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Abstract: The social and economic research often focuses on the construction of 
composite indicators for unobservable (or latent) variables using data from a 
questionnaire with Likert-type scales. Within the variety of procedures, we focus 
on the data analysis technique of Principal Components Analysis, in its Linear 
and NonLinear versions. This paper shows that when the variables are parallel 
measurements of the same latent unobservable variable, Linear and NonLinear 
Principal Components Analyses practically lead to the same composite 
indicators. 
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1. Introduction 
 
The social and economic research is often focused on the construction of a one-dimensional 
composite indicator for an unobservable variable (or latent variable) starting from data from 
Likert-type scales. Many different statistical models and methods allow this goal to be reached. 
Stochastic models like those developed in the framework of the Rasch Analysis or the Item 
Response Theory [3] show good statistical properties, but usually require assumptions that are 
often violated or difficult to satisfy. Another very simple and widespread procedure to construct 
composite indicators is the summated rating scale, which suggests to add up the quantifications 
(usually the first integers) assigned to the ordered response categories of m variables (items) and 
use this (weighted or unweighted) sum as a composite measure of a latent construct. This 
procedure is based on the Classical Test Theory idea that if the variables are parallel 
measurements (i.e., are homogeneous variables), their sum will tend to cancel out measurement 
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errors [7]. Among the several proposals existing in the literature to obtain a one-dimensional 
indicator from parallel measurements, in this paper we follow a data analysis approach, which 
requires weak statistical and distributional assumptions, and consider the Principal Components 
Analysis (PCA), in its Linear (L-PCA [8]) and NonLinear (NL-PCA [6, 7, 4]) versions. L-PCA 
and NL-PCA provide indicators easy to compute, requiring weak assumptions, and often 
resulting in measures highly correlated with those obtained from a more sophisticated Rasch 
model [5, 1]. NL-PCA aims at the same goals of traditional L-PCA, but it is suited for variables 
of nominal, ordinal, numerical measurement levels that may not be linearly related to each other. 
The NL-PCA model is the same linear model as in traditional L-PCA, but it is applied to 
nonlinearly transformed data, obtained by assigning optimal scale values (the quantifications) to 
the categories. While L-PCA assigns equally spaced numbers (usually the first positive integers) 
to the categories, NL-PCA finds category quantifications that are optimal in the sense that the 
overall variance accounted for in the transformed variables, given the number of components, is 
maximized. 
When using L-PCA and NL-PCA in order to obtain a composite indicator of unobservable 
variables, these two data analysis techniques are within the same framework as the summated 
rating scale procedure. Indeed, the final composite indicator is obtained by a weighted sum of 
the quantified variables, with weights identified by the algorithm. The difference between the 
two algorithmic procedures is that L-PCA assigns linear (equally spaced) quantifications, while 
NL-PCA assigns nonlinear (i.e., not necessarily ordered nor equally spaced) quantifications to 
the ordered categories; NL-PCA quantifications take also into account possible nonlinear 
relationships among variables [7]. In this paper, we consider to apply NL-PCA with the ordinal 
scaling level, meaning that variables are transformed according to monotonic nonlinear 
transformations. Therefore, the nonlinear quantifications are ordered and the only difference with 
the linear quantifications is that the former are not necessarily equally spaced. 
However, in some applications, NL-PCA leads to the same results of L-PCA, suggesting that the 
assumptions of L-PCA are not a practical problem. Starting from these considerations, this paper 
aims at showing that, when data come from parallel measurements of the same unobservable 
variable, the composite indicators obtained from NL-PCA and L-PCA do not practically differ. 
We pursued this goal by using the gauging approach ([6], p. 34): (1) a Probabilistic gauge to 
construct a population of homogenous data and compare the L-PCA and NL-PCA composite 
indicators; (2) a Monte Carlo gauge, to compare the sampling performance of L-PCA and NL-
PCA in recovering the population parameters of interest. A wider investigation comparing the  
L-PCA and NL-PCA solutions in the population data as well as in the sampling performance can 
be found in [2], a very extensive simulation study oriented to evaluate the level of nonlinearity 
existing in homogeneous data. In the present paper, we focus the comparison on the resulting 
composite indicators, which can be interpreted as a global result from the two techniques. Other 
parameters were considered in [2]. 
 
