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Aim of this paper is to introduce Gower and Hand’s biplot procedures
within the Co-Inertia Analysis. Predictive biplots can be considered a good
choice for interpretation purposes while interpretative ones are very useful
to classify new samples not used for the construction of the main co-inertia
axes.
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1 Introduction

In applied or theoretical contexts we often have to deal with the study of numerical data
tables obtained in experimental applications. The study of these tables often requires the
use of multivariate analyses in order to investigate the relationships between the two data
sets. In literature, in order to study symmetrical interdependence relationships, several
techniques, originated from Canonical Correlation Analysis (Hotelling, 1936) (hereafter
CCA), or from Tucker’s Inter-Battery Analysis Tucker (1958) and Co-Inertia Analysis
(Dray et al., 2003) (hereafter COA) and their generalizations, have been proposed. For
instance, in the field of near infrared spectroscopy, the potential of near infrared spec-
troscopy to measure the main inorganic components of seawater as salt-manufacturing
materials, was investigated with CCA (Chen et al., 2003). However, CCA could cre-
ate highly correlated linear combinations but not necessarily the most explicative ones.
COA, based on the covariance criterion, has been proposed to improve the Correlation
Analysis. COA and CCA should not be considered as competing techniques due to their
different goals (Cherry, 1996, 1997).
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COA is very popular in several fields. Tucker (1958) introduced this method in the
social sciences, with the name of Inter-Battery Factor Analysis, in order to find common
factors in two batteries of tests presented to the same group of statistical units. It has
been popularized in the atmospheric sciences, where it is well known as Singular Value
Decomposition Analysis, by Prohaska (1976), Bretherton et al. (1992) and Wallace et al.
(1992). It is also very famous in ecology by the papers of Chessel and Mercier (1993), and
Dolédec and Chessel (1994). It was also used in Sensometrics in analyzing relationships
between instrumental and sensorial measurements (Sabatier et al., 1992).

However, for inexperienced users of Statistics, the factorial graphical outputs of COA
are sometimes difficult to conceptualize because interpretations are carried out based
on the analysis of synthetic variables. The procedures presented by Gower and Hand
(1996), divided into predictive and interpolative biplots, seem to be meaningful and
straightforward, owing to the ability of allowing the establishment of direct relationships
between the observed data structures and the original variables with original units of
measurement.

Aim of this paper is to introduce the Gower and Hand’s biplot procedures within COA.
We highlight that this approach could be also a comprehensive scheme for applying
Interpolative and Predictive Biplots in a single algebraic framework. In fact, if we
consider the different nature and coding of data matrices, and using diverse kinds of
metrics, then a variety of existing biplots, applied to other methods, are realized by this
approach. This is due to the natural links of several multivariate coupling methods with
COA. Two examples of these procedures with well-known data sets are given.

2 A summary of Co-Inertia Analysis

The main goal of collecting the values taken by n statistical units on p variables in a
table of order (n × p), is generally the comparison both of the statistical units and the
variables. For the former comparison, if we choose to compute a distance between the
statistical units, then we have to define a (p × p) symmetric positive definite matrix Q
defining the scale of the several variables. For the latter, if we perform the comparison
between the variables by a linear correlation coefficient, then we have to define a positive
diagonal matrix D collecting the weights of the statistical units. Then we can consider
the notation of the statistical study (triplet) (X, Q, D) (Tenenhaus and Young, 1985)
to describe the data and their use. This notation allows to present the factorial methods
in a single theoretical framework by using suitable choices for the metrics Q and D.

Let (X,QX,D) be a statistical study associated with the matrix X = {x1, . . . ,xn}T
of order n × p, collecting a set of p quantitative/qualitative variables observed on n
statistical units where D = diag(d1, ..., dn) specifies the (diagonal) weights metric in the
vectorial space <n of variables with

∑n
i=1 di = 1. Without loss of generality, we can

assume uniform weights (di = 1/n) for D in this paper. QX is a (p × p) non-negative
definite (hereafter nnd) matrix defining the metric measuring the distance between the
data vectors xj , xk of two statistical units j, k in <p given by (xj − xk)TQX(xj − xk).
QX can assume several forms:
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1. if the coordinates that summarize a data matrix are mutually orthogonal and have
comparable scales, then QX can be set to the identity matrix Ip in <p (essentially
the Euclidean metric);

2. when the variables of X are measured on incomparable scales, it is common to
transform the data into standard scores before analyzing them; this is equivalent
to using the inverse of the diagonal matrix of the reciprocals of the standard
deviation of each variable as QX;

3. finally, if the variables are not highly correlated, we may set QX = (XTX)−1

(essentially the Mahalanobis metric), otherwise any generalized inverse of XTX
can be used.

