SOME MODIFIED EXPONENTIAL RATIO-TYPE ESTIMATORS IN THE PRESENCE OF NON-RESPONSE UNDER TWO-PHASE SAMPLING SCHEME

Javid Shabbir*, Nasir Saeed Khan
Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan.

Received 11 February 2011; Accepted 02 April 2012
Available online 26 April 2013

Abstract

This paper addresses the problem of estimating the population mean using information on the auxiliary variable in the presence of non-response under two-phase sampling. On the lines of Bahl and Tuteja [1] and upadhyaya et al. [22], a class of modified exponential-ratio type estimators using single auxiliary variable have been proposed under two different situations of non-response of the study variable. The expressions for the bias and mean square error (MSE) of a proposed class of estimators are derived. Efficiency comparisons of a proposed class of estimators with the usual unbiased estimator by Hansen and Hurwitz [3] and other existing estimators are made. An empirical study has been carried out to judge the performances of the proposed estimators.

Keywords: Auxiliary variable, bias, mean Square error, non-response, two-phase sampling, exponential-ratio type estimator.

1. Introduction

Consider a finite population of size N. We draw a sample of size n from a population by using simple random sample without replacement (SRSWOR) sampling scheme. Let y_{i} and x_{i} be the observations on the study variable (y) and the auxiliary variable (x) respectively. Let $\bar{y}=\sum_{i=1}^{n} \frac{y_{i}}{n}$ and $\bar{x}=\sum_{i=1}^{n} \frac{x_{i}}{n}$ be the sample means corresponding to the population means $\bar{Y}=\sum_{i=1}^{N} \frac{y_{i}}{N}$ and $\bar{X}=\sum_{i=1}^{N} \frac{x_{i}}{N}$ respectively. When information on \bar{X} is unknown then double

[^0]sampling or two phase sampling is suitable to estimate the population mean. In first phase sample we select a sample of size n^{\prime} by SRSWOR from a population to observe x. In second phase, we select a sample of size n from $n^{\prime}\left(n<n^{\prime}\right)$ by SRSWOR also. Non-response occurs on second phase in which n_{1} units respond and n_{2} do not. From n_{2} non-respondents, a sample of $r=n_{2} / k ; k>1$ units is selected, where k is the inverse sampling rate at the second phase sample of size n.
Sometimes it may not be possible to collect the complete information for all the units selected in the sample due to non-response. Estimation of the population mean in sample surveys when some observations are missing due to non-response not at random has been considered by Hansen and Hurwitz [3] is given by $\bar{y}^{*}=w_{1} \bar{y}_{1}+w_{2} \bar{y}_{2 r}$, where $\bar{y}_{1}=\sum_{i=1}^{n_{1}} \frac{y_{i}}{n_{1}}, \bar{y}_{2 r}=\sum_{i=1}^{r} \frac{y_{i}}{r}$, w$=\frac{n_{1}}{n}$ and $w_{2}=\frac{n_{2}}{n}$.
The variance of \bar{y}^{*} is given by:
$\operatorname{Var}\left(\bar{y}^{*}\right)=\left(\frac{1-f}{n}\right) S_{y}^{2}+W_{2}\left(\frac{k-1}{n}\right) S_{y(2)}^{2}$,
where $f=\frac{n}{N}$ and $W_{2}=\frac{N_{2}}{N}, S_{y}^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-\bar{Y}\right)^{2}}{N-1}$ and $S_{y(2)}^{2}=\sum_{i=1}^{N_{2}} \frac{\left(y_{i}-\bar{Y}_{2}\right)^{2}}{N_{2}-1}$.
It is well known that in estimating the population mean, sample survey experts use the auxiliary information to improve the precision of the estimates.
Similar to \bar{y}^{*} one can write $\bar{x}^{*}=w_{1} \bar{x}_{1}+w_{2} \bar{x}_{2 r}$, where $\bar{x}_{1}=\sum_{i=1}^{n_{1}} \frac{x_{i}}{n_{1}}$ and $\bar{x}_{2 r}=\sum_{i=1}^{r} \frac{x_{i}}{r}$.
The variance of \bar{x}^{*} is given by:
$\operatorname{Var}\left(\bar{x}^{*}\right)=\left(\frac{1-f}{n}\right) S_{x}^{2}+W_{2}\left(\frac{k-1}{n}\right) S_{x(2)}^{2}$,
where $S_{x}^{2}=\sum_{i=1}^{N} \frac{\left(x_{i}-\bar{X}\right)^{2}}{N-1}$ and $S_{x(2)}^{2}=\sum_{i=1}^{N_{2}} \frac{\left(x_{i}-\bar{X}_{2}\right)^{2}}{N_{2}-1}$.
The auxiliary information can be used both at designing and estimation stages to compensate for units selected for a sample that fails to provide adequate responses and for the population units missing from the sampling frame. Rao ([10], [11]), Khare and Srivastava ([4], [5], [6]), Okafar and Lee [9], Sarndal and Lundstrom [12], Tabasum and Khan ([20], [21]), Singh and Kumar ([13], [14], [15], [16], [17], [18]) and Singh et al. [19] have suggested some estimators for population mean \bar{Y} of the study variable y using the auxiliary information in presence of nonresponse and studied their properties.

When there is non-response on the study variable y as well as on the auxiliary variable x, Cochran [2] suggested the conventional two-phase ratio and regression estimators for the population mean \bar{Y} are defined as:
$\hat{\bar{Y}}_{R(1)}=\bar{y}^{*} \frac{\bar{x}^{\prime}}{\bar{x}^{*}}$,
and
$\hat{\bar{Y}}_{R e g(1)}=\bar{y}^{*}+b_{y x}^{*}\left(-\bar{x}^{\prime} \quad \bar{x}^{*}\right)$,
where $b_{y x}^{*}=s_{x y}^{*} / s_{x}^{* 2}$ is the sample regression coefficient, whose population regression coefficient is $\beta_{y x}=S_{x y} / S_{x}^{2}$ at the first phase sampling. Here $s_{x y}^{*}=\frac{1}{(n-1)}\left(\sum_{i=1}^{n} x_{i} y_{i}+k \sum_{i=1}^{r} x_{i} y_{i} n \bar{x} \bar{y}^{*}\right)$ and $s_{x}^{*_{2}}=\frac{1}{(n-1)}\left(\sum_{i=1}^{n} x_{i}^{2}+k \sum_{i=1}^{r} x_{i}^{2} n \bar{x} \bar{x}^{*}\right.$) are the sample covariance and sample variance respectively. Recently Singh and Kumar [17] suggested the following estimator on the lines of Bahl and Tuteja [1] as:

$$
\begin{equation*}
\hat{\bar{Y}}_{E x p(1)}=\bar{y}^{*} \exp \left\{\frac{\bar{x}^{\prime}-\bar{x}^{*}}{\bar{x}^{\prime}+\bar{x}^{*}}\right\} . \tag{5}
\end{equation*}
$$

