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Abstract: Differential item functioning (DIF) refers to a difference in the way a 
test item functions for comparable groups of test takers. When there are DIF 
items in the test, it is necessary to make decisions concerning items revision or 
removal which cannot be based only on the outcome of DIF hypothesis testing 
statistic; a interpretable measure of the amount of DIF can help in decisions 
regarding DIF items. Due to the increasing use of polytomous item formats, this 
paper reviews the systems of DIF classification for polytomously scored items. 
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1. Introduction 
 
Differential item functioning (DIF) refers to a difference in the way a test item functions for 
comparable groups of test takers. Formally defined, an item displays DIF if subjects of equal 
proficiency, or equal ability level, on the construct intended to be measured by a test, but from 
separate subgroups of the population, differ in their expected score on this item ([14]). In DIF 
analysis, the population is typically divided in two subgroups named reference and focal group; 
the reference group provides a baseline for performance and the focal group is the focus of 
fairness concerns. Two types of DIF can be identified and denoted as uniform and nonuniform 
DIF ([13]). Uniform DIF (UDIF) occurs when the relative advantage of one group over another 
on a test item is uniform, favoring only one group consistently across the entire scale of ability. 
Nonuniform DIF (NUDIF) exists when the conditional dependence of group membership and 
item performance changes in size but not in direction across the entire ability continuum 
(unidirectional DIF) or when the conditional dependence changes in direction across the entire 
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ability continuum (crossing DIF). So, NUDIF implies that there is an interaction between ability 
level and group membership. When DIF items are found in the test, it is necessary to make 
decisions concerning items revision or removal which cannot be based only on the outcome of 
DIF hypothesis testing statistic; an interpretable measure of the amount of DIF can help in 
decisions regarding DIF items. The increasing use of polytomous item formats has led to the 
development of numerous methods for assessing DIF in polytomous items; therefore, it becomes 
necessary to identify systems of DIF classification based on DIF effect size appropriate for the 
polytomuos case to place side by side these methods. This paper wants to review the available 
classification criteria for the level of DIF in polytomously scored items.  
 
 
2. Systems of DIF classification 
 
The first system of DIF classification for dichotomously scored items, was developed at 
Educational Testing Service (ETS), making use of the Mantel Haenszel (MH) delta difference 
statistic MH D-DIF = –2.35 ln[αMH], which is a transformation of the MH constant odds ratio 
αMH ([9]; [4]; [17]). On the basis of this statistic, an item is classified into three categories: 
category A contains items with negligible DIF, category B contains items with slight to moderate 
values of DIF and category C contains items with moderate to large values of DIF.  In order to 
compute αMH, one requires that reference and focal group are matched according to a matching 
variable X divided in K levels, i.e. an explanatory variable able to form comparable groups such 
as, for example, the total score. Let PGjk be the probability of scoring j = 0, 1 for a subject 
belonging to the group G = R, F (R stands for reference and F for focal group) and level of the 
matching variable k. The data used in the MH method are in the form of K 2x2 contingency 
tables, with cell frequencies denoted by NGjk and total number of individuals at level k denoted 
by Nk. The estimator of MH constant odds ratio is given by: 
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The parameter αMH is assumed constant over all the levels of the matching variable. The ETS 
classification scheme in terms of ]ˆln[ MHα is the following: (A) if either ]ˆln[ MHα is not 
significantly different from zero or 43.0|]ˆln[| <MHα , (B) if ]ˆln[ MHα is significantly different 
from zero and 43.0|]ˆln[| ≥MHα and either: (i) 64.0|]ˆln[| <MHα or (ii) ]ˆln[ MHα is not significantly 
greater than 0.43 and (C) if |]ˆln[| MHα is significantly greater than 0.43 and .64.0|]ˆln[| ≥MHα   
Starting from this classification scheme, several authors proposed different tests and statistics to 
identify the presence and the magnitude of DIF in dichotomously scored items. Given the 
increasing interest and use of polytomous item formats, this paper wants to review the systems of 
DIF classification for polytomously scored items. These can be grouped according the 
approaches described in [13], that is: common odds ratio, item response theory (IRT), mean-
difference and logistic regression approach. 
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2.1 The common odds ratio approach 
An approach to measuring DIF effect size is to compute a cumulative common odds ratio. This is 
the extension to the polytomous case of the analogous approach for dichotomous items which 
considers the between-group differences in the odds of correct response after conditioning on the 
observed test score. [12] introduced in the DIF context the Liu-Agresti cumulative common odds 
ratio αLA ([7]) as a DIF detection method. For a studied item with J+1 ordered categories (j  = 0, 
1, …, J) and a matching variable X with K levels, the data for the reference and focal groups at 
level k (k = 1, …, K) of X can be organized in a 2xJ+1 table, with cell frequencies denoted by 
NGjk with group marginals denoted by NGk and category response marginals by Njk. Let the total 
number of individuals at level k be Nk. Let us denote the cumulative frequency for response level 
j at stratum k for the reference group RjkkRkRRjk NNNN +++= ...10

