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Abstract: The major problem in Bayesian analysis is the choice of prior for the 
specified model. In the current study, the motivation is the comparsion of the 
informative priors for the mixture of Laplace distribution under different loss 
functions. A prior is selected based on the minimum posterior risks criteria where 
Bayes estimates and posterior risk are evaluated using the square error loss 
function, the precautionary loss function, the weighted squared error loss 
function and the modified (quadratic) squared error loss function. Bayes 
estimates and respective posterior risks are evaluated in terms of sample size, 
censoring rate and proportion of the component of the mixture using Levy and 
Gumbel Type-II informative priors. Limiting expressions for the complete sample 
are also derived. A real-life mixture data application has been discussed. The 
Elicitation of hyperparameters of mixture through prior predictive approach has 
also argued. 
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1. Introduction 
 
In our daily life it is very difficult to find homogenous life time data in real life so instead of 
simple model we will prefer a mixture of a family of life time distributions.  A finite mixture of 
some appropriate probability distribution is recommended to study a population that is supposed 
to comprise a number of subpopulations mixed in an unknown proportion. A population of 
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lifetimes of certain electrical elements may be divided into a number of subpopulations 
depending upon the possible cause of failure. Mixture models have been used in the physical, 
chemical, social science, biological and other fields. As examples, Harris [19] applied mixture 
distributions to modeling crime and justice data and Kanji [25] described wind shear data using 
mixture distributions. 
 
For many years the Laplace distribution was a popular topic in probability theory due to 
simplicity of its characteristics function and density, the curious phenomenon that a random 
variable with only slight different characteristics function loses the simplicity of the density 
function and other numerous attractive probabilistic features enjoyed by this distribution. 
Censoring is imperative trait of the lifetime data because most of the times it is not possible to 
continue the experiment until the last observation in order to obtain a complete data set, i.e. a 
data set with exact life times of all the objects. Romeu [33] and Gijbels [17] have given an 
account of censoring.  
 
In the last few decades with the advent of numerous computational methods, there has been a 
growing interest in the construction of flexible parametric classes of probability distributions in 
the Bayesian as compared to Classical approach. The aim of the present study is to investigate 
the heterogeneous population using the two-component Mixture of Laplace probability 
distribution using informative priors when data is censored and can be used to model various real 
world problems. Different aspects of Mixture of Laplace distribution have been considered 
before in literature by various authors like [1-3, 6, 10-14, 20, 22-26, 29-30, 34, 37]. 
 
The sequence of this paper is as follows. Section 2 introduces the Laplace mixture model, and its 
likelihood is developed in the Section 3. In Section 4, posterior distributions assuming 
informative priors are discussed. The Bayes estimators and their posterior risk under different 
loss functions are derived and discussed in Section 5. Posterior predictive distribution and 
predictive intervals are derived in the Section 6, while Section 7 deals with the method of 
Elicitation of hyperparameter for the mixture of Laplace distribution via prior predictive 
approach. Limiting expressions of these estimates and their posterior risk are presented in 
Section 8. A simulation study is performed in the Section 9 and a real life data for illustration 
purpose is discussed in the Section 10 for the evaluation of proposed method. The model 
comparison approach for the choice of prior is discussed in the Section 11. Some concluding 
remarks and future research proposal are given in the last Section 12. 
 
 
 
2. The Population and the Model 
 
A finite mixture distribution function with the two component densities of specified parametric 
form with unknown mixing weights (p, q=1-p) is defined as follows: 
 
f (x) = pf1(x)+ (1− p) f2 (x), 0 < p <1.        (1) 
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The following Laplace distribution is assumed for both components of the mixture with location 
parameter zero: 
 

1( ) exp , 0, 1,2; .
2i i

i i

x
f x i x

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − > = −∞ < < ∞λ
λ λ

 

So the mixture model (1) takes the following form: 
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The graph of mixture density with different parameter values as follows: 
 

 
Figure 1. PDF of Mixture Density. 

 
and the corresponding mixture cumulative distribution function is given by: 
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3. Sampling 
 
Suppose n units from the above mixture model are engaged to a life testing experiment with a 
fixed test extinction timeT . Let the test be conducted and it is observed that out of n , r units failed 
until the test termination time T is over and the remaining n r−  units are still functioning. As 
described in Mendenhall and Hader [28] and Ali et al. [1], in many real life situations only the 
failed objects can easily be identified as member of either subpopulation 1 or subpopulation 2. 
Hence, depending upon the cause of failure, it may be observed that 1r and 2r failures are from the 
first and the second subpopulation, respectively. Obviously the remaining n r− censored objects 
provide no information about the subpopulation to which they belong, and 1 2r r r= + is the number 
of uncensored observations. For example, an engineer may categorize a failed electronic object 
as a member of the first or the second subpopulation based on the reason of its failure because he 
knows whether this component failed due to electricity shock or has some other manufacture 
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problem based on his experience. Let we define, ijx  as the failure time of the jth unit belonging to 

the ith subpopulation, where 1,2,3,..., ,  1,2,ij r i= = ijx T≤ . 
 
3.1 The Likelihood Function 
The likelihood function for the above situation is: 
 

( ) ( ) ( ) { }1 2 -
1 2 1 1 2 2

1 1
, , |   (1 ( )) .

rr n r
j j

j j
L p p f x q f x F T
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where ( )11 12 1 21 221 2, ,....., , , ,....., 2x x x x x xr r=x  are the observed failure times for the non-censored 
observations. Since T should be positive, so further we are assuming positive side of Laplace 
model. 
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After simplifications, the above equation can be represented as:  
 

L(λ1,λ2 , p | x)∝ n− r
m

#

$
%

&

'
(

m=0

n−r
∑ p(n−r2−m)q(r2+m) 1

λ1

#

$
%%

&

'
((

r1 1
λ2

#

$
%%

&

'
((

r2

e
−

1
λ1

x1 j +(n−r−m)T
j=1

r1
∑
*

+

,
,

-

.

