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The time varying observation recorded in chronological order is called time
series. The extreme values are from the same time series model or appear
because of some unobservable causes having serious implications in the esti-
mation and inference. This change deviate the error more and the recorded
observation is called outlier. The present paper deals the Bayesian analysis
to the extreme value(s) is/are from the same time series model or appears
because of some unobservable causes. We derived the posterior odds ratio in
different setups of unit root hypothesis. We have also explored the possibility
of studying the impact of outlier on stationarity of time series. Using the sim-
ulation study, it has been observed that if outlier is ignored a non-stationary
series concluded difference stationary.

keywords: Autoregressive model,Outlier, Stationarity, Prior distribution,
Posterior odds ratio.

1 Introduction

In data analysis, we deal with large number of sampled or recorded variables. Some of
observations are outlying from the rest, which are known as outliers. The time varying
observation recorded in chronological order is called time series. The extreme values
from the same time series model or appear because of some unobservable causes always
have serious implications in the estimation of parameters or testing procedures. Barnett
and Lewis (1994) defined that an outlying observation, or outlier, is one that appears
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distinctly from other members of the sample in which it occurs. Main feature of out-
lier is that it lies outside the overall pattern of a distribution [see,Moore and McCabe
(1999)]. In measure studies outliers are often considered as an error or noise, however
they may carry important information. Usually, the presence of an outlier indicates
some sort of problem. This can be a case that does not fit the model under study or
an error in measurement. The presence of outlier is extensively discussed in many fields
like network interruption, geographic information systems, clinical trials, voting irregu-
larity analysis, athlete performance analysis, weather predication and other data mining
tasks. For details, one may refer to Ruts and Rousseeuw (1996), Fawcett and Provost
(1997), Johnson et al. (1998), Penny and Jolliffe (2001),Lu et al. (2003), and Acuna
and Rodriguez (2004).

The outlier study is mainly concern to see the impact of outlier on statistical theory as
well as in application and ways to identify it. There are several methods to identify the
outlier. According to Pyle (1999), a value is considered outlier if it is far away from other
values of the same attribute. Barnett and Lewis (1994) first assumed the parameter’s
distribution and type of expected outliers, which is not realistic for real data mining
procedures. The various studies have taken care the impact and way of handling of an
outlier. For details, please refer to Knorr and Ng (1997),Williams and Huang (1997),
DuMouchel and Schonlau (1998), Knorr et al. (2000), Breunig et al. (2000), Jin et al.
(2001), Williams et al. (2002), Hawkins et al. (2002) and Bay and Schwabacher, (2003).

In the field of regression analysis, outlier is not much explored with time series re-
gression. Little efforts have been done by some researchers like McCulloch and Tsay
(1994), who had discussed the estimation of parameters under consideration of outlier.
Billor and Kiral (2008) carried out an attractive comparative Monte Carlo simulation
study to assess the performance of the multiple outlier detection methods and recom-
mended various outlier detection methods in associated conditions. Balke and Fomby
(1994) proposed modified sequential test for detection of outlier and achieved better
power. He also obtained the asymptotic distribution of the test statistic.Deutsch et al.
(1990) , Balke and Fomby (1994) and Tsay (1988) discussed different detection methods
in reference of time series. Chen and Liu (1993) estimated the parameters of ARMA
model with outlier and saw their impact on estimated parameters. It was shown by
Franses and Haldrup (1994) that the presence of outlier affects the limiting distribution
of Dicky and Fuller (1979) test. Shin et al. (1996) discussed it for non-seasonal time-
series, whereas Haldrup et al. (2005) discussed it for seasonal data, which tend to over
reject the unit root hypothesis. Recently, Haldrup et al. (2011) modified the unit root
test for the time series contaminated by additive outlier test proposed by Shin et al.
(1996).Panichkitkosolkul and Niwitpong (2010) also achieved to get improved predictor
using multistep-ahead step prediction in the study of AR(1) time series model context
of unit root.

