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Abstract: In this article, acceptance sampling plans are developed for the inverse 
Rayleigh distribution percentiles when the life test is truncated at a pre-specified 
time. The minimum sample size necessary to ensure the specified life percentile is 
obtained under a given customer’s risk. The operating characteristic values (and 
curves) of the sampling plans as well as the producer’s risk are presented. Two 
examples with real data sets are also given as illustration. 
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1. Introduction 
 
The acceptance sampling plans are concerned with accepting or rejecting a submitted lot of a 
large size of products on the basis of the quality of the products inspected in a sample taken from 
the lot. An acceptance sampling plan is a specified plan that establishes the minimum sample 
size to be used for testing. In most acceptance sampling plans for a truncated life test, the major 
issue is to determine the sample size from a lot under consideration. If the quality characteristic 
is regarding the lifetime of the product, the acceptance sampling problem becomes a life test. 
Traditionally, when the life test indicates that the mean life of products exceeds the specified 
one, the lot of products is accepted, otherwise it is rejected. For the purpose of reducing the test 
time and cost, a truncated life test may be conducted to determine the smallest sample size to 
ensure a certain mean life of products when the life test is terminated at a pre-assigned time  , 
and the number of failures observed does not exceed a given acceptance number c. The decision 
is to accept the lot if a pre-determined mean life can be reached with a pre-determined high 
probability   which provides protection to consumers. Therefore, the life test is ended at the time 
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the failure is observed or at the pre-assigned time, whichever is earlier. For such a truncated life 
test and the associated decision rule; we are interested in obtaining the smallest sample size to 
arrive at a decision. Rosaiah and Kantam [20] developed an acceptance sampling procedure for 
the inverse Rayleigh distribution mean under a truncated life test. Some other studies regarding 
truncated life tests can be found in Epstein [3], Sobel and Tischendrof [22], Goode and Kao [5], 
Gupta and Groll [7], Gupta [6], Fertig and Mann [4], Kantam and Rosaiah [9], Kantam et al. 
[10], Baklizi [1], Wu and Tsai [25], Rosaiah et al. [21], Tsai and Wu [24], Balakrishnan et al. [2] 
and Rao et al. ([17], [18] & [19]).  
All these authors considered the design of acceptance sampling plans based on the population 
mean under a truncated life test. Whereas Lio et al. [12] considered acceptance sampling plans 
from truncated life tests based on the Birnbaum-Saunders distribution for percentiles and they 
proposed that the acceptance sampling plans based on mean may not satisfy the requirement of 
engineering on the specific percentile of strength or breaking stress. When the quality of a 
specified low percentile is concerned, the acceptance sampling plans based on the population 
mean could pass a lot which has the low percentile below the required standard of consumers. 
Furthermore, a small decrease in the mean with a simultaneous small increase in the variance can 
result in a significant downward shift in small percentiles of interest. This means that a lot of 
products could be accepted due to a small decrease in the mean life after inspection. But the 
material strengths of products are deteriorated significantly and may not meet the consumer’s 
expectation. Therefore, engineers pay more attention to the percentiles of lifetimes than the mean 
life in life testing applications. Moreover, most of the employed life distributions are not 
symmetric. In viewing Marshall and Olkin [13], the mean life may not be adequate to describe 
the central tendency of the distribution. This reduces the feasibility of acceptance sampling plans 
if they are developed based on the mean life of products. Actually, percentiles provide more 
information regarding a life distribution than the mean life does. When the life distribution is 
symmetric, the 50th percentile or the median is equivalent to the mean life. Hence, developing 
acceptance sampling plans based on percentiles of a life distribution can be treated as a 
generalization of developing acceptance sampling plans based on the mean life of items. 
Balakrishnan et al. [2] proposed the acceptance sampling plans could be used for the quantiles 
and derived the formulae whereas Lio et al. [12] developed for the acceptance sampling plans for 
any other percentiles of the Birnbaum-Saunders (BS) model. They have developed the 
acceptance sampling plans for percentile by replace the scale parameter by the 100qth percentile 
in the BS distribution function. Rao and Kantam [16] developed acceptance sampling plans from 
truncated life tests based on the log-logistic distribution for Percentiles. These reasons motivate 
to develop acceptance sampling plans based on the percentiles of the inverse Rayleigh 
distribution under a truncated life test. 
The rest of the article is organized as follows. The proposed sampling plans are established for 
the inverse Rayleigh percentiles under a truncated life test, along with the operating 
characteristic (OC) and some relevant tables are given in Section 2. Two examples based on real 
fatigue life data sets are provided for the illustration in Section 3, Future work is given in Section 
4 and discussion and some conclusions are made in Section 5.  
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2. Acceptance Sampling Plans 
 
