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In this paper, we present a closed formula for calculating the density of
the composed error in a stochastic frontier model, having supposed that
technical inefficiency components follow a Rayleigh probability distribution.
Moreover, by using a Monte Carlo procedure, we analyze the properties of
Maximum Likelihood and Method of Moments estimators of the disturbance
terms. Then, we utilize recent historical data to judge the performance of
various estimators.
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1 Introduction

The development of the stochastic frontier analysis in econometric is primarily due to
Aigner et al. (1977). Traditionally, the efficiency production analysis focuses on estimat-
ing average and frontier production functions (see Farrell, 1957 or Mishra, 2007). Aigner
et al. (1977) were the first to introduce additional random variables, representing noise
and technical inefficiency, in the production models.

In stochastic frontier analysis literature, the authors always assume that any compo-
nent of noise follows a normal distribution (Behr and Tente, 2008); so, the two sided
distribution models risk factors not directly controlled by the firm. On the contrary,
the distribution, followed by technical inefficiency terms, may vary in relation to the
assumptions made on the model, but it is always one-tailed: this depends on the pro-
duction that must lie from a same part with respect to the frontier. Aigner et al. (1977)
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modelled the technical inefficiency by a half-normal distribution. More in detail, we may
utilize such a distribution when the disturbances are, for the most part, close to zero. In
the same article, the authors also introduced the exponential model: this last approach,
such as the half-normal assumption, subsumes that the probability density function, of
the technical inefficiency, is strictly positive at origin. Furthermore, Stevenson (1980)
developed a model, in which the one-tailed terms followed a shifted half-normal distribu-
tion: practically, he considered a truncated normal distribution. Finally, Greene (1990)
developed a new model involving the Gamma distribution: it is more flexible with re-
spect to others, but, in this case, the composed error density is not calculable in a closed
form.

In this work, we suppose that the technical inefficiency components follow a Rayleigh
distribution. The outline of this paper is as follows: in Section 2 we present a closed
formula for calculating the density of the composed error. Moreover, in Section 3 we
investigate bias and variance of Maximum Likelihood (ML) estimators of composed error
terms, by a Monte Carlo analysis. Furthermore, in Section 4 we introduce the Method
of Moments (MOM) estimators and discuss their properties. Finally, in Section 5 we
compare the performance of the estimators by analysing data in Baten et al. (2009).

2 The Rayleigh model for stochastic frontier analysis

We consider the production function:

yi = g(xi, b) exp(vi) exp(−ui), (i ∈ {1, 2, ..., I})

which, in logarithmic form, is:

log(yi) = log(g(xi, b)) + vi − ui,

where, for any i ∈ {1, 2, ..., I}, yi is the output of firm i, xi is a vector of K inputs and
b is a vector of parameters. Furthermore, v and u are I−dimensional random variables,
representing, respectively, a symmetric disturbance and technical inefficiency. Therefore,
we make the following assumptions:

1. v and u are uncorrelated.

2. For any i ∈ {1, 2, ..., I}, vi follows a normal distribution with mean 0 and variance
σ2.

3. For any i ∈ {1, 2, ..., I}, ui ≥ 0.

4. For any (i×j) ∈ {1, 2, ..., I}×{1, 2, ..., I}, with i 6= j, corr(vi, vj) = corr(ui, uj) = 0.

5. Any component of u follows a Rayleigh distribution with parameter λ.

So, we can write

fu(u;λ) =
u

λ2
e−

u2

2λ2 , u ≥ 0, λ > 0
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and

fv(v;σ2) =
1√
2πσ

e−
v2

2σ2 , σ > 0.

Now, we let ε := −u+ v; so, we can calculate the joint density of ε and u :

fu(u;λ)fv
(
u+ ε;σ2

)
=

u

λ2
e−

u2

2λ2
1√
2πσ

e−
(u+ε)2

2σ2 =

=
1√
2πσ

u

λ2
e−

(λ2+σ2)u2+λ2ε2+2λ2uε

2λ2σ2 =

=
1√
2πσ

e−
ε2

2σ2
u

λ2
e
−u

2

2

(
1
λ2

+ 1
σ2

)
e−

uε
σ2 .

