
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v6n2p166

A Class of Exponential Chain Ratio-Product
Type Estimator with Two Auxiliary Variables
under Double Sampling Scheme
By Singh, Choudhury and Kalita

Published: October 14, 2013

This work is copyrighted by Università del Salento, and is licensed un-
der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 06, Issue 02, 2013, 166-174
DOI: 10.1285/i20705948v6n2p166

A Class of Exponential Chain
Ratio-Product Type Estimator with

Two Auxiliary Variables under Double
Sampling Scheme

B. K. Singha, Sanjib Choudhury ∗b, and Diganta Kalitac

aDepartment of Mathematics, North Eastern Regional Institute of Science and Technology,
Aurnachal Pradesh, India-791109,

bDepartment of Mathematics, National Institute of Technology Nagaland, Nagaland,
India-797103,

cDepartment of Statistics, North Lakhimpur College (Autonomus), Assam, India-787031

Published: October 14, 2013

ABSTRACT

In this paper an exponential chain ratio-product type estimator in double
sampling has been developed using information on two supplementary char-
acters for estimating the finite population mean. The optimum property of
the suggested strategy has been studied. Comparisons of the efficiency of the
proposed estimator under the optimal condition with other estimators have
been presented through empirical investigations.

keywords: Auxiliary information, Exponential chain ratio-product type
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1 Introduction

Information on variables correlated with the main variable under study is popularly
known as auxiliary information. The use of ratio, regression and product strategies in
survey sampling solely depend upon the knowledge of population mean X̄ of the auxiliary
character x . When this sort of knowledge is lacking, the two-phase (or double) sampling
design is adopted to estimate X̄ by the sample mean x̄1 of a preliminary large sample
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on which only x is observed. More often, information on another additional auxiliary
character is known which is relatively cheaper and less correlated to the main character
in comparison to the main auxiliary character x. In such a situation, this information
may be used to get more efficient estimators of X̄ than x in the preliminary sample.

Swain (1970), Chand (1975); and Sukhatme and Chand (1977) proposed a tech-
nique of chaining, the available information on auxiliary characteristic with the main
characteristic.

This paper aims at developing a class of chain type estimator with two auxiliary
variables. The proposed class is based on exponential chain ratio and product-type
estimators suggested by Singh and Choudhury (2012). The proposed estimator in its
optimum condition is as efficient as the regression estimator and superior to some other
estimators under certain conditions in double sampling design. Numerical illustrations
are given in support of the present study.

2 Notations

Let a finite population consists of N distinct identifiable units Ui(i = 1, 2, 3, ...., N). Let
y and x denote the study and auxiliary variate taking the values yi and xi respectively
on the Ui units.

Ȳ = 1
N

∑N
i=1 yi and X̄ = 1

N

∑N
i=1 xi be the population means of the study variate y

and the auxiliary variate x respectively.

Z̄ be the population mean of another auxiliary variate Z which is closely related to
X but as compared to X remotely related to Y .

x̄1 = 1
n1

∑n1
i=1 xi be the sample mean of size n1 based on the first phase sample.

ȳ = 1
n

∑n
i=1 yi and x̄ = 1

n

∑n
i=1 xi be the sample means of variables y and x respectively

obtained from the second phase sample of size n.

z̄1 = 1
n1

∑n1
i=1 zi be the sample mean of Z of size n1.

Cy =
Sy

Ȳ
, Cx = Sx

X̄
and Cz = Sz

Z̄
are the coefficients of variation of the study variate y,

auxiliary variates x and z respectively.

ρyx =
Syx

SySx
, ρyz =

Syz

SySz
and ρzx = Szx

SzSx
are the correlation coefficients between y and

x, y and z; and x and z respectively.

S2
y = 1

N−1

∑N
i=1

(
yi − Y

)2
, S2

x = 1
N−1

∑N
i=1

(
xi − X̄

)2
and S2

z = 1
N−1

∑N
i=1

(
zi − Z

)2
are the population variances of study variate y, auxiliary variates x and z respectively.