Assume that the lifetime of a product follows an inverse Rayleigh distribution which has the 
following probability density function (pdf) and cumulative distribution function (cdf), 
respectively: 
 

f (t;σ ) = 2σ 2

t3
e−(σ /t )2

;   t ≥ 0,σ > 0 ,        (1) 

 
and 
 

2( / )( ; ) ;   t 0, 0tF t e σσ σ−= ≥ > ,         (2) 
 
whereσ  is the scale parameter. The failure rate of a single parameter inverse Rayleigh 
distribution is increasing for t<1.0694543σ and decreasing for t>1.0694543σ as shown by 
Mukherjee and Saran [14]. Given 0 1q< <  the 100qth percentile (or the qth quantile) is given by: 
 

( ) 1/2ln .qt qσ
−

= −            (3) 
 
The qt is increases as q increases. Let ( ) 1/2lnqη

−
= − . Then, Eq. (3) implies that  

 
qtσ η= .           (4) 

 
To develop acceptance sampling plans for the inverse Rayleigh percentiles, the scale parameter 
σ  in the inverse Rayleigh cdf is replaced by Eq. (4) and the inverse Rayleigh cdf is rewritten as: 
 

( )2( )/( ) ; 0qt tF t e tη−
= > . 

 
Letting qt tδ = , F(t) can be rewritten emphasizing its dependence on δ  as: 

 
( )21( ; ) ; 0F t e tηδδ −= > . 

 
Taking partial derivative with respect to δ , we have: 

 

( )21
3

( ; ) 2 ; 0F t e tηδδ
δ ηδ

−∂
= >

∂
. 
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A common practice in life testing is to terminate the life test by a pre-determined time t, the 
probability of rejecting a bad lot be at least p∗ , and the maximum number of allowable bad items 
to accept the lot be c. The acceptance sampling plan for percentiles under a truncated life test is 
to set up the minimum sample size n for this given acceptance number c such that the 
consumer’s risk, the probability of accepting a bad lot, does not exceed 1- p∗ . A bad lot means 
that the true 100qth percentile, qt , is below the specified percentile, 0

qt . Thus, the probability p∗  is 

a confidence level in the sense that the chance of rejecting a bad lot with 0
q qt t<  is at least equal 

to p∗ . Therefore, for a given p∗ , the proposed acceptance sampling plan can be characterized by 
the triplet 0( , , )qn c t t . 
 
2.1 Minimum Sample Size 
For a fixed p∗our sampling plan is characterized by 0( , , )qn c t t .  Here we consider sufficiently 
large sized lots so that the binomial distribution can be applied.  The problem is to determine for 
given values of p∗  (0 < p∗  <1), 0

qt  and c, the smallest positive integer, n required to assert that 
0

q qt t> must satisfy: 
 

( ) ( )0 0
0

1 1
c

n in i
i

i
p p p− ∗

=

− ≤ −∑ ,        (5) 

 
where 0( ; )p F t δ= is the probability of a failure during the time t given a specified 100qth 
percentile of lifetime 0

qt  and depends only on 0
0 qt tδ = , since ( ; ) 0, ( ; )F t F tδ δ δ∂ ∂ > is a non-

decreasing function ofδ . Accordingly, we have: 
 

0 0( , ) ( , )F t F tδ δ δ δ< ⇔ ≤ , 
 
Or equivalently, 
 

0
0( , ) ( , ) q qF t F t t tδ δ≤ ⇔ ≥ . 