To the first degree of approximation, the expressions for bias and mean square error of $\hat{\bar{Y}}_{R(1)}$, $\hat{\bar{Y}}_{\text {Reg (1) }}$ and $\hat{\bar{Y}}_{E x p(1)}$ are given by:

$$
\begin{align*}
& B\left(\hat{\bar{Y}}_{R(1)}\right) \cong \bar{Y}\left[\lambda^{\prime \prime}\left(1-K_{y x}\right) C_{x}^{2}+\lambda^{*}\left(1 \quad K_{\overline{y x(2)}}\right) C_{x(2)}^{2}\right] \tag{6}\\
& B\left(\hat{\bar{Y}}_{\operatorname{Re} g(1)}\right) \cong \beta_{y x}\left[\lambda^{\prime \prime} \frac{2 N^{2}}{(N-1)(N-2)}\left(\frac{\mu_{30(2)}}{\mu_{11}}-\frac{\mu_{21}}{\mu_{12}}\right)+\lambda^{*}\left(\frac{\mu_{30(2)}}{\mu_{11}} \frac{\mu_{21(2)}}{\mu_{12}}\right)\right] \tag{7}\\
& B\left(\hat{\bar{Y}}_{E X P(1)}\right) \cong \frac{1}{2} \bar{Y}\left[\lambda^{\prime \prime}\left(\frac{3}{4}-K_{y x}\right) C_{x}^{2}+\lambda^{*}\left(\frac{3}{4} \quad K_{y x(2)}\right) C_{x(2)}^{2}\right] \tag{8}
\end{align*}
$$

$$
\operatorname{MSE}\left(\hat{\bar{Y}}_{R(1)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+\left(1-2 K_{y x}\right) C_{x}^{2}\right\}+\lambda^{*}\left\{C_{y(2)}^{2}+\left(\begin{array}{ll}
1 & 2 K_{y x(2)} \tag{9}
\end{array}\right) C_{x(2)}^{2}\right\}\right]
$$

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{\operatorname{Re} g(1)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left(1-\rho^{2}\right) C_{y}^{2}+\lambda^{*}\left\{C_{y(2)}^{2}+K_{y x}\left(K_{y x}-2 K_{y x(2)}\right) C_{x(2)}^{2}\right\}\right] \tag{10}
\end{equation*}
$$

$\operatorname{MSE}\left(\hat{\bar{Y}}_{E X P(1)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+\frac{1}{2}\left(\frac{1}{2}-2 K_{y x}\right) C_{x}^{2}\right\}+\lambda^{*}\left\{C_{y(2)}^{2}+\frac{1}{2}\left(\frac{1}{2} \quad 2 K_{\overline{y x}(2)}\right) C_{x(2)}^{2}\right\}\right]$,

where $K_{y x}=\frac{\beta_{y x}}{R}=\frac{\rho_{y x} C_{y}}{C_{x}}, K_{y x(2)}=\frac{\beta_{y x(2)}}{R}=\frac{\rho_{y x(2)} C_{y(2)}}{C_{x(2)}}, \beta_{y x}=\frac{S_{y x}}{S_{x}^{2}}, \beta_{y x(2)}=\frac{S_{y x(2)}}{S_{x(2)}^{2}}$,
$S_{x y}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{X}\right)\left(y_{i}-\bar{Y}\right)}{N-1}, S_{x y(2)}=\frac{\sum_{i=1}^{N_{2}}\left(x_{i}-\bar{X}_{2}\right)\left(y_{i}-\bar{Y}_{2}\right)}{N_{2}-1}, C_{y}=\frac{S_{y}}{\bar{Y}}, C_{y(2)}=\frac{S_{y(2)}}{\bar{Y}}, C_{x}=\frac{S_{x}}{\bar{X}}$,
$C_{x(2)}=\frac{S_{x(2)}}{\bar{X}}, \rho_{y x(2)}=\frac{S_{y x(2)}}{S_{x(2)} S_{y(2)}}, \lambda=\left(\frac{1-f}{n}\right), \lambda^{\prime}=\left(\frac{1-f^{\prime}}{n^{\prime}}\right), \lambda^{\prime \prime}=\left(\lambda-\lambda^{\prime}\right), \lambda^{*}=\frac{W_{2}(k-1)}{n}$,
$R=\frac{\bar{Y}}{\bar{X}}, f=\frac{n}{N}, f^{\prime}=\frac{n^{\prime}}{N}, \mu_{v s}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{X}\right)^{v}\left(y_{i}-\bar{Y}\right)^{s}$ and
$\mu_{v s(2)}=\frac{1}{N_{2}-1} \sum_{i=1}^{N_{2}}\left(x_{i}-\bar{X}_{2}\right)^{v}\left(y_{i}-\bar{Y}_{2}\right)^{s},(v, s)$ being non- negative integers.
When there is incomplete information on the study variable y and complete information on the auxiliary variable x, the conventional two-phase ratio, regression and exponential-ratio type estimators are respectively defined by:
$\hat{\bar{Y}}_{R(2)}=\bar{y}^{*} \frac{\bar{x}^{\prime}}{\bar{x}}$
and
$\hat{\bar{Y}}_{\text {Reg (2) }}=\bar{y}^{*}+b_{y x}^{* *}\left(-\bar{x}^{\prime} \quad \bar{x}\right)$,
where $b_{y x}^{* *}=s_{x y}^{*} / s_{x}^{2}$ is the sample regression coefficient, whose population regression coefficient is $\beta_{y x}=S_{x y} / S_{x}^{2}$ at second phase sampling and $s_{x}^{2}=\frac{1}{(n-1)} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$.
Singh and Kumar [14] defined the following exponential ratio type estimator:
$\hat{\bar{Y}}_{\operatorname{Exp}(2)}=\bar{y}^{*} \exp \left\{\frac{\bar{x}^{\prime}-\bar{x}}{\bar{x}^{\prime}+\bar{x}}\right\}$.

To the first degree of approximation, the bias and mean square error of $\hat{\bar{Y}}_{R(2)}, \hat{\bar{Y}}_{\operatorname{Reg}(2)}$ and $\hat{\bar{Y}}_{\operatorname{Exp}(2)}$ are given by:

$$
\begin{align*}
& B\left(\hat{\bar{Y}}_{R(2)}\right) \cong \bar{Y} \lambda^{\prime \prime}\left(1-K_{y x}\right) C_{x}^{2}, \tag{15}\\
& B\left(\hat{\bar{Y}}_{\mathrm{Re} g(2)}\right) \cong \lambda^{\prime \prime} \beta_{y x} \frac{2 N^{2}}{(N-1)(N-2)}\left(\frac{\mu_{21}}{\mu_{11}}-\frac{\mu_{30}}{\mu_{20}}\right), \tag{16}\\
& B\left(\hat{\bar{Y}}_{E X P(2)}\right) \cong \frac{1}{2} \lambda^{\prime \prime} \bar{Y}\left(\frac{3}{4}-K_{y x}\right) C_{x}^{2}, \tag{17}\\
& \operatorname{MSE}\left(\hat{\bar{Y}}_{R(2)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+\left(1-2 K_{y x}\right) C_{x}^{2}\right\}+\lambda^{*} C_{y(2)}^{2}\right] \tag{18}\\
& \operatorname{MSE}\left(\hat{\bar{Y}}_{\operatorname{Reg}(2)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime} C_{y}^{2}\left(1-\rho_{y x}^{2}\right) \quad \lambda^{*} G_{y(2)}^{2}\right] \tag{19}\\
& \operatorname{MSE}\left(\hat{\bar{Y}}_{E X P(2)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+\frac{1}{2}\left(1-2 K_{y x}\right) C_{x}^{2}\right\} \lambda^{*} C_{y(2)}^{2}\right] \tag{20}
\end{align*}
$$

2. Proposed exponential-ratio type estimator

We propose the following modified exponential-ratio type estimator for estimating the populations mean \bar{Y} under two-phase sampling scheme in two different situations.