/
/

e
−

1
λ2

x2 j +mT
j=1

r2
∑
*

+

,
,

-

.

/
/

   (2) 
 
 
4. Posterior Distributions assuming Informative Priors 
 
In case of an informative prior, the use of prior information is equivalent to adding a number of 
observations to a given sample size, and therefore leads to a reduction of the variance/posterior 
risk of the Bayes estimates. We used the Levy and Gumbel Type-II informative priors for 
analysis. 
 
 
4.1 Posterior Distribution using the Inverse Levy Prior (LP) 
Suppose 1 1 2 2~ ~( ), ( )Levy b Levy bλ λ and ~ (0,1)p U , also assuming independence, we have a joint 

prior distribution 
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2λ and ‘p’. The joint posterior distribution of 1λ , 2λ and ‘p’ is as following: 
 

( ) ( )
[ ] [ ]

2 2 1 2

1 1 1 1
( ) ( )

1 2
0 1 2

1 1( , , | ) , 0, 1,2,0 1.
A Bn r C D

n r m r m
i

m

n r
h p p q e e i p

m
λ λλ λ λ

λ λ

+ +
− − −

− − +

=

− ⎛ ⎞ ⎛ ⎞⎛ ⎞
∝ > = < <⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑x  

 



Choice of suitable informative prior for the scale parameter of the mixture of Laplace distribution 

36 

The marginal distributions are given in equations (3-5) below: 
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and 
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where A, B, C, D, E and F are defined as: 
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4.2 Posterior Distribution using the Gumbel Type-II Prior 
Suppose 1 3~ (1, )GumbelType II bλ − 2 4, ~ (1, )GumbelType II bλ − and ~ (0,1).p U Assuming 

independence, we have a joint prior
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, which is combined with 

the likelihood function to get a joint posterior distribution of 1λ , 2λ and p. The joint posterior 
distribution of 1λ , 2λ and ‘p’ is as following: 
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The marginal distribution of each parameter is obtained in equations (6-8) as below: 
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h(λ2 | x) = K −1 n− r
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and 
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5. Bayes Estimators and Posterior Risks under Different Loss Functions 
 
The Bayes estimators are evaluated under squared error loss function (SELF), weighted squared 
error loss function (WSELF) and modified (quadratic) squared error loss function (M/QSELF). 
Since this is a symmetrical loss function that assigns equal losses to overestimation and 
underestimation and it is often used because it does not lead to extensive numerical computation. 
Norstrom [31] introduced an alternative asymmetric precautionary loss function, which 
approaches infinity near the origin to prevent underestimation, thus giving conservative 
estimators especially when underestimation may lead to serious consequence. Following table 1, 
shows general form of Bayes estimators under different loss functions with their respective 
posterior risk. 
 

Table 1. Bayes Estimators (BE) and Posterior Risk of different Loss Functions. 
Loss Function 

Name Mathematical Form Bayes Estimator Posterior Risk 
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5.1 Bayes Estimators Using the LP 
Taking expectation of each parameter with respect to its marginal distributions gives the Bayes 
estimator of the parameters. The Bayes estimators of 1λ , 2λ and ‘p’ assuming the Levy prior are 
given as follows: 
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respectively. Following are the Bayes Estimates of 1λ , 2λ and ‘p’ assuming under MSELF: 
 

E(λ1
−1 | x) = F −1 n− r

m

"

#
$

%

&
'

m=0

n−r

∑ E Γ(A+1)Γ(B) / C A+1DB( )( )       (9) 

 
 

E(λ1
−2 | x) = F −1 n− r

m

"

#
$

%

&
'

m=0

n−r

∑ E Γ(A+ 2)Γ(B) / C A+2DB( )( )
      (10) 

 
dividing equation (9) by (10) we get Bayes Estimate of 1λ . 
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dividing equation (11) by (12) we get Bayes Estimate of 2λ . 
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and for ‘p’ mixing component: 
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dividing equation (13) by (14) we get Bayes Estimate of ‘p’. 
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respectively, where A, B, C, D, E and F are defined above. The Bayes estimators under WSELF 
and precautionary loss function can be evaluated using above two loss function equations. 
 
5.2 Posterior Risk (PR) using the Levy Prior 
The posterior risk of the Bayes estimators of 1λ , 2λ and p using the Levy prior are given as: 
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respectively. The PR under 

WSELF and precautionary loss function can be evaluated using above two loss function 
equations. 
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5.3 Bayes Estimators using the Gumbel Type-II Prior 
The Bayes estimators of 1λ , 2λ and p assuming the Gumbel Type-II prior are given as follow: 
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respectively. Following are the Bayes Estimates of 1λ , 2λ and p assuming MSELF: 
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dividing equation (15) by (16) we get Bayes Estimate of 1λ . 
 