Let (Y,QY,D) be the statistical study associated with the matrix Y = {y1, . . . ,yn}T
of order (n×q), collecting a second set of q (quantitative/qualitative) variables observed
on the same n statistical units where QY is the (q×q) nnd metric of the statistical units
in <q. We assume that both sets of variables are mean centred with respect to D, i.e.
the weighted mean value of each column in X and Y is set to zero (1TnDX = 0 with 1n
unitary column vector).

In order to study the common geometry of the statistical triplets (X,QX,D) and
(Y,QY,D), Co-Inertia Analysis (Chessel and Mercier, 1993) seeks linear combinations
of the data ti = XQXwi and ui = YQYci (i = 1, ..., s, s = min(p, q)) with the maximum
covariance

max
wici

cov2(ti,ui) = max
wici

(wT
i QXXTDYQYci)

2

such that the unknown weight vectors wi and cj (i 6= j) satisfy the constraints wT
i QXwi =

1, cTi QYci = 1, and wT
i QXwj = cTi QYcj = 0 (that is WTQXW = I and CTQYC = I).

The COA(X,Y)QX,QY
criterion can be also written as cov2(ti,ui) = cor2(ti,ui) ×

var(ti)× var(ui) where cor2(ti,ui) is the square cosinus of the angle between ti and ui,
with var(ti) = wT

i QXXTDXQXwi and var(ui) = cTi QYYTDYQYci.
The criterion cov2(ti,ui) measures the proximity between the variables of both sets,

so maximizing it we maximize the correlation between the components cor2(ti,ui) and
their respective variances also.

From a computational point of view, COA(X,Y)QX,QY
amounts also to the (General-

ized) Singular Value Decomposition of the matrix XTDY = W∆CT , where the columns
of W and C are constrained to be orthonormalized with respect to QX and QY (that is
WTQXW = I and CTQYC = I), respectively, and ∆ is a diagonal and positive definite
matrix containing the generalized singular values, ordered from largest to smallest.

This method is also defined by the analysis of the statistical triplets (YTDX,QX,QY).
The pairs of axes wi and cj are then obtained by the eigenvectors g(X) and g(Y) as-

sociated to the decomposition of the operators Q
1/2
X XTDYQYYTDXQ

1/2
X (p < q) or

Q
1/2
Y YTDXQXXTDYQ

1/2
Y (q < p), respectively, linked to the same maximum eigen-

value λ = (wT
i QXXTDYQYci)

2 where
√
λ is the covariance between ti and ui. After

diagonalization s principal axes are preserved. Finally, weight vectors wi and ci are

given by wi = Q
−1/2
X g(X)i and ci = Q

−1/2
Y g(Y)i , respectively.
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Co-Inertia Analysis is then a symmetric coupling metric-based method that provides

a decomposition of the co-inertia criterion tr(Q
1/2
X XTDYQYYTDXQ

1/2
X ) =

∑p
s= λs on

a set of orthogonal vectors where tr() is the trace operator of a square matrix.

It is easy to show that if we set QX = Ip, QY = Iq and D = In then Tucker’s approach
COA(X,Y)Ip,Iq and Undeflated PLS (Burnham et al., 1996) lead to the same results,
and first solutions of COA(X,Y)Ip,Iq and PLS Regression (Höskuldsson, 1988) are equal.
In this sense, Co-Inertia Analysis can be easily considered like a metric generalization of
the Tucker’s approach. For deeper COA features and its links with other multivariate
coupling methods, see Dolédec and Chessel (1994), and Dray et al. (2003), respectively.

3 Interpolative and Predictive Coa-Inertia Biplots

COA(X,Y)QX,QY
graphical outputs can be enriched by using the additional relevant

information given by the biplots (Gower and Hand, 1996). They are the multivariate
analogue of scatter plots. Similar to scatter plots, biplots are useful for giving a graphical
description of the data, for detecting patterns that possibly lead to more formal analyses,
and for displaying results found by more formal methods of analysis. Both samples and
measured variables are often represented in two-dimensional representations.