Therefore, the probability density of the composed error is:∫ +∞

0
fu(u;λ)fv

(
u+ ε;σ2

)
du =

1√
2πσ

e−
ε2

2σ2

∫ +∞

0

u

λ2
e
−u

2

2

(
1
λ2

+ 1
σ2

)
e−

uε
σ2 du =

=
σ

λ2 + σ2
1√
2π
e−

ε2

2σ2

∫ +∞

0

u
λ2σ2

λ2+σ2

e

− u2

2

(
λ2σ2

λ2+σ2

)
e−

uε
σ2 du.

It is know that, if γ and t are two real numbers, then∫ +∞

0

u

γ2
e
− u2

2γ2 etudu = 1 + γteγ
2t2/2

√
π

2

(
erf

(
γt√

2

)
+ 1

)
,

where erf is the error function. Observe that this last integral is the moment generating
function of a Rayleigh distribution with parameter γ (Papoulis, 1984). Finally, by letting

γ2 =
λ2σ2

λ2 + σ2

and
t = − ε

σ2
,

we obtain the density of the composed error term

f(ε) :=

∫ +∞

0
fu(u;λ)fv

(
u+ ε;σ2

)
du =

=
σ

λ2 + σ2
e−

ε2

2σ2

√
2π

(
1−

√
λ2σ2

λ2 + σ2
ε

σ2
e

ε2λ2

2σ2(σ2+λ2)

√
π

2

(
erf

(
−ε√
2σ2

√
λ2σ2

λ2 + σ2

)
+ 1

))
=

=
σ

λ2 + σ2
e−

ε2

2σ2

√
2π

(
1− λε

σ
√
λ2 + σ2

e
ε2λ2

2σ2(σ2+λ2)

√
π

2

(
erf

(
− ελ

σ
√

2 (λ2 + σ2)

)
+ 1

))
.
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This last equality can also be written:

f(ε) =
σ

λ2 + σ2
e−

ε2

2σ2

√
2π

(
1− λε

σ
√
λ2 + σ2

e
ε2λ2

2σ2(σ2+λ2)
√

2πΦ

(
− ελ

σ
√
λ2 + σ2

))
,

where Φ is the cumulative distribution of a standard normal random variable. As done
by Jondrow et al. (1982) for half-normal and exponential case, now we may calculate the
conditional distribution, f(u|ε), of u given ε. It is the ratio between fu(u;λ)fv(u+ ε;σ2)
and f(ε). So, we find

f(u|ε) =

=
u(λ2 + σ2)

σ2λ2
e−

u2(λ2+σ2)

2σ2λ2
− uε
σ2

(
1− λε

σ
√
λ2 + σ2

e
ε2λ2

2σ2(σ2+λ2)
√

2πΦ

(
− ελ

σ
√
λ2 + σ2

))−1
.

Then, we assume that there is available a sample of I observations, ε1, ε2, ..., εI . In this
case, we can form the log-likelihood function

lnL
(
ε|λ, σ2

)
= I ln

(
σ

λ2 + σ2
1√
2π

)
+

+

I∑
i=1

ln

(
1− λεi

σ
√
λ2 + σ2

e
ε2i λ

2

2σ2(σ2+λ2)
√

2πΦ

(
− εiλ

σ
√
λ2 + σ2

))
−

I∑
i=1

ε2i
2σ2

.

Therefore, in order to calculate the ML estimators of λ and σ, we suggest finding the
optimizing values by utilizing a direct numerical method: according to us, such a pro-
cedure has to be preferred, if compared to other numerical techniques based on taking
partial derivatives of the likelihood function.