( )( )

( )( )

1

0*
1

2

0

( 1) ( ) /

( 2) ( ) /

n r
G H

m

n r
G H

m

n r
E G H I J

m
d

n r
E G H I J

m

−
+

=

−
+

=

−⎛ ⎞
Γ + Γ⎜ ⎟

⎝ ⎠=
−⎛ ⎞

Γ + Γ⎜ ⎟
⎝ ⎠

∑

∑
 

 

E(λ2
−1 | x) = K −1 n− r

m

"

#
$

%

&
'

m=0

n−r

∑ E Γ(G)Γ(H +1) / I GJ H+1( )( )       (17)
 

 

E(λ2
−2 | x) = K −1 n− r

m

"

#
$

%

&
'

m=0

n−r

∑ E Γ(G)Γ(H + 2) / I GJ H+2( )( )       (18)
 

 
dividing equation (17) by (18) we get Bayes Estimate of 2λ . 
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and for ‘p’ mixing component: 
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dividing equation (19) by (20) we get Bayes Estimate of ‘p’. 
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respectively, where A, B, C, D, E and G are defined above. Similarly the Bayes Estimators under 
precautionary and WSELF can be evaluated using above two loss function Bayes Estimators 
equations. 
 
5.4 Posterior Risk using the Gumbel  Type-II Prior 
The posterior risk of the BEs under SELF of 1λ , 2λ and p using the Gumbel Type-II prior are 
given as: 
 

( ) ( ){ }21 ( 2)
1 1

0
( | ) ( 2) ( ) / |

n r G H

m

n r
Var K E G H I J E

m
λ λ

−
− −

=

−⎛ ⎞
= Γ − Γ −∑ ⎜ ⎟

⎝ ⎠
x x

 
 

( ) ( ){ }21 ( 2)
2 2

0
( | ) ( ) ( 2) / |

n r G H

m

n r
Var K E G H I J E

m
λ λ

−
− −

=

−⎛ ⎞
= Γ Γ − −∑ ⎜ ⎟

⎝ ⎠
x x

 
 
and 
 

( ) { }21
2 2

0
( | ) ( 3, 1) ( ) ( ) / ( | )

n r G H

m

n r
Var p K n r m r m G H I J E p

m
β

−
−

=

−⎛ ⎞
= − − + + + Γ Γ −∑ ⎜ ⎟

⎝ ⎠
x x

 
 
respectively.  
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6. Predictive Distribution  
	  
The posterior distributions of the parameters 1λ , 2λ and p given the data, likelihood and prior are 
recapitulate to have Bayes estimates of the parameters. The predictive distribution contains the 
information about the independent future random observation given the preceding observations. 
Bansal [7] has given a great detailed discussion about the posterior predictive distribution. 
	  
6.1 Predictive Distribution Intervals using the Levy Prior 
The posterior predictive distribution of the future observation y= ( 1)nx +  is: 
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is the joint posterior distribution obtained by incorporating the Levy prior with the likelihood 
given by equation (2). The posterior predictive distribution of the future observation “y” is: 
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where 
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F

Z = . 
A (1-α) 100% Bayesian interval (L, U) can be obtained by solving the following two equations 
simultaneously: 
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which further can be expressed as: 
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and 
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respectively. These posterior predictive intervals can be evaluated for a number of combinations 
of the hyperparameters which help us to determine a range of hyper-parameters that may lead to 
informative Bayes estimates having smaller variances than the non-informative Bayes estimates. 
Saleem and Aslam [35] and Saleem et al. [36] used predictive intervals for the Rayleigh mixture 
to discuss precision of Bayes estimates in terms of hyper-parameters.  
	  
6.2 Predictive Distribution Intervals using the Gumbel Type-II Prior 
The posterior predictive distribution of the future observation “y” is: 
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respectively.   
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7. Elicitation 
	  
Elicitation is a system of extracting professional knowledge about some unknown measure of 
interest, or the probability of some prospect event, which can then be used to enrichment any 
numerical data that we may have. If the expert in question does not have a statistical background 
as is often the case, translating their beliefs into a statistical form suitable for use in our analyses 
can be a challenging task (see Dey [15]). 
 
Prior elicitation is an important and yet under researched element of Bayesian statistics because 
we first have to decide prior distribution type and then parameters value.  In any statistical 
analysis there will typically be some form of background knowledge available in addition to the 
data at hand.  For example, suppose we are investigating the average lifetime of a component. 
We can do tests on a sample of components to learn about their average lifetime, but the 
designer/engineer of the component may have their own expectations about its performance. 
There are various methods available in literature for detail see [5, 8, 16, 21, and 32] and 
references cited therein. 
	  
7.1 Hyperparameter(s) Elicitation 
Hyperparameter elicitation from the prior g(λ ) directly is conceptually difficult. The consensus 
of opinion amongst researchers is now to elicit expert knowledge about hyperparameters from 
observable quantities only. In fact prior predictive distribution removes the uncertainty in 
parameter (s) and reveals a distribution for the data point only. This superior approach is 
achievable by specifying summary features of the prior predictive density (mass) function

( ) ( | ) ( )f x f x g dλ λ λ
∞

−∞

= ∫ , which describes the probability distribution of the random variables X 

without conditioning on the parameter(s) g(λ ), yet is still a function of the unknown 
hyperparameters. The moments (mean, variance . . .) are unreasonable summary features of f(x), 
as they are based on the non-trivial concept of mathematical expectation. The mode (most likely 
value) is perhaps the obvious summary feature, though ambiguity arises if the maximum is at an 
endpoint. Furthermore, the mode's extensions to relative likelihoods are not usually amenable for 
analysis. Perhaps the best summary features are quantiles or cumulative probabilities.  
 
To determine (elicit) a prior density, Aslam [4] extend some new methods base on the prior 
predictive distribution. In his paper, he uses prior predictive probabilities, predictive mode and 
confidence level for eliciting the hyperparameters. The following method of elicitation is used in 
this study for determining hyperparameters of informative prior. 
	  