The conceptual distinction between interpolation and prediction can be easily high-
lighted. If we have a point with given values of the variables in a conventional Cartesian
coordinate system for two quantitative variables, then its interpolative representation is
given as vector-sum, while if we have a point then their associated values of the variables
are given by orthogonal projection (Figure 1).

	
  
Figure 1: Cartesian axes. Interpolation and prediction.

Predictive biplots can be used to carry out interpretations in relation to initial values
and variables instead of latent variables, without loosing the benefits of the multivariate
modulation. The main advantage of predictive biplots is then due to an easier interpre-
tation of the most important data structures overcoming the need for understanding and
interpreting synthetic variables. Once multivariate graphs are produced, the interpola-
tive biplots can be used in routine laboratory practice to position new statistical units in
the graph by hand, using the vector sum method or the complete parallelograms method
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for routine classification purposes also.

3.1 Interpolative Co-Inertia Biplot

COA(X,Y)QX,QY
biplot procedure consists of several steps. To achieve the objectives

of biplots, a COA biplot axis for each main variable is drawn in the graphs. Due to
the symmetry between the properties concerning X and Y we refer all the formulas

to the weight vector wi avoiding a double explanation. Let wi = Q
−1/2
X g(X)i be the

COA weight vectors such that wT
i QXwi = 1. The COA components are then given by

ti = XQXwi and biplots graphs are built by plotting scores ts vs ts′ (s 6= s′). We can
assume s = 1 and s′ = 2.

A convenient choice of the scale values is then performed, as well as the coordinates
of each scale value in the multidimensional subspaces are computed. These steps are
obtained according to the interpolative or the predictive objectives. In the Interpolative
COA biplot, for each variable Xk (k = 1, ..., p), an auxiliary column vector ei is created
with p elements, with 0 everywhere except for a 1 in position k. A column vector µk,
with a set of m convenient values defining a scale compatible with the observed initial
values, is also constructed.

Scale markers for all variables are then standardized and projected onto the factorial
plane of the latent variables [ts, ts′ ] as µke

T
kW

(s,s′) with W(s,s′) = [ws,ws′ ]. These
points are added on the graph labelling them with the original scale values. Afterwards
we link these points by a straight line to represent the axis of the variable Xk equipped
with a suitable measurement scale.

Finally, we position new additional statistical units in the interpolative graph by hand,
using the vector sum method or the complete parallelograms method (Gower and Hand,
1996).

3.2 Predictive Co-Inertia Biplot

Since prediction is the inverse of interpolation, the projection of the scale markers in
the plane [ts, ts′ ] is obtained by taking into account the inverse of W. The matrix
W(s,s′) is then obtained selecting the columns s and s′ of W−1. In addition, we have
to consider an adjustment factor necessary to ensure back-projection to the right place
onto the variable axes. This happens because in COA biplots the axes for prediction
and interpolation lie in different directions (Gower and Hand, 1996). In addition, the
inclusion of the adjustment factors necessary to carry out predictions to the right places
over the variable axes, changes the magnitude of the gaps between scale markers. Scale
markers for the predictive COA(X,Y)QX,QY

biplot will be then given by µke
T
kW

T
(s,s′)×

(eTkW
T
(s,s′)W(s,s′)ek)−1.

All these points are then labeled with the initial scale values and linked by a straight
line to represent the variable’s axis equipped with a measurement scale. Finally, original
predictive values are read drawing orthogonal projections from points to variable axes.

When the variable markers are projected onto the factorial plane [ts, ts′ ], some of them
will fit well in the graph while others could appear with not-suitable representations (too
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long or too short vectors). Moreover, variables with high predictive power could not have
the same effects for interpolative purposes and vice versa. So a suitable variable selection
for biplot construction is obligatory. Several trials suggested that it is right to start by
building the predictive biplots without taking into account all the too long and too
short vectors. Afterwards, the subset of variables to be used is selected by checking the
accuracy of a small number of predicted values with the original ones.

A similar procedure can be repeated for the interpolative biplots by checking the
proximity of a small set of interpolated points with the corresponding real coordinates.
A crossed check of both the selected subsets of variables could lead to an optimal selection
for conjoint interpolative and predictive purposes.