 
The smallest sample size n satisfying the inequality (5) can be obtained for any given q, 0

qt t , 

p∗ . Whereas, the smallest sample size n calculation in Rosaiah and Kantam [20] only needs 
input values for 0t σ and p∗. Hence, the proposed process to find the smallest sample size in this 
case is the same as the procedure provided by Rosaiah and Kantam [20] for the inverse Rayleigh 
model except in place of 0t σ replace by 0

qt t  at q. To save space, only the results of small 

sample sizes for q=0.1, 0
qt t =0.7, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5; p∗=0.75, 0.90, 0.95, 0.99; c = 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are reported in Table 1. 
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Table 1. Minimum sample sizes necessary to assert the 10th percentile to exceed a given values, 0

0.1t , with 
probability p* and the corresponding acceptance number, c, for the  inverse Rayleigh distribution using the 
binomial approximation. 

p∗  c 
0
0.1/t t  

0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5 
0.75 0 10 5 4 2 1 1 1 1 
0.75 1 20 9 7 4 3 3 2 2 
0.75 2 30 13 10 5 4 4 4 3 
0.75 3 39 17 13 7 6 5 5 5 
0.75 4 48 21 16 9 7 6 6 6 
0.75 5 56 25 19 11 9 8 7 7 
0.75 6 65 29 22 12 10 9 8 8 
0.75 7 74 32 25 14 11 10 9 9 
0.75 8 82 36 28 16 13 11 11 10 
0.75 9 91 40 31 17 14 13 12 11 
0.75 10 99 44 34 19 15 14 13 12 
0.90 0 17 7 6 3 2 2 2 1 
0.90 1 29 12 10 5 4 3 3 3 
0.90 2 40 17 13 7 5 5 4 4 
0.90 3 50 22 17 9 7 6 5 5 
0.90 4 60 26 20 11 8 7 7 6 
0.90 5 70 30 23 12 10 9 8 7 
0.90 6 79 34 27 14 11 10 9 9 
0.90 7 89 38 30 16 13 11 10 10 
0.90 8 98 42 33 18 14 12 12 11 
0.90 9 107 47 36 20 15 14 13 12 
0.90 10 116 51 39 21 17 15 14 13 
0.95 0 22 9 7 3 2 2 2 2 
0.95 1 35 15 11 6 4 4 3 3 
0.95 2 47 20 15 8 6 5 5 4 
0.95 3 58 25 19 10 7 6 6 6 
0.95 4 68 29 23 12 9 8 7 7 
0.95 5 79 34 26 14 10 9 8 8 
0.95 6 89 38 30 15 12 10 10 9 
0.95 7 99 42 33 17 13 12 11 10 
0.95 8 108 47 36 19 15 13 12 11 
0.95 9 118 51 40 21 16 14 13 13 
0.95 10 127 55 43 23 18 16 15 14 
0.99 0 34 14 11 5 4 3 3 2 
0.99 1 49 20 16 8 5 5 4 4 
0.99 2 62 26 20 10 7 6 5 5 
0.99 3 74 31 24 12 9 8 7 6 
0.99 4 86 36 28 14 11 9 8 8 
0.99 5 97 41 32 16 12 10 9 9 
0.99 6 108 46 35 18 14 12 11 10 
0.99 7 119 51 39 20 15 13 12 11 
0.99 8 130 55 43 22 17 15 13 13 
0.99 9 140 60 46 24 18 16 15 14 
0.99 10 150 64 50 26 20 17 16 15 
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Table 2. Minimum sample sizes necessary to assert the 10th percentile to exceed a given values, 0

0.1t , with 
probability p* and the corresponding acceptance number, c, for the inverse Rayleigh distribution using the 
Poisson approximation. 