7.2 Method of Elicitation through Prior Predictive Probabilities Approach	  
In fact, prior predictive removes the uncertainty in parameter (s) to reveal a distribution for the 
data point only. We suppose that prior predictive probabilities satisfy the laws of probability 
because this law ensure the expert would be consistent in eliciting the probabilities and some 
inconsistencies may arise which are not very serious. 
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A function ( )1 2,a aψ  is defined in such a way that the hyperparameters 1 2a and a  are to be chosen 

by minimizing this function ( ) ( ) ( )
( )1 2

2
0

1 2
,

, min
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p y p y
p y

a aψ ⎧ ⎫−⎪ ⎪∑ ⎨ ⎬
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= , where ( )p y  denote the prior predictive 

probabilities characterized by the hyperparameters 1a  and 2a  and ( )0p y  denote the elicited prior 
predictive probabilities. The above equations solved simultaneously by applying ‘PROC 
SYSLIN’ of the SAS package for eliciting the required hyperparameters.  
	  
7.2.1 Elicitation through Prior Predictive Approach when Prior is Levy 
The equation of prior predictive using the Inverse Chi-Squared prior is: 
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So simplified form of above equation is: 
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we get the following hyper-parameters values 1 0.105369b = and 2 3.296676b = .  
	  
7.2.2 Elicitation through Prior Predictive Approach when Prior is GTII 
The equation of prior predictive using the Gumbel Type-II prior is: 
 

( ) ( )

1
1 1

3 4

1 1 2 200 0 0

2 2

3 4
1 2

1 1 2 2

1( ) exp exp2

1 1exp exp

k k

k

y yb b p qf y
k

b b d d dp

λ λ λ λ

λ λλ λ λ λ

−
∞∞

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − −∑∫ ∫ ∫

− −

 

 
Which simplifies that: 
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we get the following hyper-parameters values 3 0.170230b = and 4 2.066578b = .  
 
 
8. Limiting Expressions for Complete Data Set 
 
Suppose T → ∞  i.e. all observations that are incorporated in our analysis are uncensored, and 
therefore r  tends to n , 1r  tends to unknown 1n  and 2r  tends to unknown 2n . As a result, the 
amount of information contained in the sample is increasing, which consequently results in the 
reduction of the variances of the estimates. Following table 2, contains the limiting expressions 
for complete data set. 
 
 

Table 2. The limiting expressions for the BE (LP, GTP) and Variance (LP, GTP) as T → ∞ . 
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9. Simulation Study 
 
A simulation study was carried out in order to scrutinize the performance of the Bayes estimators 
and the impact of sample size and censoring rate in the fit of the model. Samples of sizes n=25, 
100, 500 and 1000 were generated from the two component mixture of the Laplace distribution 
(location parameter considering zero) with parameters, 1λ , 2λ and p such that ( ) ( ) ( ){ }1 2, 0.5,1 , 3,4λ λ ∈

and { }0.30,0.40,0.60p∈ . 
 
Probabilistic mixing was used here to generate the mixture data.  For each observation a random 
number ‘u’ was generated from the uniform on (0, 1) distribution. If ‘u<p’, the observation was 
taken randomly from 1F (the Laplace distribution with parameter 1λ ) and if ‘u>p’, the observation 
was taken randomly from 2F  (the Laplace distribution with parameter 2λ ). 
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Right censoring was carried out using a fixed censoring time T. All observations that were 
greater than T were declared as censored ones. The choice of the censoring time, in each case, 
was made in such a way that the censoring rate in resulting sample was to be approximately 15% 
to 30%. For each of the combinations of parameters, sample size, censoring rate, 5000 sample 
were generated. In each case, only failures were identified to be a member of either 
subpopulation-1 or subpopulation-2 of the mixture. For each of the 5000 samples, the Bayes 
estimates were computed and the average of the 5000 estimate is presented in Tables 3-7. 
 
Extensive tables are available upon request from the corresponding author for above mentioned 
mixing component values. Here we will present only tables for mixing component p=0.60. The 
general findings are: (i) the posterior risk of the estimates reduces as the sample size increases; 
(ii) as a result of censoring, the 𝜆 parameter and proportion parameter is over-estimated when

1 2λ λ< , but when 1 2λ λ=  the parameters are either over or under -estimated and proportion 
parameter in few cases is also under-estimated. 
 
 

Table 3. BEs using LP, GTIIP and PRs in parentheses when p=0.60 under 1L . 
Prior LP GTIIP 
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 

n T=1, λ1=0.5, λ2=1.0 
25 0.508386 

(0.041251) 
1.537960 
(0.534699) 

0.595883 
(0.012235) 

0.493542 
(0.037047) 

1.488890 
(0.530467) 

0.598389 
(0.012133) 

50 0.498789 
(0.020989) 

1.139700 
(0.150044) 

0.591047 
(0.007016) 

0.498976 
(0.019663) 

1.135890 
(0.149454) 

0.598086 
(0.006942) 

100 0.501151 
(0.012313) 

1.114850 
(0.086039) 

0.597290 
(0.004153) 

0.495988 
(0.011835) 

1.114700 
(0.082754) 

0.595962 
(0.004108) 

500 0.500435 
(0.003019) 

1.018933 
(0.017143) 

0.600899 
(0.001021) 

0.499159 
(0.002982) 

1.019790 
(0.016957) 

0.600502 
(0.001015) 

1000 0.500949 
(0.001576) 