2.1 Situation I

The population mean \bar{X} is unknown, when non-response occurs on the study variable y and the auxiliary variable x. On the lines of Bahl and Tuteja [1] and Upadhyaya et al. [22], we propose the following estimator:

$$
\begin{equation*}
\left.\hat{\bar{Y}}_{P(1)}^{(h)}=\bar{y}^{*} \exp \left(\frac{c\left(\bar{x}^{\prime}-\bar{x}^{*}\right)}{\left(c \bar{x}^{\prime}+d\right)+(h-1)\left(+\bar{x}^{*}\right.} \quad d\right)\right), \tag{21}
\end{equation*}
$$

where $(h>0) ; c(\neq 0)$ and d are constants which can be coefficient of variation $\left(C_{x}\right)$ or correlation coefficient ($\rho_{y x}$) or standard deviation $\left(S_{x}\right)$.

Remarks:
(i) When $h=0$, the estimator $\hat{\bar{Y}}_{P(1)}^{(h)}$ reduces to

$$
\begin{equation*}
\hat{\bar{Y}}_{P(1)}^{(0)}=\bar{y}^{*} \exp (1), \tag{22}
\end{equation*}
$$

which is a biased estimator with larger MSE than the usual estimator \bar{y}^{*} due to the positive value of 'exp' and has multiplicative effect on the above estimator $\hat{\bar{Y}}_{P(1)}^{(0)}$.
(ii) When $h=1$, the estimator $\hat{\bar{Y}}_{P(1)}^{(h)}$ reduces to

$$
\begin{equation*}
\hat{\bar{Y}}_{P(1)}^{(1)}=\bar{y}^{*} \exp \left(\frac{c\left(\bar{x}^{\prime}-\bar{x}^{*}\right)}{c \bar{x}^{\prime}+d}\right) \tag{23}
\end{equation*}
$$

(iii) When $h=2$, the estimator $\hat{\bar{Y}}_{P(1)}^{(h)}$ reduces to estimator:

$$
\begin{equation*}
\hat{\bar{Y}}_{P(1)}^{(2)}=\bar{y}^{*} \exp \left(\frac{c\left(\bar{x}^{\prime}-\bar{x}^{*}\right)}{\left(c \bar{x}^{\prime}+d\right)+\left(c \bar{x}^{*}+d\right)}\right) \tag{24}
\end{equation*}
$$

To obtain bias and mean square error of the estimator $\hat{\bar{Y}}_{P(1)}^{(h)}$, we define:
$\bar{y}^{*}=\bar{Y}\left(1+\varepsilon_{0}\right), \quad \bar{x}^{*}=\bar{X}\left(1+\varepsilon_{1}\right), \quad \bar{x}^{\prime}=\bar{X}\left(1+\varepsilon_{1}^{\prime}\right), \bar{x}=\bar{X}\left(1+\varepsilon_{2}\right)$,
such that $E\left(\varepsilon_{i}\right)=0,(i=0,1,2)$ and $E\left(\varepsilon_{i}^{\prime}\right)=0$,
$E\left(\varepsilon_{0}^{2}\right)=\lambda C_{y}^{2}+\lambda^{*} C_{y(2)}^{2}, E\left(\varepsilon_{1}^{2}\right)=\lambda C_{x}^{2}+\lambda^{*} C_{x(2)}^{2}, E\left(\varepsilon_{1}^{\prime 2}\right)=\lambda^{\prime} C_{x}^{2}, E\left(\varepsilon_{2}^{2}\right)=\lambda C_{x}^{2}$,
$E\left(\varepsilon_{0} \varepsilon_{1}\right)=\lambda \rho_{y x} C_{y} C_{x}+\lambda^{*} \rho_{y x(2)} C_{y(2)} C_{x(2)}, E\left(\varepsilon_{0} \varepsilon_{1}^{\prime}\right)=\lambda^{\prime} \rho_{y x} C_{y} C_{x}, E\left(\varepsilon_{0} \varepsilon_{2}\right)=\lambda \rho_{y x} C_{y} C_{x}$,
$E\left(\varepsilon_{1} \varepsilon_{1}^{\prime}\right)=\lambda^{\prime} C_{x}^{2}, E\left(\varepsilon_{1} \varepsilon_{2}\right)=\lambda C_{x}^{2}$ and $E\left(\varepsilon_{1}^{\prime} \varepsilon_{2}\right)=\lambda^{\prime} C_{x}^{2}$.
Expressing the estimator $\hat{\bar{Y}}_{P(1)}^{(h)}$ given in (21), in terms of $\varepsilon^{\prime} s$, we have:
$\left.\hat{\bar{Y}}_{P(1)}^{(h)}=\bar{Y}\left(1+\varepsilon_{0}\right) \exp \left(\frac{\left(\varepsilon_{1}^{\prime}-\varepsilon_{1}\right)}{\left(\varepsilon_{1}^{\prime}+(h-1) \varepsilon+\right.} h \delta\right)\right)$,
where $\delta=\left(\frac{c \bar{X}+d}{c \bar{X}}\right)$.
Solving (25), neglecting terms of $\varepsilon^{\prime} s$ having power greater than two, we have:
$\left(\hat{\bar{Y}}_{P(1)}^{(h)}-\bar{Y}\right) \cong \bar{Y}\left[\varepsilon_{0}+\frac{1}{h \delta}\left(\varepsilon_{1}^{\prime}-\varepsilon_{1}\right)+\frac{1}{h \delta}\left(\varepsilon_{0} \varepsilon_{1}^{\prime} \quad \varepsilon_{0} \varepsilon_{1}\right)\right.$

$$
\begin{equation*}
\left.+\frac{1}{h^{2} \delta^{2}}\left(\varepsilon_{1}^{\prime}-\varepsilon_{1}\right)^{2}-\frac{1}{h^{2} \delta^{2}}\left(\varepsilon_{1}^{\prime 2}+(h-2) \varepsilon_{1}^{\prime} \varepsilon_{1}-(h-1) \varepsilon_{1}^{2}\right)\right] . \tag{26}
\end{equation*}
$$