We highlight that this approach could be also a comprehensive scheme for applying
Interpolative and Predictive Biplots in a single algebraic framework. In fact, if we
consider the different nature and coding of X and Y, and various choices of QX and
QY, then a variety of existing biplots are realized by this approach. This is due to the
natural links of several methods with COA(X,Y)QX,QY

(Dray et al., 2003). For instance,
let X̂ = X(XTDX)−1 and Ŷ = Y(YTDY)−1 be pre-treatments of the matrices X and
Y, respectively. If we perform a Co-Inertia Analysis of the matrices X̂ and Ŷ with
the metrics QX = XTDX and QY = YTDY, and apply the suggested approach, then
we obtain the Canonical Correlation Biplots suggested by Gower and Hand (1996), and
Alves and Oliveira (2003).

Moreover, If Y is a qualitative variable with q categories then U is the D-uncentered
binary indicator matrix related to the complete disjunctive coding of this variable. In
this case, DY = UTDU is the q×q diagonal matrix with the relative frequencies of each
category. If we perform then a Co-Inertia Analysis of the matrices X̂ and Ŷ = UD−1Y

with the metrics QX = XTDX and QY = DY, and apply the suggested approach, we
obtain the Discriminant Biplots proposed by Gower and Hand (1996).

Finally, COA(X,Y)QX,QY
scores ti and ui result to be not D orthogonal in<n. The

Wold’s two-block ”Mode A” Partial Least Squares (Wold, 1985) overcomes this remark
by adding orthogonality constraints tTi Dti′ = 0 and uT

i Dui′ = 0 (with i 6= i′) to the orig-
inal COA(X,Y)QX,QY

criteria, getting orthogonal scores and weights simultaneously.
It is evident that we can apply these interpolative and predictive biplot procedures to
Wold’s two-block ”Mode A” Partial Least Squares analogously.

4 Examples

4.1 Distribution of a butterfly

We consider a well-know genetic data set (McKechnie et al., 1975; Manly, 2005) to
present COA-Biplots, as the first example of application. The data concern four environ-
mental variables (altitude, annual precipitation, and the minimum and maximum tem-
peratures) and four genetic variables (percentage frequencies for different phosphoglucose-
isomerase [Pgi] genes as determined by the technique of electrophoresis) regarding 16
colonies of the butterfly Euphydryas editha in California and Oregon. The study of the
relationships between the environmental and genetic variables could indicate the adap-
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tation of the Euphydryas editha to the local environments. The environmental variables
have been treated as X variables and the gene frequencies as the Y variables.

We report only the COA biplot outputs because the full COA study about the rela-
tionships between the environmental and genetic variables, is not the main goal of this
paper. See Figure 2 for the main COA graphics outputs. For a deeper analysis of this
data set see also Manly (2005).

	
  Figure 2: Main COA graphical outputs: Environmental (a) and genetic variables (c);
Colonies of the butterfly with respect to environmental (b) and genetic vari-
ables (d).

In order to integrate the COA graphics with the biplot procedures, a suitable variable
selection for biplot construction has been developed and a subset of variables with high
predictive and interpretative power has been selected. This subset is formed for the
interactive graph by the genetic variables 0.4-0.6, 0.8 and 1.16, while for the predictive
graph no-variable selection has been performed.

Figure 3 shows how a predictive biplot can be used to read off from the graph the
original values for the environmental variables for the units ”GL”, ”GH” and ”SJ” (Fig-
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ure 3.a) and for the genetic variables ”0.4-0.6”, ”0.8” and ”1.16” for the units ”GL”,
”GH”, ”LO” and ”SJ” (Figure 3.b) overcoming the need for understanding and inter-
preting synthetic variables. It is evident how the predictive biplot is a complementary
graph to the standard plot giving additional relevant information to carry out final
interpretations.

	
  
Figure 3: Predictive biplots based on COA of environmental (a) and genetic variables

(b). Interpolative biplots based on COA of environmental (c) and genetic
variables (d).

In addition, Figure 3.c and Figure 3.d show how given samples ”GL” and ”UO”,
respectively, are interpolated in the two-dimensional space by the vector sum method
with a good approximation (exact positions are indicated by labels). We highlight how
the COA interpolative biplot can be also considered as a complementary graph for
routine classification purposes in routine laboratory practice. Aim of this graphical tool
is to position new statistical units in the graph already available by hand without pre-
treatment of the values or calculations (e.g. positioning of the supplementary points in
Principal Component Analysis). This can be very interesting if we want to position new
points in a published graph without having the intermediate calculus and/or the full
results.