1.005264 
(0.008631) 

0.600368 
(0.000513) 

0.500286 
(0.001566) 

1.005764 
(0.008583) 

0.600158 
(0.000508) 

λ1, λ2 T=6, λ1=3.0, λ2=4.0 
n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 
25 3.025460 

(1.269692) 
4.316770 
(4.263897) 

0.598738 
(0.011155) 

2.981300 
(1.152665) 

4.098980 
(3.634163) 

0.587400 
(0.011154) 

50 3.021990 
(0.664566) 

4.295840 
(1.891769) 

0.594805 
(0.006383) 

2.997084 
(0.637340) 

4.085688 
(1.761677) 

0.595008 
(0.006309) 

100 3.021140 
(0.386853) 

4.114360 
(1.140642) 

0.599160 
(0.003680) 

2.996570 
(0.370708) 

4.057780 
(1.103921) 

0.599349 
(0.003686) 

500 3.024388 
(0.089910) 

4.040885 
(0.259025) 

0.599961 
(0.000875) 

3.019689 
(0.089782) 

4.029402 
(0.257821) 

0.600020 
(0.000877) 

1000 3.011235 
(0.046229) 

4.008492 
(0.131658) 

0.599578 
(0.000451) 

3.008902 
(0.046203) 

4.002816 
(0.131389) 

0.599608 
(0.000451) 
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Table 4. BEs using LP, GTIIP and PRs in parentheses when p=0.60 and both parameters 
of mixture are assumed same under 1L . 

Prior LP GTIIP 
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 

n T=1, λ1=0.5, λ2=0.5 
25 0.494288 

(0.023977) 
0.772573 
(0.062169) 

0.587776 
(0.010124) 

0.483523 
(0.021553) 

0.782578 
(0.059785) 

0.585625 
(0.010078) 

50 0.496126 
(0.014175) 

0.712744 
(0.036190) 

0.597338 
(0.005861) 

0.495255 
(0.013290) 

0.722999 
(0.034852) 

0.597117 
(0.005823) 

100 0.496814 
(0.007438) 

0.588154 
(0.015296) 

0.598067 
(0.003131) 

0.496244 
(0.007169) 

0.596850 
(0.015110) 

0.597890 
(0.003118) 

500 0.527938 
(0.001883) 

0.528540 
(0.002925) 

0.602188 
(0.000683) 

0.498213 
(0.001882) 

0.525737 
(0.002556) 

0.611344 
(0.000657) 

1000 0.494743 
(0.000950) 

0.512639 
(0.001837) 

0.597077 
(0.000368) 

0.493797 
(0.000946) 

0.514151 
(0.001808) 

0.596717 
(0.000367) 

λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 
n T=1, λ1=1.0, λ2=1.0 
25 0.992102 

(0.232703) 
1.900970 
(1.001083) 

0.592008 
(0.019009) 

0.986245 
(0.196151) 

1.842960 
(0.926908) 

0.605186 
(0.018754) 

50 0.998467 
(0.101707) 

1.381690 
(0.232813) 

0.591908 
(0.011833) 

0.985518 
(0.093067) 

1.382730 
(0.282348) 

0.596406 
(0.011668) 

100 0.998722 
(0.055439) 

1.312620 
(0.178549) 

0.594207 
(0.008170) 

0.998519 
(0.062438) 

1.319560 
(0.172021) 

0.597454 
(0.008088) 

500 0.994885 
(0.021164) 

1.084057 
(0.046237) 

0.598047 
(0.002803) 

0.992617 
(0.020970) 

1.089610 
(0.045931) 

0.597881 
(0.002799) 

1000 0.996734 
(0.012170) 

1.052970 
(0.026342) 

0.598207 
(0.001628) 

0.996389 
(0.012121) 

1.056363 
(0.026271) 

0.598724 
(0.001628) 

λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 
n T=6, λ1=3.0, λ2=3.0 
25 2.990792 

(1.034421) 
3.293300 
(2.120675) 

0.597720 
(0.010246) 

2.980434 
(0.933457) 

3.157930 
(1.849078) 

0.587714 
(0.010210) 

50 2.996737 
(0.590415) 

3.146315 
(1.338092) 

0.590049 
(0.006001) 

2.991655 
(0.564636) 

3.383260 
(1.251652) 

0.590193 
(0.006003) 

100 2.993837 
(0.289712) 

3.097310 
(0.553571) 

0.591819 
(0.003152) 

2.991393 
(0.283712) 

3.106270 
(0.537189) 

0.591951 
(0.003147) 

500 2.997033 
(0.066291) 

3.039416 
(0.126781) 

0.598213 
(0.000715) 

2.996579 
(0.066066) 

3.031977 
(0.126101) 

0.598275 
(0.000706) 

1000 2.993823 
(0.034431) 

3.014454 
(0.064948) 

0.599192 
(0.000363) 

2.991587 
(0.034374) 

3.010674 
(0.064778) 

0.599229 
(0.000357) 

λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 
n T=6, λ1=4.0, λ2=4.0 
25 3.962822 

(2.079020) 
4.602730 
(5.303277) 

0.597444 
(0.012291) 

3.988300 
(1.876063) 

4.365150 
(4.536665) 

0.587454 
(0.011469) 

50 3.990070 
(1.398641) 

4.280470 
(2.680277) 

0.597333 
(0.007707) 

3.991566 
(1.337707) 

4.162480 
(2.506060) 

0.597865 
(0.007665) 

100 3.998394 
(0.716908) 

4.233242 
(1.560137) 