p∗  c 
0
0.1/t t  

0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5 
0.75 0 11 5 4 3 2 2 2 2 
0.75 1 18 8 7 4 3 3 3 3 
0.75 2 30 13 11 6 5 5 5 5 
0.75 3 39 18 14 8 7 6 6 6 
0.75 4 49 22 18 10 9 8 7 7 
0.75 5 58 26 21 12 10 9 9 9 
0.75 6 66 30 24 14 11 11 10 10 
0.75 7 75 34 27 16 13 12 11 11 
0.75 8 84 38 30 17 14 13 13 12 
0.75 9 92 41 33 19 16 14 14 13 
0.75 10 101 45 36 21 17 16 15 15 
0.90 0 18 8 7 4 3 3 3 3 
0.90 1 28 13 10 6 5 5 5 4 
0.90 2 41 19 15 9 7 7 6 6 
0.90 3 52 23 19 11 9 8 8 8 
0.90 4 62 28 22 13 11 10 9 9 
0.90 5 72 32 26 15 12 11 11 11 
0.90 6 82 37 29 17 14 13 12 12 
0.90 7 91 41 32 19 16 14 14 13 
0.90 8 101 45 36 21 17 16 15 15 
0.90 9 110 49 39 23 19 17 16 16 
0.90 10 119 53 42 25 20 19 18 17 
0.95 0 24 11 9 5 4 4 4 4 
0.95 1 35 16 13 8 6 6 6 5 
0.95 2 49 22 17 10 9 8 7 7 
0.95 3 60 27 22 13 10 10 9 9 
0.95 4 71 32 25 15 12 11 11 10 
0.95 5 81 37 29 17 14 13 12 12 
0.95 6 92 41 33 19 16 14 14 13 
0.95 7 102 46 36 21 17 16 15 15 
0.95 8 112 50 40 23 19 17 17 16 
0.95 9 121 54 43 25 21 19 18 18 
0.95 10 131 59 47 27 22 20 19 19 
0.99 0 36 16 13 8 6 6 6 5 
0.99 1 50 23 18 11 9 8 8 8 
0.99 2 65 29 23 14 11 10 10 10 
0.99 3 78 35 28 16 13 12 12 11 
0.99 4 90 40 32 19 15 14 13 13 
0.99 5 101 46 36 21 17 16 15 15 
0.99 6 113 51 40 23 19 18 17 16 
0.99 7 124 55 44 25 21 19 18 18 
0.99 8 134 60 48 28 23 21 20 19 
0.99 9 145 65 52 30 25 23 21 21 
0.99 10 156 70 55 32 26 24 23 22 
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If 0( ; )p F t δ= is small and n is large the binomial probability may be approximated by Poisson 
probability with parameter λ = np so that the left side of (5) can be written as: 

0
1

!

ic

i
e p

i
λλ − ∗

=

≤ −∑ ,          (6) 

where λ = n 0( ; )F t δ . 
 
2.2 Operating Characteristic of the Sampling Plan 0( , , )qn c t t  

The operating characteristic (OC) function of the sampling plan 0( , , )qn c t t  is the probability of 
accepting a lot. It is given as: 
 

( ) ( )
0

( ) 1
c

n in i
i

i
L p p p −

=

= −∑ ,        (7) 

 
where ( ; )p F t δ= . It should be noticed that ( ; )F t δ can be represented as a function of qt tδ = . 

Therefore, 
0

1( )
q q

tp F
t d

= where 0
q q qd t t= . Using Eq. (7), the OC values and OC curves can be 

obtained for any sampling plan 0( , , )qn c t t . To save space, we present Table 3 to show the OC 

values for the sampling plan 0
0.1( , 4, )n c t t= . Figure1 shows the OC curves for the sampling 

plan 0
0.1( , , )n c t t with p∗=0.75 for 0 1δ = , where c = 0,1,2,3,4,5,6,7,8,9,10. 

0.0
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Figure 1. OC curves for c = 0,1,2,3,4,5,6,7,8,9,10, respectively under p∗=0.90, 0 1δ =  based on the 10th 

percentile, 0.1d d= , of inverse Rayleigh distribution. 
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Table 3. Operating characteristic values of the sampling plan 0
0.1( , 5, / )n c t t= for a given p∗under inverse 

Rayleigh distribution. 