Sxy = 1
N−1

∑N
i=1

(
yi − Y

) (
xi − X̄

)
, Syz = 1

N−1

∑N
i=1

(
yi − Y

) (
zi − Z̄

)
and Szx =

1
N−1

∑N
i=1

(
zi − Z

) (
xi − X̄

)
are the co-variances between y and x, y and z; and z and

x respectively; and

f = n
N , f1 = n1

N , Cyx =
ρyxCy

Cx
, Cyz =

ρyzCy

Cz
and Czx = ρzxCx

Cz
.
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3 The Proposed Class of Estimator

Let a first-phase large sample of size n1 units is drawn from population Ui following
simple random sampling without replacement (SRSWOR) scheme, while in the second-
phase; a subsample of size n(n1 > n) is drawn by SRSWOR scheme from n1 units. We
assume that ρyx > ρyz > 0.

Singh and Choudhury (2012) suggested an exponential chain ratio and product-type
estimators for Ȳ in double sampling respectively as

Ȳ dc
Re = ȳ exp

(
x̄1

Z̄
z̄1
−x̄

x̄1
Z̄
z̄1

+x̄

)
and Ȳ dc

Pe = ȳ exp

(
x̄−x̄1

Z̄
z̄1

x̄+x̄1
Z̄
z̄1

)
.

The proposed class of estimator is defined as

Ȳ dc
RPe = ȳ

{
α exp

(
x̄1

Z̄
z̄1
− x̄

x̄1
Z̄
z̄1

+ x̄

)
+ β exp

(
x̄− x̄1

Z̄
z̄1

x̄+ x̄1
Z̄
z̄1

)}
(1)

where α and β are unknown constants such that α+ β = 1.

To obtain the bias(B) and mean square error (M) of the estimator Ȳ dc
RPe, we write

e0 = ȳ−Ȳ
Ȳ

, e1 = x̄−X̄
X̄

, e
′
1 = x̄1−X̄

X̄
and e2 = z̄1−Z̄

Z̄
such that

E(e0) = E(e1) = E(e′1) = E(e2) = 0, E(e2
0) = 1−f

n C2
y ,

E(e2
1) = 1−f

n C2
x, E(e′21 ) = 1−f1

n1
C2
x, E(e2

2) = 1−f1

n1
C2
z ,

E(e0e1) = 1−f
n CyxC

2
x, E(e0e

′
1) = 1−f1

n1
CyxC

2
x, E(e0e2) = 1−f1

n1
CyzC

2
z ,

E(e1e
′
1) = 1−f1

n1
C2
x, E(e1e2) = 1−f1

n1
CzxC

2
z , E(e′1e2) = 1−f1

n1
CzxC

2
z .

(2)

Expressing Ȳ dc
RPe in terms of e’s and retaining terms up to second powers of e’s, we

have

Ȳ dc
RPe − Ȳ ∼= Ȳ

[
e0 +

1

2

(
e1 + e2 − e′1 + e0e1 + e0e2 − e0e

′
1

)
− 1

8

(
e2

1 + e2
2

)
+

3

8
e′21

+
1

4

(
e1e2 − e2e

′
1 − e1e

′
1

)
+α

{
e′1 − e1 − e2 + e0e

′
1 − e0e1 − e0e2 −

1

2

(
e′21 − e2

1 − e2
2

)}]
(3)

Therefore, the bias of the estimator Ȳ dc
RPe can be obtained by using the results of (2)

in equation (3) as

B
(
Ȳ dc
RPe

)
= Ȳ

{(
1
2 − α

) (1−f∗
n CyxC

2
x + 1−f1

n1
CyzC

2
z

)
+
(

1
2α−

1
8

) (1−f∗
n C2

x + 1−f1

n1
C2
z

)}
,

where f∗ = n
n1
.