0.598864 
(0.004528) 

3.998073 
(0.705243) 

4.266590 
(1.513910) 

0.598121 
(0.004525) 

500 3.996185 
(0.184342) 

4.121362 
(0.375143) 

0.595869 
(0.001159) 

3.995674 
(0.184108) 

4.106422 
(0.373610) 

0.596093 
(0.001162) 

1000 3.997717 
(0.095801) 

4.019819 
(0.190346) 

0.598833 
(0.000605) 

3.995430 
(0.095747) 

4.012078 
(0.189967) 

0.598969 
(0.000604) 
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Table 5. BEs using LP, GTIIP and PRs in parentheses when p=0.60 under 2L . 
Prior LP GTIIP 
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 

n T=1, λ1=0.5, λ2=1.0 
25 0.490132 

(0.118653) 
1.012540 
(0.183820) 

0.593267 
(0.041993) 

0.483382 
(0.113511) 

1.018950 
(0.168256) 

0.573446 
(0.042000) 

50 0.492714 
(0.072074) 

0.998844 
(0.113217) 

0.595690 
(0.022027) 

0.492162 
(0.069915) 

0.990951 
(0.106117) 

0.584231 
(0.021918) 

100 0.495707 
(0.044268) 

0.995205 
(0.071402) 

0.593128 
(0.012067) 

0.495317 
(0.043395) 

0.997107 
(0.068291) 

0.591824 
(0.011987) 

500 0.498817 
(0.011594) 

0.994444 
(0.017366) 

0.597510 
(0.002825) 

0.497651 
(0.011513) 

0.995728 
(0.017127) 

0.597129 
(0.002813) 

1000 0.494792 
(0.006137) 

0.997787 
(0.008815) 

0.598606 
(0.001400) 

0.494162 
(0.006113) 

0.998414 
(0.008750) 

0.598400 
(0.001401) 

λ1, λ2 T=6, λ1=3.0, λ2=4.0 
n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 
25 3.364490 

(0.113412) 
4.192420 
(0.173471) 

0.594373 
(0.039215) 

 3.291370 
(0.111486) 

4.582030 
(0.167498) 

0.584341 
(0.039154) 

50 3.162681 
(0.067374) 

4.141400 
(0.109150) 

0.597171 
(0.018265) 

3.258430 
(0.067052) 

4.307221 
(0.107522) 

0.587127 
(0.019036) 

100 3.078474 
(0.039117) 

4.058852 
(0.066935) 

0.596413 
(0.010680) 

3.176188 
(0.039159) 

4.154107 
(0.066689) 

0.596547 
(0.010492) 

500 2.995574 
(0.009708) 

3.991209 
(0.016114) 

0.597022 
(0.002360) 

3.096865 
(0.009717) 

4.009822 
(0.016133) 

0.597075 
(0.002425) 

1000 2.990711 
(0.005018) 

3.992464 
(0.008308) 

0.598068 
(0.001226) 

2.997836 
(0.005019) 

3.996826 
(0.008304) 

0.598096 
(0.001236) 

 
Table 6. BEs using LP, GTIIP and PRs in parentheses when p=0.60 under 3L . 

Prior LP GTIIP 
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 

n T=1, λ1=0.5, λ2=1.0 
25 0.464254 

(0.065731) 
1.240590 
(0.297376) 

0.596344 
(0.022489) 

0.472443 
(0.061069 

1.225070 
(0.263822) 

0.576153 
(0.022367) 

50 0.491151 
(0.037638) 

1.013600 
(0.126104) 

0.597873 
(0.012208) 

0.495386 
(0.035900) 

1.017840 
(0.118404) 

0.587674 
(0.012211) 

100 0.497825 
(0.022901) 

1.039420 
(0.075425) 

0.590250 
(0.007040) 

0.493755 
(0.022233) 

1.042260 
(0.072440) 

0.598884 
(0.006978) 

500 0.494551 
(0.005884) 

1.001843 
(0.017091) 

0.599202 
(0.001696) 

0.493331 
(0.005828) 

1.002906 
(0.016884) 

0.598814 
(0.001688) 

1000 0.497847 
(0.003101) 

0.996582 
(0.008682) 

0.599486 
(0.000882) 

0.497201 
(0.003085) 

0.997139 
(0.008625) 

0.599278 
(0.000880) 

λ1, λ2 T=6, λ1=3.0, λ2=4.0 
n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 
25 2.966660 

(0.358498) 
3.975330 
(0.778844) 

0.596648 
(0.020338) 

2.978880 
(0.339422) 

4.387740 
(0.711244) 

0.595662 
(0.020408) 

50 2.981658 
(0.205415) 

4.052629 
(0.432112) 

0.593536 
(0.010269) 

2.997700 
(0.200795) 

4.234430 
(0.414546) 

0.598368 
(0.011111) 

100 2.990052 
(0.120628) 

4.084595 
(0.268417) 

0.592864 
(0.006197) 

2.998768 
(0.119727) 

4.179409 
(0.263692) 

0.593025 
(0.006123) 

500 2.994864 
(0.029524) 

3.997656 
(0.064320) 

0.598495 
(0.001366) 

2.990160 
(0.029429) 

4.019659 
(0.064210) 

0.598551 
(0.001369) 

1000 2.995942 
(0.015293) 

3.997553 
(0.031960) 

0.598824 
(0.000754) 

2.993603 
(0.015228) 

3.996875 
(0.032041) 

0.598852 
(0.000754) 



Choice of suitable informative prior for the scale parameter of the mixture of Laplace distribution 