Recall that, if technical inefficiency terms follow a half-normal distribution, that is

fu(u;λ) =
2√
2πλ

e−
u2

2λ2 , u ≥ 0, λ > 0,

then, the log-likelihood function is (see Aigner et al., 1977 or Behr and Tente, 2008)

lnL
(
ε|λ, σ2

)
=

= I ln

(√
2

π

)
+ I ln

(
1√

λ2 + σ2

)
+

I∑
i=1

ln

[
1− Φ

(
λεiσ

−1
√
λ2 + σ2

)]
−

∑I
i=1 ε

2
i

2(λ2 + σ2)
.

Furthermore, when technical inefficiency is exponentially distributed, that is

fu(u;λ) =
1

λ
e−

u
λ , u ≥ 0, λ > 0

the relative log-likelihood is (Behr and Tente, 2008)

lnL(ε|λ, σ2) = −I ln(λ) +
Iσ2

2λ2
+

I∑
i=1

ln Φ
(
−εi
σ
− σ

λ

)
+

∑I
i=1 εi
λ

.
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3 Monte Carlo simulations

We have performed the following Monte Carlo experiments: for given values of the
parameters λ and σ, we have generated N samples

{ε(n)i = −u(n)i + v(n)i, i ∈ {1, 2, ..., I}, n ∈ {1, 2, ..., N}},

whose dimensionality is I. For any n ∈ {1, 2, ..., N}, the sample {ε(n)i = −u(n)i +
v(n)i, i ∈ {1, 2, ..., I}}, meets the assumptions (1-5) made in Paragraph 2. Therefore,
u(n)i ∼ Rayleigh(λ) and v(n)i ∼ N(0, σ2). Then, for any n ∈ {1, 2, ..., N}, we have
estimated the two error parameters of the sample {ε(n)i = −u(n)i+v(n)i, i ∈ {1, 2, ..., I}},
by using the ML method. Moreover, we have repeated the experiments by considering the
other two cases: u(n)i ∼ N+(0, λ2) and u(n)i ∼ Exp(λ) (i ∈ {1, 2, ..., I}, n ∈ {1, 2, ..., N}).
So doing, for any value of λ and σ, we have obtained the mean values and the standard
deviations of the ML estimators. In order to perform this Monte Carlo analysis, we have
utilized the Software R. We have reported the results of the simulations in Tables 1-2.

Table 1: Calculus of the mean values of the ML estimators, for given values of λ and σ,
by using Monte Carlo procedure (I = 50, number of simulations = 1000).

λ σ Mean value of σML Mean value of λML

fu(u;λ) Rayleigh(λ) N+(0,λ2) Exp(λ) Rayleigh(λ) N+(0,λ2) Exp(λ)

4 3 2.8735 2.9205 2.9595 4.0190 3.9815 3.9690

3 4 3.9110 3.9175 3.9380 3.0155 2.9895 2.9895

4 4 3.8915 3.8785 3.9340 3.9970 3.9845 3.9935

Table 2: Calculus of the standard deviations of the ML estimators, for given values of
λ and σ, by using Monte Carlo procedure (I = 50, number of simulations =
1000).

λ σ Standard deviation of σML Standard deviation of λML

fu(u;λ) Rayleigh(λ) N+(0,λ2) Exp(λ) Rayleigh(λ) N+(0,λ2) Exp(λ)

4 3 0.5772 0.5611 0.5693 0.4682 0.6896 0.6830

3 4 0.5204 0.5436 0.6189 0.5132 0.7755 0.6905

4 4 0.6397 0.5912 0.6785 0.5681 0.8542 0.8105
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We observe that all ML estimators are distort in order to estimate noise parameter.
On the contrary, they are correct when regarded as estimators of technical inefficiency.
Moreover, when technical inefficiency components follow a Rayleigh distribution, the
respective ML estimator appears to have a minor variance.