The present paper considers the Bayesian analysis of AR(1) time series model contam-
inated by additive outlier. As the outlier is the observed value(s), is/are deviated more
from the fitted model. In AR(1) time series model we have two regression parameters,
autoregressive coefficient and intercept term. Obviously the extreme ups and down on
the observation will affect the trend, for which we may fit a time series after adjusting
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the maximum deviated observation (outlier) at which deviation is also maximum in error
variable. In such circumstances maximum error is divided into two part (i) observer er-
ror from the error distribution and (ii) amplitude of outlier. After partitioning the error,
we tested whether the increase in the error is due to the presence of outlier or from the
error distribution. The posterior probabilities are obtained in respect to different setups
of outlier and unit root hypothesis. Using the posterior probabilities, the posterior odds
ratios have been obtained to identify the outlier for a non-stationary and difference sta-
tionary series. A simulation study is carried out to take care of the derived theorems.
It was observed that the outlier has serious impact on the unit root hypothesis and the
posterior distribution has correctly identified the outlier.

2 Model with Intercept Trend and Hypothesis

We consider the time series model

yt = µ+ ut; t=1, 2, 3 . . . T (1)

utis disturbance term and following AR(1) as

ut = ρut−1 + vt (2)

Where vt =

{
εt if t 6= TOUT

λet + εt if t = TOUT
TOUT is the time point at which series is contaminated by additive outlier. Utilizing the
equation (1) and (2) we can write the model

yt = ρyt−1 + (1− ρ)φ+ λet + εt (3)

The time series model (3) is stationary and contaminated by outlier equivalent to the
hypothesis H1 : ρ ∈ S, λ > 0 We may rewrite the model (1) under different setups, such
as series is stationary and not contaminated by outlier which is equivalent to hypothesis
H2 : ρ ∈ S, λ = 0, and the model reduces to

yt = ρyt−1 + (1− ρ)φ+ εt (4)

Similarly, series is difference stationary and not contaminated by additive outlier hy-
pothesis, which is equivalent to H3 : ρ = 1, λ = 0, and the model reduces to

∆yt = εt (5)

3 Prior Distribution

We take the prior distribution of the parameters of the φ ∼ N
(
y0,

1
(1−ρ2)τ

)
λ ∼

N
(
λ0, τ

−1ω
)
p (τ) ∝ 1

τ ; 0 < τ < ∞ p (ρ) = 1
1−a ; a < ρ < 1 The prior odds ra-

tio in favor of H0 is
p(H0)

p(H1)
=

p0

1− p0
(6)
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4 Posterior Probabilities

Let us define the following notations for obtaining the posterior probabilities under
consideration of hypothesis H i; i = 1, 2, 3

I =
[∑T

t=1 e
2
t + 1

ω

]
G (ρ) =

[
T (1− ρ)2 +

(
1− ρ2

)]
J (ρ) =

[
G (ρ)− 1

I

(∑T
t=1 et (1− ρ)

)2
]

φ̂OUT = 1
J(ρ)

[
(1− ρ)

∑T
t=1 (yt − ρyt−1) +

(
1− ρ2

)
y0

−1
I

∑T
t=1 et (1− ρ)

(∑T
t=1 et (yt − ρyt−1) + λ0

ω

)]
K (ρ) =

[∑T
t=1 (yt − ρyt−1)2 +

(
1− ρ2

)
y2

0 +
λ20
ω

−1
I

(∑T
t=1 et (yt − ρyt−1) + λ0

ω

)2
− φ̂2

OUTJ (ρ)

]

H (ρ) =

[
T∑
t=1

(yt − ρyt−1)2 +
(
1− ρ2

)
y2

0 − φ̂2
OUTG (ρ)

]
(7)

Theorem A

The posterior probability under H1, in which series is contaminated by outlier is given
by

P
(
y
∣∣ H1

)
= Γ

(
T

2

)
1

2 (π)
T
2 ω

1
2 (1− a) I

1
2

∫ 1

a

(
1− ρ2

) 1
2

J (ρ)
1
2 K (ρ)

T
2

dρ. (8)

Theorem B

The posterior probability under H2, in which series is not contaminated by outlier is
given as

P
(
y
∣∣H2

)
= Γ

(
T

2

)
1

(π)
T
2 (1− a)

∫ 1

a

(
1− ρ2

) 1
2

G (ρ)
1
2 H (ρ)

T
2

dρ (9)

Theorem C

The posterior probability under H3, where we considered that series contains unit root
and not contaminated by outlier is

P
(
y
∣∣H3

)
= Γ

(
T

2

)
1

(∆yt)
T
2

(10)

Utilizing the theorems A, B, and C, one can test that series is contaminated by outlier
or not, under consideration of series is difference stationary or non stationary.
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5 Numerical Illustration