Taking expectations on both sides of (26), we get the bias of $\hat{\bar{Y}}_{P(1)}^{(h)}$ which is given by:

$$
\begin{equation*}
B\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right) \cong \bar{Y}\left[\lambda^{\prime \prime} \frac{1}{h \delta}\left\{\frac{1}{h \delta}\left(h-\frac{1}{2}\right)-K_{y x}\right\} C_{x 2}^{2}+\lambda^{*} \frac{1}{h \delta}\left\{\frac{1}{h \delta}\left(h-\frac{1}{2}\right)-K_{y x(2)}\right\} C_{x(2)}^{2}\right] . \tag{27}
\end{equation*}
$$

Squaring both sides of (26) and neglecting terms of $\varepsilon^{\prime} s$ involving power greater than two, we have:

$$
\begin{equation*}
\left(\hat{\bar{Y}}_{P(1)}^{(h)}-\bar{Y}\right)^{2} \cong \bar{Y}^{2}\left[\varepsilon_{0}^{2}+\frac{1}{h^{2} \delta^{2}}\left(\varepsilon_{1}^{\prime 2}+\varepsilon_{1}^{2}-2 \varepsilon_{1}^{\prime} \varepsilon_{1}\right)+\frac{2}{h \delta}\left(\varepsilon_{0} \varepsilon_{1}^{\prime} \quad \varepsilon_{0} \varepsilon_{1}\right)\right] . \tag{28}
\end{equation*}
$$

Using (28), the $M S E$ of $\hat{\bar{Y}}_{P(1)}^{(h)}$ to the first degree approximation is given by:

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+A_{1} C_{x}^{2}\right\}+\lambda^{*}\left\{C_{y(2)}^{2}+A_{2} C_{x(2)}^{2}\right\}\right], \tag{29}
\end{equation*}
$$

where $A_{1}=\frac{1}{h \delta}\left(\frac{1}{h \delta}-2 K_{y x}\right)$ and $A_{2}=\frac{1}{h \delta}\left(\frac{1}{h \delta}-2 K_{y x(2)}\right)$.
The $\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)$ is minimum when $h=\frac{\lambda^{\prime \prime} C_{x}^{2}+\lambda^{*} C_{x(2)}^{2}}{\left\{\lambda^{\prime \prime} K_{y x} C_{x}^{2}+\lambda^{*} K_{y x(2)} C_{x(2)}^{2}\right\} \delta}=h_{0}$ (say).
Thus the resulting minimum MSE of $\hat{\bar{Y}}_{P(1)}^{(h)}$ is given by:

$$
\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)_{\min } \cong \bar{Y}^{2}\left[\begin{array}{ll}
\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime} C_{y}^{2}+\lambda^{*} C_{y(2)}^{2} & \frac{\left(\lambda^{\prime \prime} C_{x}^{2}+\lambda^{*} C_{x(2)}^{2}\right)^{2}}{\lambda^{\prime \prime} K_{y x} C_{x}^{2}+\lambda^{*} K_{y x(2)} C_{x(2)}^{2}} \tag{30}
\end{array}\right]
$$

Table 1 shows some members of a proposed class of estimators $\hat{\bar{Y}}_{P(1)}^{(h)}$ of the population mean \bar{Y} by taking $h=1$ and $h=2$, each at different values of c and d. Many more estimators can also be generated from the proposed estimator in (21) just by taking different values of h, c and d.

Table 1. Some members of a family of estimators $\hat{\bar{Y}}_{P(1)}^{(h)}$ under Situation-I.

Estimator	h	c	d
$\hat{\bar{Y}}_{P(1)}^{(1)(1)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}^{*}}{\bar{x}^{\prime}+S_{x}}\right)$			
$\hat{\bar{Y}}_{P(1)}^{(1)(2)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}^{*}}{\bar{x}^{\prime}+C_{x}}\right)$	1	1	S_{x}
$\hat{\bar{Y}}_{P(1)}^{(1)(3)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}^{*}}{\bar{x}^{\prime}+\rho_{y x}}\right)$	1	1	C_{x}
$\hat{Y}_{P(1)}^{(1)(4)}=\bar{y}^{*} \exp \left(\frac{C_{x}\left(\bar{x}^{\prime}-\bar{x}^{*}\right)}{C_{x} \bar{x}^{\prime}+S_{x}}\right)$	1	1	$\rho_{y x}$
$\hat{\bar{Y}}_{P(1)}^{(2)(1)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}^{*}}{\left(\bar{x}^{\prime}+S_{x}\right)+\left(\bar{x}^{*}+S_{x}\right)}\right)$	1	C_{x}	S_{x}
$\hat{\bar{Y}}_{P(1)}^{(2)(2)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}^{*}}{\left(\bar{x}^{\prime}+C_{x}\right)+\left(\bar{x}^{*}+C_{x}\right)}\right)$	2	1	S_{x}
$\hat{\bar{Y}}_{P(1)}^{(2)(3)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}^{*}}{\left(\bar{x}^{\prime}+\rho_{y x}\right)+\left(\bar{x}^{*}+\rho_{y x}\right)}\right)$	2	1	C_{x}
$\hat{\bar{Y}}_{P(1)}^{(2)(4)}=\bar{y}^{*} \exp \left(\frac{C_{x}\left(\bar{x}^{\prime}-\bar{x}^{*}\right)}{\left(C_{x} \bar{x}^{\prime}+S_{x}\right)+\left(C_{x} \bar{x}^{*}+S_{x}\right)}\right)$			

The expressions of mean square error of the above estimators (Table 1) are given by:

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(1)(i)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+A_{3} C_{x}^{2}\right\}+\lambda^{*}\left\{C_{y(2)}^{2}+A_{4} C_{x(2)}^{2}\right\}\right], \tag{31}
\end{equation*}
$$

where $A_{3}=\frac{1}{\delta_{i}}\left(\frac{1}{\delta_{i}}-2 K_{y x}\right)$ and $A_{4}=\frac{1}{\delta_{i}}\left(\frac{1}{\delta_{i}}-2 K_{y x(2)}\right)(i=1,2,3,4)$ and

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(2)(i)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+A_{5} C_{x}^{2}\right\}+\lambda^{*}\left\{C_{y(2)}^{2}+A_{6} C_{x(2)}^{2}\right\}\right], \tag{32}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } A_{5}=\frac{1}{2 \delta_{i}}\left(\frac{1}{2 \delta_{i}}-2 K_{y x}\right), A_{6}=\frac{1}{2 \delta_{i}}\left(\frac{1}{2 \delta_{i}}-2 K_{y x(2)}\right)(i=1,2,3,4), \delta_{1}=\left(\frac{\bar{X}+S_{x}}{\bar{X}}\right), \\
& \delta_{2}=\left(\frac{\bar{X}+C_{x}}{\bar{X}}\right), \delta_{3}=\left(\frac{\bar{X}+\rho_{y x}}{\bar{X}}\right) \text { and } \delta_{4}=\left(\frac{C_{x} \bar{X}+S_{x}}{C_{x} \bar{X}}\right) .
\end{aligned}
$$