 
2. Simulation design 
 
In order to have a realistic data structure with known properties allowing the comparison of the 
L-PCA and NL-PCA results, we used the gauging approach [6]. 
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Population and sampling performances of the two techniques are compared focusing on the 
composite indicator that can be used as a measure of the unobservable variable or latent variable. 
The method we used to construct population homogeneous data with a one-dimensional latent 
variable underlying m ordinal variables was proposed by [10] and is based on the discretization 
of m continuous variables following a multivariate standard normal distribution with equal 
correlations ρ. In this case, the m continuous variables are linearly related each other and the 
correlation matrix has a dominant eigenvalue given by λ+= [1 + (m − 1) ρ]/ m ([10], p. 7). 
In this study, we considered m = 4 and ρ = 0.4, 0.6, 0.8, corresponding to three situations with 
underlying one-dimensional latent variables having different levels of strength λ+=0.55, 0.70, 
0.85. The small value of m was chosen to simplify computations but also to introduce some 
instability in the results, with the aim to stress the differences between L-PCA and NL-PCA. 
The continuous variables were then discretized, by means of discretization cuts to map 
continuous intervals into ordinal categories. We considered three discretization forms resulting 
from nonlinear monotonic transformations: (1) an optimal discrete distribution O, which 
resembles the original normal distribution rather closely,  (2) a right-skewed discrete distribution 
(R, with positive skewness), and (3) a left-skewed discrete distribution (L, with negative 
skewness). 
According to [10], we chose k=5 categories for each variable with corresponding frequencies 
(0.11; 0.24; 0.30; 0.24; 0.11) for the O distribution. Two different versions of the skewed 
variables were considered: (i) (0.45; 0.25; 0.15; 0.10; 0.05) and (0.05; 0.10; 0.15; 0.25; 0.45) for 
the R and the L distributions, respectively, and (ii) (0.65; 0.15; 0.10; 0.05; 0.05) and (0.05; 0.05; 
0.10; 0.15; 0.65) for the R and the L distributions, respectively. 
The corresponding frequency plots are displayed in Figures 1-2. 

 
Figure 1. Frequency distributions for the Optimal, Right- and Left-skewed - version (i) - discretized variables. 
 
With (ii), we chose to stress the presence of high frequencies on the mode category, because 
quantifications typically show nonlinearity and instability in the presence of low frequencies on 
some categories, like in the R and L distributions [9]. 
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Figure 2. Frequency distributions for the Right- and Left-skewed - version (ii) - discretized variables. 
 
Moreover, when the distributions of the analysed ordinal variables are very different, these can 
be thought to be not linearly related. To evaluate the interaction of ordinal variables with 
different distributions, we combined optimal and right- and left-skewed variables, obtaining 9 
distinct Cases: OOOO, OOOL, OOLL, OLLL, LLLL, LLLR, LLRR, LROO, LLRO. Since the R 
variable follows the reversed frequency pattern of the L variable, OOOR, OORR and ORRR 
Cases can be skipped from the analysis, because they give the analogous results of the OOOL, 
OOLL and OLLL Cases already considered; the same holds for the LRRR and RRRR 
combinations, equivalent to the LLLR and LLLL Cases, respectively. 
Using the discretization cuts, we computed the probability distribution for the multinomial 
distribution by multidimensional integration of the multivariate normal distribution. Then, a 
population composed of 100,000 units was obtained for each of the 9x3=27 considered 
combinations - 9 different Cases for O-L-R and 3 different values of ρ - for the 2 different 
versions (i) and (ii) of the skewed R and L distributions, and both L-PCA and NL-PCA were 
applied to population data.  
For each of the considered combinations, the population scores, providing the “measure” of the 
underlying latent variable, were obtained by computing the weighted sum of the quantifications 
assigned by L-PCA or NL-PCA with loadings as weights; one score is determined for each of the 
unique km=54=625 population profiles or response patterns. 
The resulting population scores were compared by computing the linear correlation coefficient 
ρL;NL between the L-PCA and NL-PCA 625 population scores (weighted by their population 
frequencies). 
In order to check the sample stability of L-PCA and NL-PCA, we derived the Monte Carlo 
gauge from the Probabilistic gauge described above: we run 1000 replications of simple random 
samples with three different sample sizes n=250,500,1000. To compare the Monte Carlo scores, 
we computed the linear correlation coefficient rL;NL between linear and nonlinear scores of all the 
625 response patterns (weighted by the corresponding population frequencies to consider their 
sampling probabilities) in each replication for every considered combination. Then we computed 
the mean correlation NLLr ; , with the associated standard error, over the replications. 
As mentioned in Section 1, in [2] the comparison between the two solutions concerned the 
quantifications of each variable, by means of the so-called NL index [2], the dominant eigenvalue 
λ+, the mean correlation and the Cronbach’s alpha, both related to λ+ ([7], p. 187). 
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3. Results 
 
