] with sample sizes of 25, 50,100 and 200 were con-
sidered. Hyper-parameter were arbitrarily chosen for σ2. Our simulation was based on
10000 iteration for both MCMC and DMC, the level of convergence of the chains were
monitored using the method proposed by Gelman et al. (1992) and graphic analysis was
carried out using coda package in R package. Multivariate normal and inverse gamma
distributions were chosen as priors for parameter estimates and σ2 respectively. Table
1 reported the mean squares error to compare MLE and BMLE, two type of simulation
methods were adopted and we observed that our Bayesian MLE outperformed MLE both
in MCMC and DMC. The DMC approach outperformed MCMC approach since the MSE
of DMC is always less than MCMC. This is similar to the work of Zellner et al. (2010)
in their paper a direct Monte Carlo approach for Bayesian analysis of the seemingly
unrelated regression model where they emphasized that DMC performed better than
MCMC. Asymptotically, the mean squares error of the parameter estimates in both
MCMC and DMC increase algebraically, we inferred that presence of heteroscedasticity
in data and model is a serious problem, estimating the parameters without detecting and
correcting it will severely affect the inferences no matter the sample. Asymptotically, at
each heteroscedastic scale as shown in the charts that appeared at the appendix B that
DMC approach outperformed MCMC and MLE estimators.

We examined real dataset, Grunfeld investment data were used due to the presence of
heteroscedasticity in it. We confirmed it with Breusch-Pagan heteroscedasticity test and
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Table 1: Mean Squares Errors Criterion Measuring Performances of Estimators

Samples HETERO MLE BMLE DMC

0 3.546599 - -

0.3 1.740209 0.057919 0.059762

25 0.6 0.325895 0.05992 0.059442

0.9 0.890554 0.059758 0.058875

2 2.377982 0.059075 0.059263

0 3.138041 - -

0.3 0.299104 0.028517 0.0291

50 0.6 0.168174 0.028932 0.028951

0.9 0.184701 0.028814 0.028787

2 1.23099 0.028598 0.028777

0 2.299636 - -

0.3 0.129435 0.014127 0.014266

100 0.6 2.368836 0.014179 0.014108

0.9 0.186441 0.01421 0.014237

2 1.338739 0.014224 0.014236

0 2.608416 - -

0.3 0.590969 0.007053 0.007054

200 0.6 0.185827 0.007056 0.007054

0.9 0.2264 0.007041 0.007045

2 0.52249 0.007025 0.00705

it was significant with probability value of 6.853e-15. From the analysis we observed that
Bayesian Maximum Likelihood Estimator and Direct Monte Carlo outperform Maximum
Likelihood estimator as depicted in table 2 above.

5 Conclusion

In this paper we have presented a simple way of modeling and estimating heteroscedastic
linear model under two simulation approaches that is MCMC and DMC which were
compared with traditional MLE approach. We observed that modeling heteroscedasticity
in a full Bayesian improve the precision of the inferences of the estimates. We conclude
that DMC approach outperformed MCMC and MLE approaches. Thus MLE performed
poorly either asymptotically or in term of scale of heteroscedasticity. Our approach can
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Table 2: Application: Grunfeld data

Samples MLE BMLE DMC

220 9052.792 2.710164 2.713274

BP = 65.228 df = 2 p-value = 6.853e-15

be applied to further studies in the area of simultaneous equation and other econometric
methods.
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Appendix A

Table 3: Parameters Estimates of MCMC and DMC Simulation of Heteroscedastic Lin-
ear Model [MCMC and MLE]

Hetero MLE Estimates MCMC Average Parameter Estimates

Samples λ β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

0 10 1 1 10.095 2.399 1.394

0.3 28.51597 0.074831 -0.09732 28.53429 0.36021 0.04091

25 0.6 31.55849 -0.15833 -0.1416 31.56561 -0.06451 -0.09585

0.9 19.82397 0.566297 0.326572 19.834 0.6867 0.3874

2 19.72344 0.200021 1.037713 19.7235 0.2014 1.0383

0 10 1 1 9.804 -1.3658 -0.4182

0.3 28.98628 0.013437 -0.05911 29.0576 1.0074 0.3497

50 0.6 28.35842 -0.01947 0.11504 28.36641 0.07756 0.17058

0.9 31.25265 -0.0505 -0.31228 31.2469 -0.1231 -0.3378

2 27.65699 -0.05131 0.462028 27.65748 -0.04527 0.46406

0 10 1 1 9.493 -5.185 -2.283

0.3 29.38964 -0.04888 0.035383 29.3199 -0.9905 -0.2966

100 0.6 26.12378 0.158847 0.117417 26.1476 0.4888 0.1664

0.9 30.5523 -0.14482 0.083541 30.54 -0.2886 0.007822

2 29.84105 -0.02426 -0.26731 29.84187 -0.01388 -0.26347

0 10 1 1 10.019 1.101 1.307

200 0.3 28.97455 -0.02542 0.065491 28.935 -0.579 -0.1571

0.6 30.01689 -0.04007 -0.0884 30.03097 0.08196 -0.01233

0.9 30.53187 -0.09533 -0.07727 30.515 -0.3021 -0.1539

2 31.67139 -0.01991 -0.43032 31.6715 -0.0177 -0.43
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Table 4: Parameters Estimates of MCMC and DMC Simulation of Heteroscedastic Lin-
ear Model Direct Monte Carlo (DMC)

Hetero DMC Average parameter Estimates

Samples λ β̂0 β̂1 β̂2

0 10.055 1.73 1.357

0.3 29.6964 1.2507 0.4912

25 0.6 26.8701 0.0358 0.3402

0.9 29.6735 0.1191 -0.3109

2 39.8676 -0.3069 -1.278

0 9.9131 -0.2522 0.6198

0.3 28.8334 -0.8823 -0.378

50 0.6 26.22345 0.41392 0.06185

0.9 30.05939 0.09104 -0.31644

2 30.76646 -0.08749 -0.37222

0 9.6 -4.287 -1.608

0.3 28.4039 -0.4365 -0.2175

100 0.6 29.1719 -0.5993 -0.243

0.9 25.3963 -0.0348 0.1764

2 33.7611 -0.2698 -0.4069

0 10.42 6.671 3.506

200 0.3 29.3738 2.4678 0.9956

0.6 28.3225 -0.7649 -0.3374

0.9 30.63216 -0.15061 -0.00734

2 25.2285 0.1035 0.5464

Table 5: Empirical Analysis with Grunfeld dataset

MLE Estimates

Samples β̂0 β̂1 β̂2

220 -8.81673 0.109576 0.131478
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Table 6: Empirical Analysis with Grunfeld dataset

MCMC Average Parameter Estimates

Samples β̂0 β̂1 β̂2

220 -8.78924 0.109548 0.13127

Table 7: Empirical Analysis with Grunfeld dataset

DMC Average parameter Estimates

Samples β̂0 β̂1 β̂2

220 -8.82089 0.109646 0.131345