p∗  n 0
0.1/t t  

0
0.1 0.1/t t  

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 
0.75 56 0.70 0.2483 0.9726 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.75 25 0.90 0.2214 0.8554 0.9963 1.0000 1.0000 1.0000 1.0000 1.0000 
0.75 19 1.00 0.2432 0.8083 0.9890 0.9998 1.0000 1.0000 1.0000 1.0000 
0.75 11 1.50 0.1640 0.5018 0.8194 0.9614 0.9950 0.9996 1.0000 1.0000 
0.75 9 2.00 0.1162 0.3254 0.5919 0.8099 0.9323 0.9814 0.9961 0.9993 
0.75 8 2.50 0.1016 0.2515 0.4541 0.6577 0.8167 0.9163 0.9673 0.9891 
0.75 7 3.00 0.1626 0.3097 0.4807 0.6455 0.7809 0.8775 0.9379 0.9715 
0.75 7 3.50 0.0990 0.2006 0.3334 0.4807 0.6234 0.7461 0.8409 0.9073 
0.90 70 0.70 0.0941 0.9313 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 
0.90 30 0.90 0.0928 0.7360 0.9906 0.9999 1.0000 1.0000 1.0000 1.0000 
0.90 23 1.00 0.0973 0.6521 0.9715 0.9995 1.0000 1.0000 1.0000 1.0000 
0.90 12 1.50 0.0955 0.3890 0.7463 0.9392 0.9915 0.9993 1.0000 1.0000 
0.90 10 2.00 0.0489 0.1932 0.4442 0.7055 0.8824 0.9646 0.9919 0.9986 
0.90 9 2.50 0.0323 0.1162 0.2757 0.4856 0.6895 0.8420 0.9323 0.9755 
0.90 8 3.00 0.0434 0.1215 0.2515 0.4188 0.5931 0.7445 0.8563 0.9276 
0.90 7 3.50 0.0990 0.2006 0.3334 0.4807 0.6234 0.7461 0.8409 0.9073 
0.95 79 0.70 0.0464 0.8924 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 
0.95 34 0.90 0.0425 0.6277 0.9828 0.9999 1.0000 1.0000 1.0000 1.0000 
0.95 26 1.00 0.0446 0.5286 0.9504 0.9989 1.0000 1.0000 1.0000 1.0000 
0.95 14 1.50 0.0288 0.2134 0.5858 0.8768 0.9796 0.9981 0.9999 1.0000 
0.95 10 2.00 0.0489 0.1932 0.4442 0.7055 0.8824 0.9646 0.9919 0.9986 
0.95 9 2.50 0.0323 0.1162 0.2757 0.4856 0.6895 0.8420 0.9323 0.9755 
0.95 8 3.00 0.0434 0.1215 0.2515 0.4188 0.5931 0.7445 0.8563 0.9276 
0.95 8 3.50 0.0200 0.0605 0.1370 0.2515 0.3936 0.5445 0.6838 0.7976 
0.99 97 0.70 0.0098 0.7887 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 
0.99 41 0.90 0.0094 0.4404 0.9601 0.9997 1.0000 1.0000 1.0000 1.0000 
0.99 32 1.00 0.0079 0.3115 0.8856 0.9967 1.0000 1.0000 1.0000 1.0000 
0.99 16 1.50 0.0077 0.1060 0.4300 0.7931 0.9598 0.9957 0.9997 1.0000 
0.99 12 2.00 0.0071 0.0570 0.2169 0.4843 0.7463 0.9085 0.9757 0.9952 
0.99 10 2.50 0.0093 0.0489 0.1543 0.3356 0.5543 0.7493 0.8824 0.9540 
0.99 9 3.00 0.0100 0.0415 0.1162 0.2443 0.4133 0.5919 0.7474 0.8612 
0.99 9 3.50 0.0034 0.0157 0.0491 0.1162 0.2230 0.3625 0.5165 0.6628 

 
2.3 Producer’s Risk	
  
The producer’s risk is defined as the probability of rejecting the lot when 0

q qt t> . For a given 
value of the producer’s risk, sayα , we are interested in knowing the	
  value of qd  to ensure the 

producer’s risk is less than or equal to α  if a sampling plan	
   0( , , )qn c t t  is developed at a 

specified confidence level p∗ . Thus, one needs to find	
  the smallest value qd  according to Eq. (7) 
as: 

	
   ( ) ( )
0

1 1
c

n in i
i

i
p p α

−

=

− ≥ −∑ ,        (8) 
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where
0

1( )
q q

tp F
t d

= , 0
q q qd t t= .  

 
Table 4. - Minimum ratio of true 0.1d for the acceptability of a lot for the inverse Rayleigh distribution and 
producer’s risk of 0.05. 