2.2 Situation II

The population mean \bar{X} is unknown, when non-response occurs on the study variable y and complete response on the auxiliary variable x. The estimator is given by:

$$
\begin{equation*}
\left.\hat{\bar{Y}}_{P(2)}^{(g)}=\bar{y}^{*} \exp \left(\frac{c\left(\bar{x}^{\prime}-\bar{x}\right)}{\left(c \bar{x}^{\prime}+d\right)+(g-1)(* \bar{x}} d\right)\right) \tag{33}
\end{equation*}
$$

where $(g>0)$.
Remark:
(i) When $g=0$, the estimator $\hat{\bar{Y}}_{P(2)}^{(g)}$ reduces to

$$
\begin{equation*}
\hat{\bar{Y}}_{P(2)}^{(0)}=\bar{y}^{*} \exp (1), \tag{34}
\end{equation*}
$$

which is a biased estimator with larger MSE than the usual estimator \bar{y}^{*}.
(ii) When $g=1$, the estimator $\hat{\bar{Y}}_{P(2)}^{(g)}$ reduces to

$$
\begin{equation*}
\hat{\bar{Y}}_{P(2)}^{(1)}=\bar{y}^{*} \exp \left(\frac{c\left(\bar{x}^{\prime}-\bar{x}\right)}{c \bar{x}^{\prime}+d}\right) . \tag{35}
\end{equation*}
$$

(iii) When $g=2$, the estimator $\hat{\bar{Y}}_{P(2)}^{(g)}$ reduces to the estimator

$$
\begin{equation*}
\hat{\bar{Y}}_{P(2)}^{(2)}=\bar{y}^{*} \exp \left(\frac{c\left(\bar{x}^{\prime}-\bar{x}\right)}{\left(c \bar{x}^{\prime}+d\right)+(c \bar{x}+d)}\right) \tag{36}
\end{equation*}
$$

To obtain bias and mean square error of $\hat{\bar{Y}}_{P(2)}^{(g)}$, in terms of $\varepsilon^{\prime} s$, we have:

$$
\begin{equation*}
\left.\hat{\bar{Y}}_{P(2)}^{(g)}=\bar{Y}\left(1+\varepsilon_{0}\right) \exp \left(\frac{\left(\varepsilon_{1}^{\prime}-\varepsilon_{2}\right)}{\left(\varepsilon_{1}^{\prime}+(g-1) \varepsilon_{2}^{1}\right.} g \delta\right)\right) . \tag{37}
\end{equation*}
$$

Solving (37), neglecting terms of $\varepsilon^{\prime} s$ and having power greater than two, we have:

$$
\begin{align*}
\hat{\bar{Y}}_{P(2)}^{(g)} \cong \bar{Y} & {\left[\varepsilon_{0}+\frac{1}{g \delta}\left(\varepsilon_{1}^{\prime}-\varepsilon_{2}\right)+\frac{1}{g \delta}\left(\varepsilon_{0} \varepsilon_{1}^{\prime} \quad \varepsilon_{0} \varepsilon_{2}\right)\right.} \\
& \left.+\frac{1}{g^{2} \delta^{2}}\left(\varepsilon_{1}^{\prime}-\varepsilon_{2}\right)^{2}-\frac{1}{g^{2} \delta^{2}}\left(\varepsilon_{1}^{\prime 2}+(g-2) \varepsilon_{1}^{\prime} \varepsilon_{2}-(g-1) \varepsilon_{2}^{2}\right)\right] \tag{38}
\end{align*}
$$

The bias of $\hat{\bar{Y}}_{P(2)}^{(g)}$, to first order of approximation, is given by:

$$
\begin{equation*}
B\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right) \cong \bar{Y}\left[\lambda^{\prime \prime} \frac{1}{g \delta}\left\{\frac{1}{g \delta}\left(g-\frac{1}{2}\right)-K_{y x}\right\} C_{x}^{2}\right] . \tag{39}
\end{equation*}
$$

Squaring both sides of (38) and neglecting terms of $\varepsilon^{\prime} s$ involving power greater than two, we have:

$$
\begin{equation*}
\left(T_{R(2)}^{(g)}-\bar{Y}\right)^{2}=\bar{Y}^{2}\left[\varepsilon_{0}^{2}+\frac{1}{g^{2} \delta^{2}}\left(\varepsilon_{1}^{\prime 2}+\varepsilon_{2}^{2}-2 \varepsilon_{1}^{\prime} \varepsilon_{2}\right)+\frac{2}{g \delta}\left(\varepsilon_{0} \varepsilon_{1}^{\prime} \quad \varepsilon_{0} \varepsilon_{2}\right)\right] . \tag{40}
\end{equation*}
$$

Using (40), the mean square error of $\hat{\bar{Y}}_{P(2)}^{(g)}$ to the first degree of approximation is given by:

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+\frac{1}{g \delta}\left(\frac{1}{g \delta}-2 K_{y x}\right) C_{x}^{2}\right\} \lambda^{*} C_{y(2)}^{2}\right] \tag{41}
\end{equation*}
$$

The $\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)$ is minimum when $g=\frac{1}{\delta K_{y x}}=g_{0}$ (say).
Thus the resulting minimum MSE of $\hat{\bar{Y}}_{P(2)}^{(g)}$ is given by:
$\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)_{\min } \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{*} C_{y(2)} 2 \lambda^{\prime \prime}+C_{y}^{2}\left(\begin{array}{ll}1 & \rho_{y x}^{2}\end{array}\right)\right]$.
In Table 2, for $g=1$ and $g=2$, we propose a family of estimators $\hat{\bar{Y}}_{P(2)}^{(g)}$ of the population mean \bar{Y} by taking at different choices of c and d respectively. Many more estimators can also be generated from the proposed estimator in (33) just by putting different values of g, c and d. Using Table 2, the MSE of $\hat{\bar{Y}}_{P(2)}^{(1)(i)}$ and $\hat{\bar{Y}}_{P(2)}^{(2)(i)} \quad(i=1,2,3,4)$ to first degree of approximation are given by:
$\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(1)(i)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+A_{3} C_{x}^{2}\right\}+\lambda^{*} C_{y(2)}^{2}\right]$,
and
$\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(2)(i)}\right) \cong \bar{Y}^{2}\left[\lambda^{\prime} C_{y}^{2}+\lambda^{\prime \prime}\left\{C_{y}^{2}+A_{5} C_{x}^{2}\right\}+\lambda^{*} C_{y(2)}^{2}\right]$.

Table 2. Some members of a family of estimators $\hat{\bar{Y}}_{P(2)}^{(g)}$ under Situation-II.