4 MOM estimators

Consider the equality

E(ε) = E(−u) = λ

√
π

2

and recall that, in a Rayleigh distribution with parameter λ, its second and third order
central moments are equal, respectively, to (4−π)λ2/2 and

√
π/2(π−3)λ3. Furthermore,

denote by mi the i-th order moment of ε. In this case, following the considerations in
Behr and Tente (2008) and adapting them to a Rayleigh distribution, we have

m2 = σ2 +
4− π

2
λ2

m3 =

√
π

2
(π − 3)λ3.

From these equalities, we deduce the MOM estimators:

λ = 6

√
2m2

3

π(π − 3)2

σ =

√
m2 −

4− π
2

λ2.

Therefore, we have performed other computer experiments: we have generated a set of
simulated values for ε as above performed. Furthermore, in any simulation, we have
estimated the symmetric disturbance and technical inefficiency, by applying both ML
and MOM techniques. We have resumed the relative results in Tables 3-4. Substantially,
these last two tables confirm what stated in Tables 1-2. Moreover, we note that the ML
estimators are less distort than MOM estimators. This is a well note result in the case
of a single distribution function (λ = 0 or σ = 0). Furthermore, Table 3 tells us that, as
I diverges, the ML estimators become correct also relatively to normal error component.
Obviously, also MOM estimators are asymptotically correct, but, in this last case, the
bias converges to zero more slowly.

5 Application

Now, we consider a dataset from Baten et al. (2009). They modelled inefficiency by the
relation (Battese and Coelli, 1995)

uit = δ + δ1z1it + δ2z2it + δ3z3it + δ4z4it + δ5z5it + τit,
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Table 3: Calculus of the mean values of various estimators, for given values of I, by using
Monte Carlo procedure (λ = 3, σ = 4, number of simulations = 1000).

I Mean value of estimated σ Mean value of estimated λ

ML MOM ML MOM

Rayleigh
Half−

normal Expon. Rayleigh
Half−

normal Expon.

5 2.9750 3.1365 3.1540 2.1583 3.0575 3.0605 3.0070 4.8180

20 3.7660 3.7220 3.8290 2.6729 2.9645 3.0485 2.9605 4.9199

200 3.9850 3.9770 3.9900 3.5450 3.0055 2.9965 3.0000 3.8121

Table 4: Calculus of the standard deviations of various estimators, for given values of I,
by using Monte Carlo procedure (λ = 3, σ = 4, number of simulations = 1000).

I Standard deviation of estimated σ Standard deviation of estimated λ

ML MOM ML MOM

Rayleigh
Half−

normal Expon. Rayleigh
Half−

normal Expon.

5 1.5841 1.5677 1.6668 1.1227 1.4235 1.7651 1.7451 2.3351

20 0.8233 0.8790 0.9858 1.0494 0.8022 1.1903 1.0223 1.7717

200 0.2929 0.2889 0.3285 0.5992 0.2970 0.4053 0.3715 1.1668

where z1it, z2it, z3it, z4it and z5it are explanatory variables varying by region and time.
Moreover, δ, δ1, δ2, δ3, δ4 and δ5 are constant parameters and τit is a truncated normal
random variable. So, the article reports the values of technical efficiency of the tea
industry in seven regions of Bangladesh from 1990 to 2004 (Table 5).

First of all, we have calculated the inefficiency values by using the relation

u = − log(TE),

where TE is the technical efficiency. Therefore, for any year, we have estimated noise
and inefficiency parameters by various methods. In other words, we have let N = 15,
I = 7 and σ = −u, where u are the values of regional inefficiencies in the specific year.
We expect that, if the inefficiency values follow a given theoretical distribution, then the
corresponding noise estimation is near to zero for any year. In fact, in half-normal and
Rayleigh-ML case, σ̂ is always relatively small with respect to λ̂ (Table 6). Furthermore,
in the Rayleigh-ML case, both the mean and the variance of σ̂ are smaller when compared
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to other cases.

Table 5: Wise Mean Efficiency of Yield for various regions in Bangladesh, 1990-2004.