50 

Table 7. BEs using LP, GTIIP and PRs in parentheses when p=0.60 under 4L . 
Prior LP GTIIP 
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 

n T=1, λ1=0.5, λ2=1.0 

25 0.547455 
(0.078139) 

1.702944 
(0.329969) 

0.606062 
(0.020359) 

0.529746 
(0.072408) 

1.657486 
(0.337192) 

0.608442 
(0.020107) 

100 0.513289 
(0.024275) 

1.152792 
(0.075884) 

0.600756 
(0.006933) 

0.507778 
(0.023581) 

1.151221 
(0.073042) 

0.599399 
(0.006873) 

500 0.503442 
(0.006015) 

1.027311 
(0.016755) 

0.601748 
(0.001698) 

0.502137 
(0.005956) 

1.028070 
(0.016561) 

0.601346 
(0.001689) 

1000 0.502519 
(0.003141) 

1.009548 
(0.008567) 

0.600795 
(0.000854) 

0.501849 
(0.003125) 

1.010022 
(0.008516) 

0.600581 
(0.000846) 

λ1, λ2 T=6, λ1=3.0, λ2=4.0 
n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 

25 3.228483 
(0.406045) 

4.785227 
(0.936914) 

0.607982 
(0.018488) 

3.168724 
(0.374849) 

4.520597 
(0.843235) 

0.596819 
(0.018838) 

100 3.084499 
(0.126720) 

4.250718 
(0.272715) 

0.602223 
(0.006126) 

3.057799 
(0.122460) 

4.191599 
(0.267637) 

0.602416 
(0.006134) 

500 3.039216 
(0.029656) 

4.072809 
(0.063849) 

0.600699 
(0.001416) 

3.034519 
(0.029659) 

4.061268 
(0.063733) 

0.600750 
(0.001461) 

1000 3.018901 
(0.015333) 

4.024881 
(0.032778) 

0.599954 
(0.000752) 

3.016569 
(0.015336) 

4.019194 
(0.032757) 

0.599984 
(0.000752) 

 
By making judgment between priors, one can see that λ  is over-estimated for small sample size, 
but in terms of posterior risk we can observe that using the Gumbel Type-II, the posterior risk is 
smaller than the posterior risk using the Levy informative prior. Also note 1λ  is under-estimated 
in some case and also proportion. The Levy prior has smaller value of posterior as compared to 
the Gumbel type-II prior which is in fact due to the hyper parameters values; because the quality 
of Bayes (Levy and Gumbel Type-II) depends upon the quality of prior information. For using 
large degree of censoring we can see our posterior risk reduced for large parameters values. 
Based on minimum posterior risk value, 2L is the best. 
 
 
10. Real Life Application 
 
Kanji [25] considered that wind shear is an important factor affecting the safety of aircraft during 
take-off and landing period. Measurements of the distribution of wind shears of particular form 
and magnitude encountered during the approach to lending of aircraft are needed to provide a 
rational choice of wind shear for: (a) assessing the effectiveness and safety of aircraft control 
systems, and (b) training pilots to recognize and react correctly when they encounter a wind 
shear. Considered under a wide variety of conditions atmospheric disturbance show both ‘order’ 
and ‘disorder’ trend. 
 
There are 24 cases and each case identified with band 1 to 4. He fitted the mixture distribution 
and concluded that cases against Band 1 and Band 2 are appropriate for Laplace or exponential 
type distribution and Band 3, 4 cases are suitable for normal type distribution(s). Latter Jones 
and McLachlan [22] used same data set for the mixture of Laplace and normal distribution. For 
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our purpose, we divide the data by taking mixing weight 0.375 and T=400. Other result 
summery as follow: 
 
Data description as follows: 
Variable        N     Mean   Median    Tr Mean    StDev  SE Mean  Min      Max       Q1       Q3 
Case-1           23      343       24        269          659        137                0        2237         1        433 
combine        276    220.2      2.0      138.9        485.2     29.2                0.0       2237.0     0.0      118.0 
 

1 2

1 21 2 1 2
1 1

1 2

1 21 2 1 2
1 1

14, 9, 7, 10, 41, 550

104, 172, 88, 148, 4528, 5113

r r

j j
j j

r r

j j
j j

x x

n n r r x x

n n r r

= =

= =

= = = = = =∑ ∑

= = = = = =∑ ∑  

 
From table 8, it is clear that Gumbel type-II is the most suitable prior for the mixture of Laplace 
distribution on the basis of minimum posterior risk. However, there are some Bayes 
estimates which have lower posterior risk than Gumbel Type-II prior which is due to the quality 

of hyperparameters. Also, about the choice of loss function as concerned, the 
2

2 ( , ) 1 dL dλ
λ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

is the most appropriate los function. 
 