* and that for the focal group 

FjkkFkFFjk NNNN +++= ...10
* ; the Liu-Agresti estimator of the cumulative common odds ratio 

is given by:  
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Given that LAψ̂  reduces to the invers of MHα̂ when J = 1, LAψ̂ can be seen as a generalization of 

MHα̂ . In order to produce an estimator that is consistent with the scale of MHα̂ , the estimator LAψ̂  
is transformed as LALA ψα ˆ1ˆ = . [10] used this LAα̂  estimator to propose a categorization scheme 
for DIF in polytomous items that parallels the ETS scheme for dichotomous items by replacing 
MHα̂  with LAα̂  in the ETS scheme. The classification scheme in terms of LAα̂ becomes: (A) if 

either ]ˆln[ LAα is not significantly different from zero or 43.0|]ˆln[| <LAα ; (B) if ]ˆln[ LAα is 
significantly different from zero and 43.0|]ˆln[| ≥LAα  and either: (i) 64.0]ˆln[ <LAα or (ii) 

|]ˆln[| LAα is not significantly greater than 0.43 and (C) if |]ˆln[| LAα is significantly greater than 
0.43 and .64.0|]ˆln[| ≥LAα  
 
2.2 The item response theory approach 
In the IRT approach, one of the methods for detecting DIF is based on the signed area (SA), that 
is the area between the expected score functions specified for the reference and focal groups; it is 
suitable to detect UDIF and unidirectional DIF. For dichotomously scored items, the expected 
score function is equal to the item response function. Let EG(Y|θ) be the expected value of the 
item response variable Y conditional on the ability level θ for group G; SA is given by 

∫
+∞

∞−
−= θθθ dYEYESA FR )|()|( . For dichotomously scored items, [15] demonstrated that, for 

the three-parameter logistic model, under the assumption that the guessing parameter c is the 
same for the two groups, SA = (1 – c) δF – δR, where δG is the difficulty parameter of the item for 
group G. In the case of the Rasch model (RM), SA becomes SA = δF – δR. In this case is possible 
to use the ETS classification scheme that involves the MH constant log odds ratio ln[αMH]. Let 
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one consider the αMH based on a single level of the matching variable, say k, this parameter 
becomes: 
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Under the hypothesis that the RM is the data generating model, ln[αk] = δF – δR; the RM and MH 
approaches are both based on the relative odds of success of the two groups on the suspect item. 
Starting from this remark, [6] applied the ETS system of DIF classification to the difference of 
the item difficulty parameters for the two groups. Given that under RM this difference coincides 
with SA, the ETS classification scheme can be applied to SA at least under the RM. In the case of 
polytomously scored items, if the model considered is the Graded Response Model (GRM) or the 
Partial Credit Model (PCM), [2] and [11] demonstrated that ∑ =

−=
J

j RjFjSA
1

)( δδ . For PCM, the 

difficulty parameter of each item can be decomposed as δGj = δG + τj, where τj is the threshold 
parameter; if DIF affects only the δG parameter and leaves unchanged the thresholds, as in the 
UDIF case, the SA becomes: SA = J (δF – δR), where J is the number of the thresholds. This 
formula is a scale transformation of SA in the dichotomous case, so the system of DIF 
classification becomes: (A) if |SA/J | < 0.43; (B) if 0.43 ≤ |SA/J | < 0.64; (C) if |SA/J | ≥ 0.64.  
This scheme, derived from what found in the dichotomous case for the RM, can be also applied 
in the case in which the reference model is the GRM, given that it shares the same SA formula 
with the PCM.  
 