North Jury

year Sylhet valley Lungla Manu-doloi Balisera Luskerpore Ctg. dis

1990 0.39 0.46 0.42 0.59 0.43 0.86 0.37

1991 0.43 0.52 0.41 0.67 0.73 0.71 0.38

1992 0.37 0.49 0.29 0.60 0.67 0.60 0.33

1993 0.34 0.42 0.32 0.56 0.66 0.60 0.33

1994 0.37 0.55 0.37 0.65 0.76 0.69 0.38

1995 0.30 0.47 0.31 0.52 0.58 0.53 0.29

1996 0.36 0.54 0.38 0.60 0.70 0.60 0.39

1997 0.31 0.44 0.29 0.47 0.49 0.50 0.31

1998 0.57 0.83 0.56 0.89 0.91 0.92 0.54

1999 0.31 0.54 0.37 0.59 0.66 0.57 0.35

2000 0.39 0.52 0.39 0.60 0.72 0.50 0.47

2001 0.42 0.54 0.37 0.65 0.67 0.49 0.58

2002 0.35 0.44 0.32 0.57 0.66 0.43 0.40

2003 0.40 0.52 0.36 0.67 0.77 0.50 0.44

2004 0.36 0.47 0.33 0.60 0.70 0.45 0.42

6 Conclusions

In this paper, we have presented an alternative approach to the stochastic frontier anal-
ysis. The main contribution is the implementation of a numerical procedure for calculat-
ing the ML estimators of the total error parameters, when the one-tailed terms follow a
Rayleigh distribution. For this purpose, we have derived the probability density function,
of total error, in a closed form. In order to develop this model, we have assumed that
the density distribution of technical inefficiency is zero at the origin. We have compared
this Rayleigh model to half-normal and exponential case. We have verified that all the
ML estimators are correct, in order to estimate technical inefficiency. Furthermore, in
the Rayleigh case, the relative variance is minor. At the end, we have derived the MOM
estimators: they are distort and have a greater variance than ML estimators. For this
reason, we do not recommend the use of MOM when the data set of error observations
is not large.
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Table 6: Estimation of inefficiency and noise parameters for regions in Bangladesh, 1990-
2004.

ML
Rayleigh

ML
half − normal

ML
exponential MOM

σ̂ λ̂ σ̂ λ̂ σ̂ λ̂ σ̂ λ̂

1990 0.028 0.552 0.004 0.780 0.056 0.724 0.196 0.514

1991 0.028 0.480 0.040 0.680 0.164 0.592 0.246 0.116

1992 0.036 0.592 0.016 0.840 0.236 0.716 0.220 0.325

1993 0.032 0.608 0.072 0.860 0.260 0.736 0.222 0.275

1994 0.028 0.512 0.004 0.724 0.156 0.628 0.269 0.181

1995 0.036 0.656 0.056 0.928 0.324 0.776 0.212 0.285

1996 0.028 0.528 0.056 0.744 0.236 0.632 0.218 0.180

1997 0.036 0.680 0.024 0.964 0.396 0.776 0.156 0.249

1998 0.020 0.280 0.004 0.396 0.032 0.316 0.157 0.262

1999 0.032 0.572 0.076 0.808 0.252 0.684 0.186 0.315

2000 0.028 0.508 0.068 0.716 0.276 0.588 0.121 0.253

2001 0.028 0.484 0.072 0.680 0.248 0.564 0.113 0.260

2002 0.032 0.604 0.068 0.852 0.332 0.700 0.117 0.316

2003 0.028 0.512 0.056 0.724 0.176 0.640 0.141 0.320

2004 0.032 0.576 0.028 0.812 0.292 0.676 0.139 0.312

Mean 0.0301 0.5429 0.0429 0.7672 0.2291 0.6540 0.1809 0.2775

St. Dev. 0.0042 0.0941 0.0273 0.1335 0.0988 0.1166 0.0497 0.0890
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