Finally, Figure 4 shows the biplots of a Co-Inertia Analysis of the matrices X and
Y with the metrics QX = XTX and QY = YTY for the same data set. They are
equivalent to the Canonical Correlation Biplots of the matrices X and Y as proposed
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by Gower and Hand (1996).

	
  
Figure 4: Predictive biplots based on CCA of environmental variables (a). Interpolative

biplots based on CCA of environmental variables (b).

4.2 The thymallus thymallus data

The Thymallus thymallus data (Persat, 1978) is a well-known data-set in Morphomet-
rics. This discipline is the branch of mathematics studying the metrical and statistical
properties of shapes and shape changes of geometric objects. It refers then to the quanti-
tative analysis of form, commonly performed on organisms, a concept that encompasses
size and shape. Morphometric analyses are useful in studying several aspects: the anal-
ysis of fossil record, the impact of mutations on shape, developmental changes in form,
main factors that affect shape, and so on. It is evident that Discriminant Analysis plays
an important role in this discipline.

The Thymallus thymallus belongs to the Salmoneide species and it is present in the
higher part of the side basin of the Rhone in France even if we can find them in other
rivers of the districts (Persat, 1978; Sabatier et al., 2003). Data are free available with
the statistical software ADE 4 (Thioulouse et al., 1997).

Sabatier et al. (2003) used this data-set by applying Linear Discriminant Analysis
(hereafter LDA) to discriminate 5 geographically different populations of thymallus thy-
mallus (named Ain upstream, Bienne, Loue, Ain downstream, and Loire, respectively)
with respect to 13 morphometric variables (sizes and shapes) and 120 statistical units.
Figure 5 shows the codes of the morphometric variables. We report only the LDA biplot
outputs because the full LDA study is not the main goal of this paper. See Figures 6, 7
and 8 for the main LDA biplot graphics outputs. Moreover, for a deeper LDA analysis
of this data set, see also Chessel (2008).

To integrate the LDA graphics with the biplot procedures, we performed a Co-
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Inertia Analysis of the matrices X and Y = UD−1Y with the metrics QX = XTDX
and QY = DY = UTDU, where U is the D-uncentered binary indicator matrix
related to the complete disjunctive coding of the 5 geographically different popula-
tions. Axes are then given by the diagonalization of the matrix B(XTDX)−1, where
B = (XTDUD−1Y )DY(D−1Y UTDX) and XTDX are the between groups variance and
variance-covariance (or correlation) matrices, respectively. COA outputs are then equiv-
alent to LDA ones.

	
  Label Variable Label Variable

1 Total length 8 Jaw length

2 Out dorsal distance 9 Jawbone length

3 Head length A Jawbone width

4 Caudal anal distance B Maximum height of the body

5 Orbital height C Caudal fin length

6 Occipital length D Anal fin length

7 Eye Diameter

Figure 5: The thymallus thymallus data. Codes of the morphometric variables.

A suitable variable selection for the biplot construction has been then developed and a
subset of variables with high predictive and interpretative power has been selected. This
subset is formed by the morphometric variables: out dorsal distance (code 2 in Figure
5), head length (code 3) and caudal anal distance (code 4).

Figure 6 shows how a predictive biplot is used to read off from the graph the initial
values of variables head length and caudal anal distance for the five mean groups (G1 to
G5) directly, overcoming the need for understanding and interpreting synthetic variables.

Likewise we can read off from the graph (Figure 7) (left hand) the initial values of
the selected variables for single points. It is evident how the predictive biplot is a
complementary graph to the standard plot (Figure 6, units and stargraph plots) giving
additional relevant information to carry out final interpretations.
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Figure 6: Thymallus data. LDA Predictive Biplot and LDA Stargraph.

	
  
Figure 7: Thymallus data. LDA Predictive and Interpolative Biplots.

	
  
Figure 8: Thymallus data. LDA Interpolative Biplots.

Finally, Figure 7 (right hand) and Figure 8 show how given samples with coordi-
nates (103, 57, 34), (82, 25, 46), and (103, 55), respectively, are interpolated in the two-
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dimensional space by the vector sum method with a good approximation (exact positions
are indicated by full dots).
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