2.3 The mean-difference approach 
The mean-difference approach evaluates the conditional between-group difference in the 
expected value of the item response variable Y. Two statistics belong to this approach, that is the 
Standardized Mean Difference (SMD) [20] and the polytomous SIBTEST [1].  
Given a matching variable with K levels, the SMD it is defined as: 
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where mGk is the mean item score for the group G in the kth level of the matching variable, and 
wFk is the proportion of focal group members who are at kth level of the matching variable. The 
ETS classification scheme that takes into account SMD, involves also the Mantel's chi-square 
statistic ([8]) and the standard deviation of the item scores for the total group (SD).  Therefore, 
based on the following rules (R. Zwick, personal communication, July 20, 2012), an item is 
classified as: (A) if either Mantel’s chi-square is not significantly different from zero or 

17.0|/| ≤SDSMD ; (B) if Mantel’s chi-square is significantly different from zero and 
25.0|/|17.0 ≤< SDSMD or (C) if Mantel’s chi-square is significantly different from zero and 

25.0|/| >SDSMD . 
The polytomous SIBTEST introduced in [1], represents an extension of the SIBTEST ([16]) able 
to handle polytomous items. It is based on the regression of item performance onto an estimate 
of ability based on classical test theory of matching variable true score. The differences in the 
estimated item-true score regressions for focal and reference groups are averaged across same 
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observed matching test scores with a focal group weighting function. A subset of n items Xi must 
be presumed approximately unidimensional and DIF-free, in order to estimate the matching test 
true score ∑ =

=
n

i iXX
1

. For each score level k of X, k = 0, 1, …, nH,  the difference of the 

estimated item-true score regressions for focal and reference groups is FkRkk YYd −= , where GkY  
is the mean item scores for the G group with score k. The polytomous SIBTEST statistic is given 
by ∑ =

= Hn

k kkdp0β̂ , where pk is a weight equal to the proportion of all examinees with score k or 
the proportion of focal group members with score k. Given that the standardization statistic STD 
P-DIF developed by [5]  uses the same DIF scale as the SIBTEST ([16]), it is possible to adopt 
for SIBTEST the system of DIF classification reported in [4]. Given that the SIBTEST ranges 
between -1 and 1, before applying this same classification scheme to the polytomous SIBTEST, 
it is necessary to place β̂  on the same scale by dividing it by the difference between the 
maximum and the minimum possible score on the item. The system of DIF classification for 
polytomous SIBTEST becomes: (A) if β̂  is not significantly different from zero or 

05.0|/ˆ| ≤Jβ ; (B) if β̂  is significantly different from zero and 10.0|/ˆ|05.0 ≤< Jβ  and (C) if β̂  
is significantly different from zero and 10.0|/ˆ| >Jβ .   
 
2.4 The logistic regression approach 
The logistic regression approach for dichotomous items can be adapted to the polytomous case 
using one of the available ordinal logistic models. [18] proposed the use of a proportional odds 
model; this method allows one to get a measure of DIF making use of an R2 measure of effect 
size. Three equations are used in Zumbo’s method: a full model (Model III), where the item 
score is predicted from total score, group membership and the interaction of group membership 
and total score, an equation modeling UDIF only (Model II), that is the full model minus the 
interaction term, and a null DIF equation (Model I), where the item score is predicted from only 
the total score. The generalized coefficient of determination ([3]) is one of the possible R2 
measures. A guideline for interpreting the difference between two R2 measures 2

dR  is the 
following [19]: (A) if 13.02 <dR ; (B) if 26.013.0 2 ≤≤ dR ; (C) if 26.02 >dR . The comparison 
between Model I and Model III )I Model()III Model( 222 RRRd −= can be seen as a measure of 
the combined UDIF and NUDIF magnitude, the comparison between Model I and Model II 

)I Model()II Model( 222 RRRd −=  can be seen as a measure of the magnitude of UDIF, whereas 
the comparison between these two 2

dR  assesses the magnitude of NUDIF. 
 
 
3. Conclusions 
 
When DIF items are found in the test, it is necessary to make decisions concerning items revision 
or removal which cannot be based only on the outcome of DIF hypothesis testing statistic, 
therefore, a interpretable measure of the amount of DIF can help in decisions regarding DIF 
items. This paper reviews the systems of DIF classification for polytomous items available in 
literature. Between them, only the system based on ordinal logistic model is able to give a 
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measure of the crossing DIF size. Although this type of NUDIF is less frequent than UDIF and 
unidirectional DIF, many researchers have documented its presence in real test data analysis. 
Further research is needed on classification schemes for the size of this kind of NUDIF. 
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