p∗  c 
0
0.1/t t  

0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5 
0.75 0 2.5031 2.7631 2.8761 3.4621 4.3273 5.1953 6.0613 6.9247 
0.75 1 1.6095 1.7126 2.291 2.8337 3.5398 3.6832 4.2918 4.9188 
0.75 2 1.4859 1.5625 1.9391 2.3624 2.9533 3.5398 3.4990 4.0080 
0.75 3 1.4164 1.4786 1.8335 2.2852 2.5913 3.1153 3.6245 4.1545 
0.75 4 1.3695 1.4231 1.7658 2.0764 2.3381 2.8074 3.2723 3.7439 
0.75 5 1.3373 1.3841 1.7159 2.0670 2.3935 2.5767 3.0021 3.4329 
0.75 6 1.3141 1.3552 1.6124 1.9350 2.2346 2.3935 2.7988 3.1918 
0.75 7 1.2844 1.3314 1.5926 1.8262 2.1053 2.2512 2.6212 3.0021 
0.75 8 1.2700 1.3122 1.5733 1.8447 1.9944 2.3935 2.4783 2.8337 
0.75 9 1.2577 1.2972 1.5081 1.7658 2.0670 2.2795 2.3563 2.6991 
0.75 10 1.2473 1.2825 1.5006 1.6935 1.9814 2.1810 2.2512 2.5767 
0.90 0 2.5231 2.6541 3.0295 3.8361 4.7952 5.7544 6.0613 6.9247 
0.90 1 1.6841 1.8188 2.4062 3.0525 3.5398 4.2517 4.9727 5.6883 
0.90 2 1.5598 1.6504 2.1501 2.5840 3.2258 3.5398 4.1356 4.7393 
0.90 3 1.4908 1.5733 2.0032 2.4450 2.8604 3.1153 3.6245 4.1545 
0.90 4 1.4343 1.5056 1.9066 2.2292 2.5988 3.1153 3.2723 3.7439 
0.90 5 1.3947 1.4573 1.7797 2.1863 2.5840 2.8785 3.0021 3.4329 
0.90 6 1.3633 1.4343 1.7322 2.0530 2.4190 2.6831 3.1368 3.5817 
0.90 7 1.3392 1.4033 1.6966 2.0392 2.2795 2.5265 2.9438 3.3693 
0.90 8 1.3198 1.3778 1.6686 1.9433 2.1654 2.5988 2.7902 3.1918 
0.90 9 1.3103 1.3572 1.6415 1.8598 2.2075 2.4851 2.6596 3.0423 
0.90 10 1.2972 1.3392 1.5843 1.8636 2.1151 2.3810 2.5478 2.9061 
0.95 0 2.5631 2.8521 3.0295 3.8361 4.7952 5.7544 6.7150 7.6728 
0.95 1 1.7388 1.8447 2.4988 3.0525 3.8226 4.2517 4.9727 5.6883 
0.95 2 1.6038 1.6935 2.2237 2.7397 3.2258 3.8715 4.1356 4.7393 
0.95 3 1.5258 1.6095 2.0670 2.4450 2.8604 3.4329 4.0080 4.5725 
0.95 4 1.4667 1.5545 1.9643 2.3563 2.7902 3.1153 3.6390 4.1545 
0.95 5 1.4320 1.5006 1.8868 2.1863 2.5840 2.8785 3.3568 3.8388 
0.95 6 1.3990 1.4715 1.7832 2.1501 2.4190 2.9061 3.1368 3.5817 
0.95 7 1.3716 1.4388 1.7422 2.0392 2.4254 2.7397 2.9438 3.3693 
0.95 8 1.3552 1.4098 1.7094 2.0255 2.3084 2.5988 2.7902 3.1918 
0.95 9 1.3373 1.3968 1.6810 1.9391 2.2075 2.4851 2.8969 3.3080 
0.95 10 1.3217 1.3778 1.6565 1.9391 2.2292 2.5407 2.7732 3.1696 
0.99 0 2.5431 2.9531 3.2125 4.1782 5.0482 6.0613 6.7150 7.6728 
0.99 1 1.8044 1.9474 2.6288 3.2144 4.0258 4.5956 5.3533 6.1087 
0.99 2 1.6686 1.7797 2.3441 2.8694 3.4329 3.8715 4.5269 5.1706 
0.99 3 1.5843 1.6841 2.1758 2.6752 3.2144 3.6684 4.0080 4.5725 
0.99 4 1.5284 1.6181 2.0576 2.5407 2.9438 3.3445 3.9047 4.4603 
0.99 5 1.4859 1.5706 1.9728 2.3747 2.7315 3.1046 3.6245 4.1356 
0.99 6 1.4550 1.5258 1.9066 2.3143 2.6911 3.0836 3.3818 3.8715 
0.99 7 1.4298 1.4981 1.8560 2.1968 2.5478 2.9155 3.1918 3.6536 
0.99 8 1.4033 1.4762 1.8116 2.1654 2.5336 2.7732 3.2373 3.6982 
0.99 9 1.3862 1.4480 1.7762 2.0764 2.4254 2.7902 3.0941 3.5261 
0.99 10 1.3674 1.4343 1.7455 2.0623 2.3321 2.6752 2.9630 3.3944 
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To save space, based on sampling plans 0( , , )qn c t t  established in Tables 1 the minimum ratios of 

0.1d  for the acceptability of a lot at the producer’s risk of α =0.05 are presented in Table 4. 
 