Estimator	g	c	d
$\hat{\bar{Y}}_{P(2)}^{(1)(1)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}}{\bar{x}^{\prime}+S_{x}}\right)$			
$\hat{\bar{Y}}_{P(2)}^{(1)(2)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}}{\bar{x}^{\prime}+C_{x}}\right)$	1	1	S_{x}
$\hat{\bar{Y}}_{P(2)}^{(1)(3)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}}{\bar{x}^{\prime}+\rho_{y x}}\right)$	1	1	C_{x}
$\hat{\bar{Y}}_{P(2)}^{(1)(4)}=\bar{y}^{*} \exp \left(\frac{C_{x}\left(\bar{x}^{\prime}-\bar{x}\right)}{C_{x} \bar{x}^{\prime}+S_{x}}\right)$	1	1	$\rho_{y x}$
$\hat{\bar{Y}}_{P(2)}^{(2)(1)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}}{\left(\bar{x}^{\prime}+S_{x}\right)+\left(\bar{x}+S_{x}\right)}\right)$	1	C_{x}	S_{x}
$\hat{\bar{Y}}_{P(2)}^{(2)(2)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}}{\left(\bar{x}^{\prime}+C_{x}\right)+\left(\bar{x}+C_{x}\right)}\right)$	2	1	S_{x}
$\hat{\bar{Y}}_{P(2)}^{(2)(3)}=\bar{y}^{*} \exp \left(\frac{\bar{x}^{\prime}-\bar{x}}{\left(\bar{x}^{\prime}+\rho_{y x}\right)+\left(\bar{x}+\rho_{y x}\right)}\right)$	2	1	C_{x}
$\hat{\bar{Y}}_{P(2)}^{(2)(4)}=\bar{y}^{*} \exp \left(\frac{C_{x}\left(\bar{x}^{\prime}-\bar{x}\right)}{\left(C_{x} \bar{x}^{\prime}+S_{x}\right)+\left(C_{x} \bar{x}+S_{x}\right)}\right)$			

3. Efficiency comparisons

3.1 Situation I

(a) When the constant ' h ' is unknown:

To compare the estimator $\hat{\bar{Y}}_{P(1)}^{(h)}$ with the usual estimators $\bar{y}^{*}, \hat{\bar{Y}}_{R(1)}$ and $\hat{\bar{Y}}_{\operatorname{Exp}(1)}$ when the value of constant ' h ' does not coincide with its optimum value' h_{0} ', we have
(i) $\operatorname{Var}\left(\bar{y}^{*}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)>0$ if $h>\max \left\{\frac{1}{2 \delta K_{y x}}, \frac{1}{2 \delta K_{y x(2)}}\right\}$.
(ii) $\operatorname{MSE}\left(\hat{\bar{Y}}_{R(1)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)>0$ if
$\min \left\{\frac{1}{\delta}, \frac{1}{\delta\left(2 K_{y x}-1\right)}, \frac{1}{\delta\left(2 K_{y x(2)}-1\right)}\right\}<h<\max \left\{\frac{1}{\delta}, \frac{1}{\delta\left(2 K_{y x}-1\right)}, \frac{1}{\delta\left(2 K_{y x(2)}-1\right)}\right\}$.
(iii) $\operatorname{MSE}\left(\hat{\bar{Y}}_{\operatorname{Exp}(1)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)>0$ if
$\min \left\{\frac{2}{\delta}, \frac{2}{\delta\left(4 K_{y x}-1\right)}, \frac{2}{\delta\left(4 K_{y x(2)}-1\right)}\right\}<h<\max \left\{\frac{2}{\delta}, \frac{2}{\delta\left(4 K_{y x}-1\right)}, \frac{2}{\delta\left(4 K_{y x(2)}-1\right)}\right\}$.
(b) When the constant ' h ' is known:
(i) $\operatorname{Var}\left(\bar{y}^{*}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)_{\text {min }}>0$ if $\frac{\left(\lambda^{\prime \prime} K_{y x} C_{x}^{2}+\lambda^{*} K_{y x(2)} C_{x(2)}^{2}\right)^{2}}{\lambda^{\prime \prime} C_{x}^{2}+\lambda^{*} C_{x(2)}^{2}}>0$.
(ii) $\operatorname{MSE}\left(\hat{\bar{Y}}_{R(1)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)_{\text {min }}>0$ if
$\left(\frac{\left(\lambda^{\prime \prime} K_{y x} C_{x}^{2}+\lambda^{*} K_{y x(2)} C_{x(2)}^{2}\right)^{2}}{\lambda^{\prime \prime} C_{x}^{2}+\lambda^{*} C_{x(2)}^{2}}+\lambda^{\prime \prime}\left(1-2 K_{y x} \ngtr C_{x}^{2}\right) \quad 0\right.$ and $K_{y x(2)}<\frac{1}{2}$.
(iii) $\operatorname{MSE}\left(\hat{\bar{Y}}_{\operatorname{Exp}(1)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)_{\text {min }}>0$ if
$\left(\frac{\left(\lambda^{\prime \prime} K_{y x} C_{x}^{2}+\lambda^{*} K_{y x(2)} C_{x(2)}^{2}\right)^{2}}{\lambda^{\prime \prime} C_{x}^{2}+\lambda^{{ }^{\prime}} C_{x(2)}^{2}}+\lambda^{\prime \prime}\left(\frac{1}{4}-K_{y x}\right){O_{x}^{2}}^{2} \quad 0\right.$ and $K_{y x(2)}<\frac{1}{4}$.
(iv) $\operatorname{MSE}\left(\hat{\bar{Y}}_{\operatorname{Reg}(1)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(1)}^{(h)}\right)_{\text {min }}>0$ if
$\left(\frac{\left(\lambda^{\prime \prime} K_{y x} C_{x}^{2}+\lambda^{*} K_{y x(2)} C_{x(2)}^{2}\right)^{2}}{\lambda^{\prime \prime} C_{x}^{2}+\lambda^{*} C_{x(2)}^{2}}-\lambda^{\prime \prime} \rho_{y x}^{2} C_{y}^{2}\right)>0$ and $K_{y x}>2 K_{y x(2)}$.

$3.2 \quad$ Situation II

(a) When the constant ' g ' is unknown:

To compare the estimator $\hat{\bar{Y}}_{P(2)}^{(g)}$ with the usual estimators $\bar{y}^{*}, \hat{\bar{Y}}_{R(2)}$ and $\hat{\bar{Y}}_{\operatorname{Exp}(2)}$ when the value of constant' g ' does not coincide with its optimum value' $g_{0}{ }^{\prime}$, we have
(i) $\operatorname{Var}\left(\bar{y}^{*}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)>0$ if $g>\frac{1}{2 \delta K_{y x}}$.
(ii) $\operatorname{MSE}\left(\hat{\bar{Y}}_{R(2)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)>0$ if
$\min \left\{\frac{1}{\delta}, \frac{1}{\delta\left(2 K_{y x}-1\right)}\right\}<g<\max \left\{\frac{1}{\delta}, \frac{1}{\delta\left(2 K_{y x}-1\right)}\right\}$.
(iii) $\operatorname{MSE}\left(\hat{\bar{Y}}_{\operatorname{Exp}(2)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)>0$ if $\min \left\{\frac{2}{\delta}, \frac{2}{\delta\left(4 K_{y x}-1\right)}\right\}<g<\max \left\{\frac{2}{\delta}, \frac{2}{\delta\left(4 K_{y x}-1\right)}\right\}$.
(b) When the constant ' g ' is known:
(i) $\operatorname{Var}\left(\bar{y}^{*}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)_{\text {min }}>0$ if $K_{y x}>0$.
(ii) $\operatorname{MSE}\left(\hat{\bar{Y}}_{R(2)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)_{\min }>0$ if $K_{y x}<1$ and $K_{y x}>1$.
(iii) $\operatorname{MSE}\left(\hat{\bar{Y}}_{E x p(2)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)_{\min }>0$ if $K_{y x}<\frac{1}{2}$ and $K_{y x}>\frac{1}{2}$.
(iv) $\operatorname{MSE}\left(\hat{\bar{Y}}_{\operatorname{Reg}(2)}\right)-\operatorname{MSE}\left(\hat{\bar{Y}}_{P(2)}^{(g)}\right)_{\text {min }}=0$.