From equation (3), we have

Ȳ dc
RPe − Ȳ ∼= Ȳ

{
e0 +

(
1

2
− α

)(
e1 + e2 − e′1

)}
(4)
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Squaring both sides in equation (4), taking expectations and using the results of (2), we
get the MSE of Ȳ dc

RPe to the first degree of approximation as

M
(
Ȳ dc
RPe

)
= Ȳ 2

{
1− f
n

C2
y + (1− 2α)

(
1− f∗

n
CyxC

2
x +

1− f1

n1
CyzC

2
z

)
+

(
1

2
− α

)2

×
(

1− f∗

n
C2
x +

1− f1

n1
C2
z

)}
(5)

Minimization of equation (5) with respect to α yields its optimum value as

αopt. =
1

2
+

1−f∗
n CyxC

2
x + 1−f1

n1
CyzC

2
z

1−f∗
n C2

x + 1−f1

n1
C2
z

(6)

Substituting the value of αopt. from equation (6) in equation (5), we get the minimum
value of M

(
Ȳ dc
RPe

)
as

min.M
(
Ȳ dc
RPe

)
= Ȳ 2

{
1−f
n C2

y −
(

1−f∗
n

CyxC2
x+

1−f1
n1

CyzC2
z

)2

1−f∗
n

C2
x+

1−f1
n1

C2
z

}
.

Remark 1:

For (α, β) = (1, 0) , the proposed class of estimator reffered to equation (1) reduces to
the ‘exponential chain ratio-type estimator in double sampling’ suggested by Singh and
Choudhury (2012) as

Ȳ dc
Re = ȳ exp

(
x̄1

Z̄
z̄1
−x̄

x̄1
Z̄
z̄1

+x̄

)
and the MSE of Ȳ dc

Re can be obtain by putting α = 1 in equation (5) as

M
(
Ȳ dc
Re

)
= Ȳ 2

{
1− f
n

C2
y +

1

4

(
1− f∗

n
C2

x +
1− f1
n1

C2
z

)
− 1− f∗

n
CyxC

2
x −

1− f1
n1

CyzC
2
z

}
(7)

while (α, β) = (0, 1) , the proposed class of estimator is reduces to the ‘exponential chain
product-type estimator in double sampling’ suggested by Singh and Choudhury (2012)
as

Ȳ dc
Pe = ȳ exp

(
x̄−x̄1

Z̄
z̄1

x̄+x̄1
Z̄
z̄1

)
and the MSE of Ȳ dc

Pe can be obtain by putting α = 0 in equation (5) as

M
(
Ȳ dc
Pe

)
= Ȳ 2

{
1− f
n

C2
y +

1

4

(
1− f∗

n
C2

x +
1− f1
n1

C2
z

)
+

1− f∗

n
CyxC

2
x +

1− f1
n1

CyzC
2
z

}
(8)
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4 Efficiency Comparisons

4.1 with exponential chain ratio-type estimator in double sampling,
Singh and Choudhury (2012)

From equations (5) and (7), we have

M
(
Ȳ dc
Re

)
−M

(
Ȳ dc
RPe

)
= Ȳ 2 (1− α) (αA− 2B) ,

where A = 1−f∗
n C2

x + 1−f1

n1
C2
z and B = 1−f∗

n CyxC
2
x + 1−f1

n1
CyzC

2
z .

Therefore, the proposed estimator is better than exponential chain ratio-type estima-
tor in double sampling if

either, 2B
A < α < 1. or, 1 < α < 2B

A .

or equivalently, min
(
1, 2B

A

)
< α < max

(
1, 2B

A

)
.

4.2 with exponential chain product-type estimator in double sampling,
Singh and Choudhury (2012)

From equations (5) and (8), we have

M
(
Ȳ dc
Pe

)
−M

(
Ȳ dc
RPe

)
= Ȳ 2α {(1− α)A+ 2B} .

Therefore, the proposed estimator is more efficient than Ȳ dc
Pe if

either, 1 + 2B
A < α < 0. or, 0 < α < 1 + 2B

A .

or equivalently, min
(
0, 1 + 2B

A

)
< α < max

(
0, 1 + 2B

A

)
.