 
3. Illustrative Examples 
 
In this section, two examples with real data sets are given to illustrate the proposed	
  acceptance 
sampling plans. The first data set is of the data given arisen in tests on endurance of deep groove 
ball bearings (Lawless [11], p.228). The data are the number of million revolutions before failure 
for each of the 23 ball bearings in life test and they are: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 
48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 
105.84, 127.92, 128.04 and 173.40. The second data set is obtained from Proschan [15] and 
represents times between successive failures of air conditioning (AC) equipment in a Boeing 720 
airplane and they are as follows: 12, 21, 26, 27, 29, 29, 48, 57, 59, 70, 74, 153, 326, 386 and  
502.  
As the confidence level is assured by this acceptance sampling plan only if the lifetimes are from 
the inverse Rayleigh distribution. Then, we should check if it is reasonable to admit that the 
given sample comes from the Inverse Rayleigh distribution by the goodness of fit test and model 
selection criteria. The first data set was used by Sultan [23] to demonstrate the goodness of fit for 
generalized exponential distribution and Gupta and Kundu [8] fitted for extended exponential 
distribution. However, the acceptance sampling plans under the truncated life test based on the 
Inverse Rayleigh distribution for percentiles has not yet been developed. We fit the inverse 
Rayleigh distribution to the two data sets separately. We used the Kolmogorov-Smirnov (K-S) 
tests for each data set to the fit the inverse Rayleigh model. It is observed that for Data Sets I and 
II, the K-S distances are 0.12091 and 0.21378 with the corresponding p values are 0.85028 and 
0.43879 respectively. For data sets I and II, the chi-square values are 0.3052 and 2.6383 
respectively. Therefore, it is clear that inverse Rayleigh model fits quite well to both the data 
sets. 
 
3.1 Example 1 
Assume that the lifetime distribution is inverse Rayleigh distribution and that the experimenter is 
interested to establish the true unknown 10th percentile lifetime for the ball bearings to be at least 
30 million revolutions with confidence p∗=0.90 and the life test would be ended at 30 million 
revolutions, which should have led to the ratio 0

0.1t t  = 1.0. Thus, for an acceptance number c =5 
and the confidence level p∗=0.90, the required sample size n found from Table 1 should be at 
least 23. Therefore, in this case, the acceptance sampling plan from truncated life tests for the 
inverse Rayleigh distribution 10th percentile should be 0( , , )qn c t t = (23, 5, 1.0). Based on the ball 
bearings data, the experimenter must have decided whether to accept or reject the lot. The lot 
should be accepted only if the number of items of which lifetimes were less than or equal to the 
scheduled test lifetime, 30 million revolutions, was at most 5 among the first 23 observations. 
Since there were 2 items with a failure time less than or equal to 30 million revolutions in the 
given sample of n =23 observations, the experimenter would accept the lot, assuming the 10th 
percentile lifetime 0.1t  of at least 30 million revolutions with a confidence level of p∗=0.90. The 
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OC values for the acceptance sampling plan 0( , , )qn c t t = (23,5,1.0) and confidence level 

p∗=0.90 under inverse Rayleigh distribution from Table 3 is as follows:  
 

0
0.1 0.1t t  1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 
OC 0.0973 0.6521 0.9715 0.9995 1.0000 1.0000 1.0000 1.0000 

 
This shows that if the true 10th percentile is equal to the required 10th percentile ( 0

0.1 0.1t t = 1.00) 
the producer’s risk is approximately 0.9027 (=1- 0.0973). The producer’s risk is almost equal to 
zero when the true 10th percentile is greater than or equal to 2.00 times the specified 10th 
percentile.  
From Table 4, the experimenter could get the values of 0.1d  for different choices of  c and 