In this section, we obtained the posterior odds ratio in reference of testing the hypothesis
regarding different issues of stationarity of time series with contamination of additive
outlier. The true model for generated time series of length 40 and intercept term φ=100,
used different combinations of the parameters δ and ρ. We generated the series by the
time series model

yt = ρyt−1 + (1− ρ)φ+ λet + εt (11)

Where εt ∼ N(0, 1) is the disturbance term andet, the amplitude of outlaying observation
existed at time T0. The 500 series generated in different setups of the parameters of
time series are mentioned in the Table 1-4. The posterior probabilities given by equation
numbers (8), (9) and (10) are calculated for the generated series to obtain the following
posterior odds ratios:

1. POR1 H0:ρ = 1, λ = 0, H1:ρ ∈ S, λ = 0, equivalent to series is difference stationary
against the alternative that the series is stationary without consideration of outlier,
which we tested by the posterior odds ratio given below:

βPOR1 =
p0

1− p0

1

(∆yt)
T
2

1
(1−a)

∫ 1
a

(1−ρ2)
1
2

G(ρ)
1
2H(ρ)

T
2
dρ

(12)

2. POR2 H0:ρ = 1, λ = 0, H1:ρ ∈ S, λ > 0 is equivalent to series is difference stationary
and not contaminated by outlier against the alternative that the series is stationary
with consideration of contamination of outlier, we tested by the posterior odds ratio
by

βPOR2 =
p0

1− p0

1

(∆yt)
T
2

1

2ω
1
2 (1−a)I

1
2

∫ 1
a

(1−ρ2)
1
2

J(ρ)
1
2K(ρ)

T
2
dρ

(13)

3. POR3 H0:λ = 0; ρ ∈ S, H1:λ > 0, ρ ∈ S is equivalent to the null hypothesis that
the series is not contaminated by outlier against the alternative that the series is
contaminated by outlier for a stationary series, we can test by

βPOR3 =
p0

1− p0

∫ 1
a

(1−ρ2)
1
2

G(ρ)
1
2H(ρ)

T
2
dρ

1

2ω
1
2 I

1
2

∫ 1
a

(1−ρ2)
1
2

J(ρ)
1
2K(ρ)

T
2
dρ

(14)

The Tables 1-4 provide posterior odds ratio under different setup of parameters of time
series model, the series is generated for λ = -10, -5, 0, 5, 10, ρ=0.90, 0.92, 0.94, 0.96, 0.98
and et=25, 50, 75, 100. The null hypothesis H1 that the series is difference stationary
against the alternative that the series is stationary without consideration of outlier is
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accepted for all setups. In testing the hypothesis H2 that the series is difference sta-
tionary, where outlier is not taken into account against the alternative that the series is
stationary with consideration of contamination of outlier is rejected for different setups
except for λ=0, where true series is not contaminated by outlier. In null Hypothesis
H3, under stationary model of time series, it is tested that series is not contaminated by
outlier against the alternative that it is contaminated by outlier under consideration of
non-stationary series. This may be transferred in a stationary series from the mean of
the series and reject the null hypothesis except for the true model. The POR3 correctly
specified the model in all numerical setups.

We found that the unit root hypothesis for all the cases is accepted if outlier is not taken
into account and the null hypothesis is rejected at all setups except the true model is
not contaminated by outlier. It is also observed that if a series, which is contaminated
by additive outlier is not taken into account; the unit root hypothesis may be reversed.
For the real data, first identify the time point at which an observed value deviating
maximum. Using POR3 test that this is an outlier or not and then proceed to test the
stationarity of the time series. As present study shows that if outlier is not taken into
account in the series a non-stationary series may be concluded as difference stationary.
In this situation the autoregressive parameter will also be over estimated.

Table 1

λ et=25

ρ 0.9 0.92 0.94 0.96 0.98

-10 POR1 2.9829 3.9437 4.9055 4.6343 6.0076

POR2 1.08E-52 5.90E-53 1.23E-52 1.23E-51 2.69E-55

POR3 6.07E-53 4.72E-54 4.23E-53 2.19E-52 4.80E-56

-5 POR1 2.9641 3.942 4.8868 4.6038 6.0196

POR2 1.31E-36 6.67E-37 1.39E-31 1.21E-27 1.81E-38

POR3 7.35E-37 5.58E-38 4.83E-32 2.89E-28 2.38E-39

0 POR3 24 22.991 12.228 7.1103 20.791

5 POR1 3.2497 3.888 4.8586 4.7891 6.6476

POR2 3.42E-38 6.30E-36 3.63E-38 3.19E-29 6.85E-34

POR3 1.38E-38 2.21E-36 1.12E-38 5.48E-30 9.87E-35

10 POR1 3.2515 3.4855 4.3044 6.1457 6.0871

POR2 1.58E-54 9.45E-53 3.22E-55 7.39E-55 7.10E-55

POR3 6.97E-55 2.21E-53 7.42E-56 8.30E-56 1.28E-55
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Table 2