4.3 with chain ratio estimator in double sampling, Chand (1975)

The MSE of chain ratio estimator in double sampling ‘Ȳ dc
R = ȳ x̄1

x̄
Z̄
z̄1

’ is

M
(
Ȳ dc
R

)
= Ȳ 2

{
1− f
n

C2
y +

1− f∗

n
C2
x (1− 2Cyx) +

1− f1

n1
C2
z (1− 2Cyz)

}
(9)

From equations (5) and (9), we have

M
(
Ȳ dc
R

)
−M

(
Ȳ dc
RPe

)
= Ȳ 2 (1.5− α) {(0.5 + α)A− 2B} .

Therefore, the proposed estimator is more efficient than chain ratio estimator in double
sampling if

either, −0.5 + 2B
A < α < 1.5. or, 1.5 < α < −0.5 + 2B

A .

or equivalently, min
(
1.5,−0.5 + 2B

A

)
< α < max

(
1.5,−0.5 + 2B

A

)
.

4.4 with chain product estimator in double sampling

The MSE of chain product estimator in double sampling ‘Ȳ dc
P = ȳ x̄

x̄1

z̄1
Z̄

’ is

M
(
Ȳ dc
P

)
= Ȳ 2

{
1− f
n

C2
y +

1− f∗

n
C2
x (1 + 2Cyx) +

1− f1

n1
C2
z (1 + 2Cyz)

}
(10)
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From equations (5) and (10), we have

M
(
Ȳ dc
P

)
−M

(
Ȳ dc
RPe

)
= Ȳ 2 (0.5 + α) {(1.5− α)A+ 2B} .

Therefore, the proposed estimator is better than chain product estimator in double
sampling if

either, −0.5 < α < 1.5 + 2B
A . or, 1.5 + 2B

A < α < −0.5.

or equivalently, min
(
−0.5, 1.5 + 2B

A

)
< α < max

(
−0.5, 1.5 + 2B

A

)
.

4.5 with sample mean per unit estimator ȳ

The MSE of sample mean per unit estimator ȳ is

M (ȳ) = Ȳ 2 1− f
n

C2
y (11)

From equations (5) and (11), we have

M (ȳ)−M
(
Ȳ dc
RPe

)
= Ȳ 2 (0.5− α) {−2B − (0.5− α)A} .

Therefore, the proposed estimator is more efficient than ȳ if

either, 0.5 < α < 0.5 + 2B
A . or, 0.5 + 2B

A < α < 0.5.

or equivalently, min
(
0.5, 0.5 + 2B

A

)
< α < max

(
0.5, 0.5 + 2B

A

)
.

5 Empirical Study

To examine the merits of the proposed estimator, we have considered five natural pop-
ulation data sets. The sources of populations, nature of the variates y, x and z; and the
values of the various parameters are given as.

Population I -Source: Murthy (1967)

Y : Area under wheat in 1964, X: Area under wheat in 1963, Z: Cultivated area in
1961.

N=34, n=7, n1=10, Ȳ=199.44 acre, X̄=208.89 acre, Z̄=747.59 acre, ρyx=0.9801,
ρyz=0.9043, ρzx=0.9097, C2

y=0.5673, C2
x=0.5191, C2

z=0.3527.

Population II -Source: Cochran (1977)

Y : Number of ‘Placebo’ children, X: Number of paralytic polio cases in the placebo
group, Z: Number of paralytic polio cases in the ‘not inoculated’ group.

N=34, n=10, n1=15, Ȳ=4.92, X̄=2.59, Z̄=2.91, ρyx=0.7326, ρyz=0.6430, ρzx=0.6837,
C2
y=1.0248, C2

x=1.5175, C2
z=1.1492.
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Population III-Source: Sukhatme and Chand (1977)

Y : Apple trees of bearing age in 1964, X: Bushels of apples harvested in 1964, Z:
Bushels of apples harvested in 1959.

N=200, n=20, n1=30, Ȳ = 0.103182× 104, X̄ = 0.293458× 104, Z̄ = 0.365149× 104,
ρyx=0.93, ρyz=0.77, ρzx=0.84, C2

y=2.55280, C2
x=4.02504, C2

z=2.09379.