Table 8. BEs and PRs for real data set under different loss functions. 
P=0.375 LP GTIIP 
BE E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x) 
Loss Function 

1L  
Case-1 6.3160 

(2.7083) 
310.7000 
(106.5690) 

0.3200 
(0.0915) 

5.8815 
(2.4055) 

295.2070 
(98.4023) 

0.3200 
(0.0915) 

12 cases 234.5893 
(25.2248) 

34.6857 
(2.8705) 

0.4640 
(0.0298) 

233.2582 
(25.0094) 

34.5710 
(2.8560) 

0.4640 
(0.0299) 

Loss Function 
2L  

Case-1 4.829730 
(0.117678) 

256.6620 
(0.086965) 

0.260870 
(0.105590) 

4.574470 
(0.111111) 

246.0050 
(0.083336) 

0.260870 
(0.105590) 

12 cases 229.346438 
(0.011175) 

34.220243 
(0.006708) 

0.460131 
(0.004218) 

228.074055 
(0.011112) 

34.108736 
(0.006686) 

0.460132 
(0.004218) 

Loss Function 
3L  

Case-1 5.473700 
(0.842307) 

281.109000 
(29.590900) 

0.291667 
(0.028333) 

5.146280 
(0.735239) 

268.370000 
(26.837100) 

0.291667 
(0.028333) 

12 cases 231.938265 
(2.651062) 

34.451358 
(0.234302) 

0.462080 
(0.001935) 

230.637016 
(2.621204) 

34.338309 
(0.232727) 

0.462081 
(0.001935) 

Loss Function 
4L  

Case-1 6.526879 
(0.421759) 

310.871451 
(0.342902) 

0.440341 
(0.240681) 

6.082560 
(0.402121) 

295.373620 
(0.333239) 

0.440341 
(0.240681) 

12 cases 234.683058 
(0.107515) 

34.727054 
(0.082708) 

0.495072 
(0.062143) 

233.311803 
(0.107205) 

34.612282 
(0.082563) 

0.495173 
(0.062345) 
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10.1 Graphs of Marginal Posterior distributions using Levy and GTII Prior when p=0.60. 
Following Figures 2-4 show the graphical presentation of marginal posterior of 1λ , 2λ and p . 
 

 
Figure 2. Marginal Posterior Density of 𝝀𝟏. 

 

	  
Figure 3. Marginal Posterior Density of 𝝀𝟐. 
 

 

 
Figure 4. Marginal Posterior Density of 𝒑 

 
From above figures 2-4, one can easily observe that Gumbel Type-II prior has heavier tail as 
compared to the Levy Prior, and since Laplace distribution is also heavy tailed distribution so 
Gumbel Type-II distribution is the most suitable prior for mixture of Laplace distribution. 
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11. Model Comparison 
 
The comparison of model performances is proposed to be based on the generated posterior 
predictive distributions. The criterion used to compare them is based on the use of the 
logarithmic score as a utility function in a statistical decision framework. This was proposed by 
Bernardo [9] and used, for example, by Gutiérrez-Peña and Walker [18], and Martín and Pérez  
[27] in a similar context. In situations where the uncertainty is contained in the value of a future 
observation 1ny x += , the logarithmic score ( )log ( | )kp y x is used, where ( | )kp y x denotes the 
posterior predictive density under model kM . Then, the posterior predictive expected utility is 
given by: ( )log ( | ) ( | )k k kU p y p y dy= ∫ x x . The optimal solution to the decision problem of 
choosing among the competing models M0; M1, .... , Ml is given by the model Mk* , such that: 

{ }* 0,1,...,
maxk kk l

U U
∈

= . From a practical viewpoint, kU  can be estimated as: ( )
1

1ˆ log ( | )
m

k k i
i

U p y
m =

= ∑ x , 

where y1; y2, ... , ym are an independent and identically distributed random sample from ( | )kp y x .  
In order to illustrate this method and its applicability in the context of our proposed approaches, 
we considered this approach as a prior selection criterion. A random sample of sizes 20 were 
generated from mixture of Laplace distribution with mean 0, mixing proportion 0.40 and scale 
parameter equal to 3 and 4 using Minitab v 12 (0.60438, 0.08135, 0.53826, 0.36013, 2.38849, 
0.54444, 1.12126, 3.84595, 3.04917, 3.05758, 2.18903, 1.01963, 0.30160, 4.58365, 4.30493, 
5.77560, 0.58089, 0.29435, 0.63610, 1.86025). The posterior information is used of n=100 and 
we have the results: ULevy=-94.88978 and UGTII=-93.56026. Hence, the Gumbel Type-II prior is 
the best based on predictive utility criteria. 
 
 
12. Conclusion and Suggestions 
 
The simulation study has displayed various attractive properties of the Bayes estimates. The 
posterior risk of the estimates seems to be quite large (small) for the relatively larger (smaller) 
values of the parameters. However, in each case the posterior risk of parameters and effect of 
censoring reduces as the sample size increases. Another interesting remark concerning the 
posterior risk of the estimates is that increasing (decreasing) the proportion of the component in 
the mixture reduces (increases) the posterior risk of the estimate of the corresponding parameter. 
In some cases the proportion parameter is either under-estimated or over-estimated depending 
upon the values of the parameters or censoring degree. 
 
Levy prior has greater posterior risk value than the Gumbel Type-II prior. The posterior risk of 
second component parameter is less as compared to first component parameter value, and the 
Gumbel Type-II prior results are the best based on its minimum posterior risks values. Also, this 
study suggests that at least 100 or above sample size is required for this type of mixture because 
for small sample size we can easily see that degree of over-estimation is large and posterior risk 
(variances) of the Bayes estimates is also larger. Based on above evidence (Posterior Risk, 
sample size effect, mixing proportion parameter, prior, the Bayes estimates, graphical 
presentation and model comparison method) we prefer the Gumbel Type-II prior as the most 
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suitable prior for the mixture of Laplace distribution, and the loss function 
2

2 ( , ) 1 dL dλ
λ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

performance is the best. 
In future, this work can be extended using mixture of truncated Laplace distribution and eliciting 
the hyper-parameters of mixing component by taking Beta prior. Here we analyzed the two 
component  mixture of Laplace distribution and only focus on the scale parameter but in future, a 
possible extension of this work is by considering mixture of more than two component mixture 
with location parameter. 
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