λ et= 50

ρ 0.9 0.92 0.94 0.96 0.98

-10 POR1 3.2276 3.5134 4.2974 6.0757 6.0668

POR2 1.03E-50 9.83E-51 1.78E-52 1.15E-48 1.83E-49

POR3 3.50E-51 4.63E-51 5.43E-53 1.70E-49 3.05E-50

-5 POR1 3.2329 3.5074 4.2998 6.0906 6.0736

POR2 4.31E-64 1.72E-62 5.24E-60 1.05E-61 8.22E-60

POR3 1.46E-64 6.29E-63 5.80E-61 1.73E-62 1.52E-60

0 POR3 31.292 5.429 8.6688 22.182 20.374

5 POR1 3.0145 3.9428 4.9424 4.658 5.9756

POR2 1.83E-49 1.21E-51 9.27E-48 4.00E-40 6.44E-52

POR3 4.64E-50 7.63E-52 2.04E-48 1.01E-40 1.25E-52

10 POR1 3.0074 3.9437 4.9327 4.6558 5.9849

POR2 8.53E-63 1.05E-63 4.30E-63 2.27E-62 2.02E-63

POR3 3.31E-63 3.00E-64 1.44E-63 5.42E-63 5.33E-64

Table 3

Λ et =75

ρ 0.9 0.92 0.94 0.96 0.98

-10 POR1 3.3532 3.871 4.8595 4.8587 6.7184

POR2 7.15E-57 2.44E-54 6.67E-55 1.65E-53 1.42E-52

POR3 2.32E-57 1.03E-54 1.15E-55 3.24E-54 7.60E-54

-5 POR1 3.3372 3.8749 4.859 4.8514 6.7155

POR2 1.58E-63 2.56E-60 6.55E-63 2.86E-61 4.05E-60

POR3 6.70E-64 3.41E-61 1.90E-63 2.20E-62 5.31E-61

0 POR3 0.28614 22.554 13.166 0.02876 1.9896

5 POR1 3.2484 3.4906 4.3036 6.1369 6.0855

POR2 4.02E-55 5.75E-54 5.70E-57 1.72E-53 1.49E-56

POR3 1.48E-55 1.65E-54 1.86E-57 6.26E-55 2.65E-57

10 POR1 3.2429 3.4959 4.3028 6.1205 6.0816

POR2 8.42E-66 7.36E-64 3.73E-60 3.67E-60 2.42E-60

POR3 3.83E-66 2.82E-64 4.07E-61 6.13E-61 4.37E-61
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Table 4

λ et=100

ρ 0.9 0.92 0.94 0.96 0.98

-10 POR1 2.9909 3.9443 4.915 4.6399 6.0011

POR2 4.85E-59 3.14E-59 1.35E-54 1.57E-50 4.36E-61

POR3 2.73E-59 3.00E-60 4.64E-55 2.78E-51 8.28E-62

-5 POR1 2.8356 3.8105 4.6669 5.2829 6.9437

POR2 3.52E-66 2.14E-53 3.53E-63 1.47E-65 8.73E-52

POR3 5.85E-67 7.24E-54 1.06E-63 2.94E-66 1.11E-52

0 POR3 10.41 5.199 27.677 41.432 18.541

5 POR1 3.3047 3.8813 4.8601 4.8307 6.6958

POR2 1.46E-57 1.10E-57 1.70E-59 8.15E-52 7.88E-56

POR3 5.55E-58 1.60E-58 1.15E-60 1.49E-52 1.13E-56

10 POR1 3.0036 3.9439 4.9282 4.6532 5.9891

POR2 3.27E-66 3.45E-66 3.09E-64 5.97E-65 1.88E-65

POR3 1.29E-66 1.26E-66 1.01E-64 1.64E-65 4.80E-66
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