Population IV-Source: Srivnstava et al. (1989)

Y : The measurement of weight of children , X: Mid arm circumference of children, Z:
Skull circumference of children.

N=82, n=25, n1=43, Ȳ=5.60 kg, X̄=11.90 cm, Z̄=39.80 cm, ρyx=0.09, ρyz=0.12,
ρzx=0.86, C2

y=0.0107, C2
x=0.0052, C2

z=0.0008.

Population V-Source: Srivnstava et al. (1989)

Y : The measurement of weight of children , X: Mid arm circumference of children, Z:
Skull circumference of children.

N=55, n=18, n1=30, Ȳ=17.08 kg, X̄=16.92 cm, Z̄=50.44 cm, ρyx=0.54, ρyz=0.51,
ρzx=-0.08, C2

y=0.0161, C2
x=0.0049, C2

z=0.0007.

To reflect the gain in the efficiency of the proposed estimator Ȳ dc
RPe over the estimators

Ȳ dc
Re, Ȳ

dc
Pe, Ȳ

dc
R , Ȳ dc

P and ȳ, the effective ranges of α along with its optimum values are
presented in Table 1 with respect to the population data sets.

Table 1: Effective ranges of α and its optimum values of the estimator Ȳ dc
RPe

Ranges of α under which the estimator Ȳ dc
RPe is better than Opt. values

Pop. ↓ Ȳ dc
Re Ȳ dc

Pe Ȳ dc
R Ȳ dc

P ȳ αopt

I (1.00, 2.18) (0.00, 3.18) (1.50, 1.68) (-0.50, 3.68) (0.50, 2.68) 1.5892

II (1.00, 1.21) (0.00, 2.21) (0.71, 1.50) (-0.50, 2.71) (0.50, 1.71) 1.1044

III (1.00, 1.58) (0.00, 2.58) (1.08, 1.50) (-0.50, 3.08) (0.50, 2.08) 1.2921

IV (0.32, 1.00) (0.00, 1.32) (-0.18, 1.50) (-0.50, 1.82) (0.50, 0.82) 0.6577

V (1.00, 2.22) (0.00, 3.22) (1.50, 1.72) (-0.50, 3.72) (0.50, 2.72) 1.6090

To observe the relative performance of different estimators of Ȳ , we have computed
the percentage relative efficiencies of the proposed estimator Ȳ dc

RPe, exponential chain
ratio and product-type estimators

(
Ȳ dc
Re, Ȳ

dc
Pe

)
, chain ratio and chain product estimators(

Ȳ dc
R , Ȳ dc

P

)
in double sampling and sample mean per unit estimator ȳ with respect to

usual unbiased estimator ȳ. The findings are presented in Table 2.
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Table 2: Percentage relative efficiencies of different estimators w.r.t. ȳ.

Estimators→ ȳ Ȳ dc
R Ȳ dc

P Ȳ dc
Re Ȳ dc

Pe Ȳ dc
RPe

Population I 100.00 730.78 30.05 259.54 50.48 763.27

Population II 100.00 136.91 25.96 184.36 47.55 189.27

Population III 100.00 279.93 26.02 247.82 46.58 322.94

Population IV 100.00 81.92 70.22 97.11 88.38 100.81

Population V 100.00 131.91 61.01 120.57 78.75 132.32

6 Conclusions

On the basis of the theoretical and empirical results derived in this paper, we may
conclude it as follows

i. Table 1 shows that there is a wide scope of choosing α for which the proposed class
of estimator ‘Ȳ dc

RPe’ performs better than other estimators.

ii. From Table 2, it is evident that the proposed class of estimator ‘Ȳ dc
RPe’ is more

efficient than all other estimators Ȳ dc
Re, Ȳ

dc
Pe, Ȳ

dc
R , Ȳ dc

P and ȳ with considerable gain
in efficiency.

Thus, the use of the proposed class of estimator is preferable over other estimators.
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