Although L-PCA and NL-PCA solutions differ with reference to several parameters (for 
example, quantifications, dominant eigenvalue, etc., see [2]), the analysis of population scores 
showed that the linear correlation coefficient ρL;NL was higher than 0.96 in all the considered 
configurations. This means that L-PCA and NL-PCA practically provide the same measure of the 
latent variable underlying the data. The minimum value 0.96 came out in the LLRR Case with 
version (ii) and ρ = 0.8: when the one-dimensionality is stronger, the flexibility of NL-PCA to 
assign nonlinear quantifications to the categories of very skewed ordinal variables results in a 
lower loss of information, and it is easier for NL-PCA to “overperform” and then to obtain a 
(slightly) different composite indicator, with respect to L-PCA. 
Results of the Monte Carlo gauge suggested that the NL-PCA and L-PCA performances were 
comparable in terms of accuracy and efficiency in estimating the population scores, although the 
Monte Carlo scores obtained by NL-PCA showed slightly higher instability. The correlation 
coefficient rL;NL between linear and nonlinear scores is higher than 0.94 for every sample size n 
and in all the 9 different Cases for the 3x2=6 considered combinations - 3 values of ρ, 2 versions 
(i) and (ii). For every n, in each of these 6 combinations, RRLL is always the Case associated 
with the lowest rL;NL. Figure 3 displays the box-plots of rL;NL obtained for n=250, RRLL Case, 
and the 3x2 combinations of ρ and versions (i) and (ii). As expected, for fixed ρ, version (ii) is 
associated with lower values of rL;NL and larger variability than version (i), while, for fixed 
version (i) or (ii), as ρ increases, rL;NL decreases as well as its variability. 

 
Figure 3. Box-plots of the correlation coefficient rL;NL between L-PCA and NL-PCA scores, for the 3x2=6 
considered combinations - 3 values of ρ  (row), 2 versions (i) and (ii) (column) - for n=250 and RRLL Case. 
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The mean correlation NLLr ;  between linear and nonlinear scores, obtained averaging over the 
1,000 replications, was always higher than 0.96 considering the three sample sizes. As expected, 
it increased as the sample size increased and, for each sample size, showed the lowest values in 
correspondence of the LLRR Case with version (ii) and ρ=0.8, like in the Probabilistic gauge. 
Table 1 displays the values of bias and standard error of the correlation coefficient estimator 
between L-PCA and NL-PCA scores. 
Results show that ρL;NL was well estimated also with the smallest sample size, and this suggests 
that L-PCA and NL-PCA were comparable in their ability to estimate the measure of the latent 
variable underlying the data. 
 
Table 1. Bias and Standard Error of the correlation coefficient estimator between L-PCA and NL-PCA scores 
for the Monte Carlo gauge (1,000 replications). 

n Bias Standard Error 
min mean max min mean max 

250 0.001 0.006 0.015 0.002 0.006 0.010 

500 0.000 0.003 0.008 0.002 0.003 0.007 

1000 0.000 0.002 0.005 0.001 0.002 0.005 

 
 
4. Concluding Remarks 
 
This study showed that when population data come from parallel measurements of the same 
unobservable variable and when the focus is on the construction of a composite indicator for it, 
L-PCA and NL-PCA results do not practically differ, even when variables have very different 
distributions. For this reason, according to the Occam’s razor, the use of the simplest method can 
be preferred, although ordinal data would require appropriate statistical modelling and variables 
having different (optimal and skewed) distributions would suggest to use the more complex 
nonlinear technique. This result relies on the characteristics of the chosen Probabilistic gauge: in 
a next study, we want to identify different situations recommending the use of NL-PCA. 
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