The proposed estimators in Situations I and II are more efficient than the other considered estimators if above conditions are satisfied.

4. Empirical study

We use two data sets for efficiency comparison.
Population 1: (source: Khare and Sinha [7])
The data on physical growth of upper socio-economic group of 95 school children of Varanasi under an ICMR study, department of Pediatrics, B. H.U., during 1983-84 has been taken under study. The first 25% (i.e. 24 children) units have been considered as non-responding units. Let $y=$ Weights (kg) of children and $x=$ Skull circumference (cm) of the children.
For this population, we have:
$N=95, n^{\prime}=70, n=35, W_{2}=0.25, \bar{Y}=19.4968, \bar{X}=51.1726, C_{y}=0.15613, C_{y(2)}=0.12075$,
$C_{x}=0.03006, C_{x(2)}=0.02478, \rho_{y x}=0.328, \rho_{y x(2)}=0.477$.

Population-II: (Source: Murthy [8])
Consider the data on number of workers and output for 80 factories in a region. The middle 20% units in the population have been treated as non-responding units.
Let $y=$ output and $x=$ number of workers in the factory.
For this population, we have:
$N=80, n^{\prime}=45, n=20, W_{2}=0.20, \bar{Y}=5182.64, \bar{X}=285.125, C_{y}=0.35419, C_{y(2)}=0.07110$,
$C_{x}=0.94846, C_{x(2)}=0.08519, \rho_{y x}=0.914, \rho_{y x(2)}=0.691$.

We have computed the percent relative efficiency (PRE) of different estimators with respect to usual unbiased estimator \bar{y}^{*} for different values of k.

Table 3. PRE of different estimators with respect to \bar{y}^{*} for different values of k under Situation-I.

Estimator	Population-I				Population-II			
	(1/k)				(1/k)			
	(1/5)	(1/4)	(1/3)	(1/2)	(1/5)	(1/4)	(1/3)	(1/2)
\bar{y}^{*}	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
$\hat{\bar{Y}}_{P(1)}^{(1)(1)}$	112.21	111.49	110.55	109.28	209.91	208.98	208.03	207.07
$\hat{\bar{Y}}_{P(1)}^{(1)(2)}$	112.48	111.74	110.78	109.47	40.56	40.19	39.81	39.44
$\hat{\bar{Y}}_{P(1)}^{(1)(3)}$	112.43	111.69	110.73	109.43	40.55	40.18	39.81	39.44
$\hat{\bar{Y}}_{P(1)}^{(1)(4)}$	106.88	106.52	106.05	105.40	219.38	218.51	217.63	216.73
$\hat{\bar{Y}}_{P(1)}^{(2)(1)}$	106.70	106.35	105.89	105.26	250.66	251.59	252.55	253.54
$\hat{\bar{Y}}_{P(1)}^{(2)(2)}$	106.84	106.52	106.04	105.40	220.57	219.71	218.83	217.94
$\hat{\bar{Y}}_{P(1)}^{(2)(3)}$	106.84	106.48	106.01	105.36	220.56	219.70	218.82	217.93
$\hat{\bar{Y}}_{P(1)}^{(2)(4)}$	103.57	103.39	103.16	102.84	246.36	247.27	248.22	249.19
$\hat{\bar{Y}}_{R(1)}$	112.49	111.75	110.78	109.47	38.36	38.08	37.79	37.52
$\hat{\bar{Y}}_{\text {Reg (1) }}$	117.17	115.95	114.38	112.27	256.22	257.68	259.18	260.73
$\hat{\bar{Y}}_{E x p(1)}$	106.88	106.52	106.05	105.40	193.96	194.02	194.08	194.14
$\hat{\bar{V}}^{(h)}$	117.80	116.41	114.65	112.37	256.25	257.69	259.19	260.73

In Table 3 under Population-I, it is observed that the PRE of all estimators decreases as the value of $(1 / k)$ increases. In this table under Population-II, the estimators $\hat{\bar{Y}}_{P(1)}^{(1)(2)}, \hat{\bar{Y}}_{P(1)}^{(1)(3)}$ and $\hat{\bar{Y}}_{R(1)}$ show the poor performances as compared to all other considered estimators. Also under Population-II, the PRE of estimators $\hat{\bar{Y}}_{P(1)}^{(2)(2)}, \hat{\bar{Y}}_{P(1)}^{(2)(4)}, \hat{\bar{Y}}_{\mathrm{Re} g(1)}, \hat{\bar{Y}}_{E X P(1)}$ and $\hat{\bar{Y}}_{P(1)}$ increases as the value of $(1 / k)$ increases whilst $P R E$ of estimators $\hat{\bar{Y}}_{P(1)}^{(1)(1)}, \hat{\bar{Y}}_{P(1)}^{(2)(2)}$ and $\hat{\bar{Y}}_{P(1)}^{(2)(3)}$ decreases as the value of $(1 / k)$ increases.
In Table 4, $P R E$ of all estimators increases as the value of $(1 / k)$ increases under both Populations I and II except in Population-II where the estimators $\hat{\bar{Y}}_{P(2)}^{(1)(2)}, \hat{\bar{Y}}_{P(2)}^{(1)(3)}, \hat{\bar{Y}}_{R(2)}$ perform badly.

Table 4. PRE of different estimators with respect to \bar{y}^{*} for different values of k under Situation-II.

Estimator	Population-I					Population-II				
	$(1 / 5)$	$(1 / 4)$	$(1 / 3)$	$(1 / 2)$	$(1 / 5)$	$(1 / 4)$	$(1 / 3)$	$(1 / 2)$		
	\bar{y}^{*}	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
$\bar{y}^{*} 100.00$										
$\hat{\bar{Y}}_{P(2)}^{(1)(1)}$	103.70	104.23	104.94	105.95	197.46	199.49	201.60	203.80		
$\hat{\bar{Y}}_{P(2)}^{(1)(2)}$	103.76	104.31	105.03	106.06	40.07	39.83	39.57	39.32		
$\hat{\bar{Y}}_{P(2)}^{(1)(3)}$	103.75	104.30	105.02	106.05	40.07	39.83	39.57	39.32		
$\hat{\bar{Y}}_{P(2)}^{(1)(4)}$	102.24	102.56	102.98	103.57	205.99	208.29	210.69	213.20		
$\hat{\bar{Y}}_{P(2)}^{(2)(1)}$	102.18	102.49	102.91	103.48	239.32	242.84	246.54	250.44		
$\overline{\hat{Y}}_{P(2)}^{(2)(2)}$	102.24	102.56	102.98	103.57	207.06	209.39	211.83	214.37		
$\hat{\bar{Y}}_{P(2)}^{(2)(3)}$	102.23	102.54	102.97	103.55	207.05	209.38	211.82	214.36		
$\hat{\bar{Y}}_{P(2)(4)}^{(2)}$	101.20	101.37	101.60	101.91	235.61	238.98	242.52	246.26		
$\hat{\bar{Y}}_{R(2)}$	103.77	104.31	105.04	106.06	38.22	37.98	37.73	37.48		
$\hat{\bar{Y}}_{\text {Reg }(2)}$	104.57	105.24	106.14	107.40	245.89	249.68	253.67	257.89		
$\hat{Y}_{E x p(2)}$	102.24	102.56	102.98	103.57	186.95	188.65	190.43	192.28		
$\hat{\bar{V}}^{(g)}$	104.57	105.24	106.14	107.40	245.89	249.68	253.67	257.89		