0
0.1t t in order to assert that the producer’s risk was less than 0.05. In this example, the value of 

0.1d  should be 1.7797 for c = 5, 0
0.1t t =1.0 and p∗=0.90. This means the product can have a 10th 

percentile life of 1.7797 times the required 10th percentile lifetime in order that under the above 
acceptance sampling plan the product is accepted with probability of at least 0.95.  
Alternatively, assume that products have an inverse Rayleigh distribution and consumers wish to 
reject a bad lot with probability of p∗=0.75. What should the true 10th percentile life of products 
be so that the producer’s risk is 0.05 if the acceptance sampling plan is based on an acceptance 
number c =5 and 0

0.1t t =0.7? From Table 4, we can find that the entry for p∗=0.75, c = 5, and 
0
0.1t t =0.7 is 0.1d = 1.3373. Thus, the manufacturer’s product should have a 10th percentile life at 

least 1.3373 times the specified 10th percentile life in order for the products to be accepted with 
probability 0.75 under the above acceptance sampling plan. Table 1 indicates that the number of 
products required to be tested is n = 56 so that the sampling plan is 0

0.1( , , )n c t t = (56, 5, 0.7).  
 
3.2 Example 2 
Suppose an experimenter would like to establish the true unknown 10th percentile lifetime for the 
data set regarding the	
   failure of air conditioning (AC) equipment in a Boeing 720 airplane 
mentioned above to be at least 20 and the life test would be ended at 20, which should have led 
to the ratio 0

0.1t t = 1.00. The goodness of fit test for these 15 observations were verified and 
showed that inverse Rayleigh model as a reasonable goodness of fit for these 15 observations. 
Thus, with c = 2 and p∗=0.95, the experimenter should find from Table 1 the sample size n must 
be at least 15 and the sampling plan to be 0

0.1( , , )n c t t = (15, 2, 1.00). Since there is a one item 
with a failure time less than 20 in the given sample of n = 15 observations, the experimenter 
would accept the lot, assuming the 10th percentile lifetime 0.1t  of at least 20 with a confidence 
level of p∗=0.95. 
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4.  Future Work 
 
Construction of these sample plans with reference to population percentiles is in progress by the 
authors in other ramifications also such as double, sequential, two-stage and interval censored 
group samples. 
 
 
5. Discussion and Conclusions 
 
The sampling plans based on the inverse Rayleigh population mean developed by Rosaiah and 
Kantam [20] to the inverse Rayleigh models. It shows that the minimum sample sizes	
  are smaller 
than those reported in Tables 1 and 2 of this article for the	
  10th percentile for both binomial and 
Poisson approximation. Here, 0

0 0.1t tδ = for the sampling plans based on	
   10th percentile is	
  
replaced by 0 0tδ µ=  with 0µ  as a specific population mean for	
   the acceptance plans based on 
the inverse Rayleigh population mean. Therefore, the	
  acceptance sampling plans based on the 
inverse Rayleigh population mean could have less chance	
  to report a failure than the acceptance 
sampling plans based on 10th percentile.	
  The acceptance sampling plans based on population 
mean could accept the lot of	
  bad quality of the 10th percentiles. The minimum sample sizes	
  are 
reported in Table 1 of this article for the	
  10th percentiles are compared with the minimum sample 
sizes	
  are reported in Table 1 of Lio et al. [12]. It shows that the minimum sample sizes using 
inverse Rayleigh population are smaller than those reported in Tables 1 of Lio et al. [12] for 
Birnbaum-Saunders population for the 10th percentile when 0 1.0δ ≤  whereas, the minimum 
sample sizes using inverse Rayleigh population are larger than those reported in Tables 1 of Lio 
et al. [12] for Birnbaum-Saunders population for the 10th percentile when 0 1.0δ > . 
This article has derived the acceptance sampling plans based on the inverse Rayleigh percentiles 
when the life test is truncated at a pre-fixed time. The procedure is	
  provided to construct the 
proposed sampling plans for the percentiles of the inverse Rayleigh distribution. To ensure that 
the life quality of products exceeds a specified one in terms	
  of the life percentile, the acceptance 
sampling plans based on percentiles should	
  be used. Some useful tables are provided and applied 
to	
  establish acceptance sampling plans for two examples. 
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