From Tables 3 and 4, it is observed that the proposed estimators $\hat{\bar{Y}}_{P(2)}^{(h)}$ and $\hat{\bar{Y}}_{P(2)}^{(g)}$ are more efficient as compared to the usual Hansen and Hurwitz [3] estimator, classical ratio, exponential-ratio type estimators and all other considered estimators in their respective situations under optimum conditions. It is also observed that the difference between $\hat{\bar{Y}}_{P(1)}^{(h)}$ and $\hat{\bar{Y}}_{\text {Reg (1) }}$ is either small or equal in Situation-I and are equally efficient in Situation-II. Overall Situation-I is preferable as compared to Situation-II.
From the range of constants i.e. (h and g) in efficiency comparisons, it has been observed that the proposed estimators $\hat{\bar{Y}}_{P(1)}^{(h)}$ and $\hat{\bar{Y}}_{P(2)}^{(g)}$ are more desirable over all the considered estimators even if the guessed values of the scalars ' h ' and ' g ' depart substantially from the exact optimum values i.e. ' $h_{0}{ }^{\prime}$ and ' g_{0} ' respectively.

5. Conclusion

We have developed a general class of exponential ratio type estimators under two different situations of nonresponse. Theoretical and numerical comparisons show that the proposed class of estimators $\hat{\bar{Y}}_{P(1)}^{(h)}$ and $\hat{\bar{Y}}_{P(2)}^{(g)}$ are more efficient than the estimators $\bar{y}^{*}, \hat{\bar{Y}}_{R(i)}$ and $\hat{\bar{Y}}_{\text {EXP(i) }}(i=1,2)$ for both data sets. In Table 4, $\hat{\bar{Y}}_{P(2)}^{(g)}$ is exactly equal to the regression estimator $\hat{\bar{Y}}_{\text {Reg (2) }}$.

Acknowledgement

Authors are thankful to the learned referees for their valuable suggestions to improve the manuscript.

References

[1]. Bahl, S., and Tuteja, R. K. (1991). Ratio and product type exponential estimator, Information and Optimization Sciences, 12, 159-163.
[2]. Cochran, W. G. (1977). Sampling Techniques, (3rd ed.). John Wiley and Sons, New York.
[3]. Hansen, M. H., and Hurwitz, W. N. (1946). The problem of non response in sample surveys. Journal of the American Statistical Association, 41, 517-529.
[4]. Khare, B.B., and Srivastava, S. (1993). Estimation of population mean using auxiliary characters in the presence of non-response. National Academy Science Letters, India 16(3), 111-114.
[5]. Khare, B.B., and Srivastava, S. (1995). Study of conventional and alternative two phase sampling ratio, product and regression estimators in the presence of non-response. Proceedings of the Indian National Science Academy, 16(A), II: 195-203.
[6]. Khare, B.B., and Srivastava, S. (1997). Transformed ratio type estimators for the population mean in the presence of non-response. Communnication in Statistics- Theory and Methods, 26(7), 1779-1791.
[7]. Khare, B.B., and Sinha, R. R. (2007). Estimation of the ratio of the two population means using multi auxiliary characters in the presence of non-response. Statistical Techniques in Life Testing, Reliability, Sampling Theory and Quality Control, 163-171.
[8]. Murthy, M.N. (1967). Sampling Theory and Methods. Statistical Publication Society: India.
[9]. Okafor, F. C., and Lee, H. (2000). Double sampling for ratio and regression estimation with sub sampling the non-respondent. Survey Methodology, 26(2), 183-188.
[10]. Rao, P.S.R.S., (1986). Ratio and regression estimates with sub sampling the nonrespondents, Papers presented at a special contributed session of the International Statistical Association Meeting, Sept., Tokyo, Japan, 2-16.
[11]. Rao, P.S.R.S., (1987). Ratio estimation with sub sampling the non-respondents. Survey Methodology, 12(2), 217-230.
[12]. Sarndal C. E., and Lundstrom S. (2005). Estimation in Survey Sampling with NonResponse. New York: John Wiley and Sons.
[13]. Singh, H. P., and Kumar, S. (2008a). A regression approach to the estimation of the finite population mean in the presence of non-response. Australian and New Zealand Journal of Statistics, 50(4), 395-402.
[14]. Singh, H. P., and Kumar, S. (2008b). A general family of estimators of the finite population ratio, product and mean using two phase sampling scheme in the presence of non-response. Journal of Statistical Theory and Practice, 2(4), 677-692.
[15]. Singh, H. P., and Kumar, S. (2009a). A general class of estimators of the population mean in survey sampling using auxiliary information with sub sampling the non-respondents. Korean Journal of Applied Statistics, 22(2), 387-402.
[16]. Singh, H. P., and Kumar, S. (2009b). A general procedure of estimating the population mean in the presence of non- response under double sampling using auxiliary information. SORT, 33(1), 71-84.
[17]. Singh, H. P., and Kumar, S. (2010a). Estimation of mean in the presence of non-response using two phase sampling scheme. Statistical Papers, 51, 559-582.
[18]. Singh, H. P., and Kumar, S. (2010b). Improved estimation of population mean under double sampling with sub-sampling the non-respondents. Journal of Statistical Planning and Inference, 140(9), 2536-2550.
[19]. Singh, H. P., Kumar, S., and Kozak, M. (2010). Improved estimation of finite population mean using sub-sampling to deal with non-response in two-phase sampling scheme. Communication in Statistic-Theory and Methods, 39(5), 791-802.
[20]. Tabasum, R., and Khan, I. A. (2004). Double sampling for ratio estimation with nonresponse. Journal of the Indian Society of Agricultural Statistics, 58(3), 300-306.
[21]. Tabasum, R., and Khan, I. A. (2006). Double sampling ratio estimator for the population mean in presence of non-response. Assam Statistics Review, 20, 73-83.
[22]. Upadhyaya, L.N., Singh, H.P., Chatterjee, S. and Yadav, R. (2011). Improved ratio and product exponential type estimators. Journal of Statistical Theory and Practice, 5(2), 285302.

[^1]
[^0]: *Email: jsqau@yahoo.com

[^1]: This paper is an open access article distributed under the terms and conditions of the Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.

