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Abstract: In this article, acceptance sampling plans are developed for the inverse
Rayleigh distribution percentiles when the life test is truncated at a pre-specified
time. The minimum sample size necessary to ensure the specified life percentile is
obtained under a given customer’s risk. The operating characteristic values (and
curves) of the sampling plans as well as the producer’s risk are presented. Two
examples with real data sets are also given as illustration.
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1. Introduction

The acceptance sampling plans are concerned with accepting or rejecting a submitted lot of a
large size of products on the basis of the quality of the products inspected in a sample taken from
the lot. An acceptance sampling plan is a specified plan that establishes the minimum sample
size to be used for testing. In most acceptance sampling plans for a truncated life test, the major
issue is to determine the sample size from a lot under consideration. If the quality characteristic
is regarding the lifetime of the product, the acceptance sampling problem becomes a life test.
Traditionally, when the life test indicates that the mean life of products exceeds the specified
one, the lot of products is accepted, otherwise it is rejected. For the purpose of reducing the test
time and cost, a truncated life test may be conducted to determine the smallest sample size to
ensure a certain mean life of products when the life test is terminated at a pre-assigned time ,
and the number of failures observed does not exceed a given acceptance number c. The decision
is to accept the lot if a pre-determined mean life can be reached with a pre-determined high
probability which provides protection to consumers. Therefore, the life test is ended at the time
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the failure is observed or at the pre-assigned time, whichever is earlier. For such a truncated life
test and the associated decision rule; we are interested in obtaining the smallest sample size to
arrive at a decision. Rosaiah and Kantam [20] developed an acceptance sampling procedure for
the inverse Rayleigh distribution mean under a truncated life test. Some other studies regarding
truncated life tests can be found in Epstein [3], Sobel and Tischendrof [22], Goode and Kao [5],
Gupta and Groll [7], Gupta [6], Fertig and Mann [4], Kantam and Rosaiah [9], Kantam et al.
[10], Baklizi [1], Wu and Tsai [25], Rosaiah et al. [21], Tsai and Wu [24], Balakrishnan et al. [2]
and Rao et al. ([17], [18] & [19]).

All these authors considered the design of acceptance sampling plans based on the population
mean under a truncated life test. Whereas Lio et al. [12] considered acceptance sampling plans
from truncated life tests based on the Birnbaum-Saunders distribution for percentiles and they
proposed that the acceptance sampling plans based on mean may not satisfy the requirement of
engineering on the specific percentile of strength or breaking stress. When the quality of a
specified low percentile is concerned, the acceptance sampling plans based on the population
mean could pass a lot which has the low percentile below the required standard of consumers.
Furthermore, a small decrease in the mean with a simultaneous small increase in the variance can
result in a significant downward shift in small percentiles of interest. This means that a lot of
products could be accepted due to a small decrease in the mean life after inspection. But the
material strengths of products are deteriorated significantly and may not meet the consumer’s
expectation. Therefore, engineers pay more attention to the percentiles of lifetimes than the mean
life in life testing applications. Moreover, most of the employed life distributions are not
symmetric. In viewing Marshall and Olkin [13], the mean life may not be adequate to describe
the central tendency of the distribution. This reduces the feasibility of acceptance sampling plans
if they are developed based on the mean life of products. Actually, percentiles provide more
information regarding a life distribution than the mean life does. When the life distribution is
symmetric, the 50th percentile or the median is equivalent to the mean life. Hence, developing
acceptance sampling plans based on percentiles of a life distribution can be treated as a
generalization of developing acceptance sampling plans based on the mean life of items.
Balakrishnan et al. [2] proposed the acceptance sampling plans could be used for the quantiles
and derived the formulae whereas Lio et al. [12] developed for the acceptance sampling plans for
any other percentiles of the Birnbaum-Saunders (BS) model. They have developed the
acceptance sampling plans for percentile by replace the scale parameter by the 100qth percentile
in the BS distribution function. Rao and Kantam [16] developed acceptance sampling plans from
truncated life tests based on the log-logistic distribution for Percentiles. These reasons motivate
to develop acceptance sampling plans based on the percentiles of the inverse Rayleigh
distribution under a truncated life test.

The rest of the article is organized as follows. The proposed sampling plans are established for
the inverse Rayleigh percentiles under a truncated life test, along with the operating
characteristic (OC) and some relevant tables are given in Section 2. Two examples based on real
fatigue life data sets are provided for the illustration in Section 3, Future work is given in Section
4 and discussion and some conclusions are made in Section 5.
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2. Acceptance Sampling Plans

Assume that the lifetime of a product follows an inverse Rayleigh distribution which has the
following probability density function (pdf) and cumulative distribution function (cdf),
respectively:

2
f(t;o)=2%e'(”/’)h; t=0,0>0, (1)
and
F(t;0)= e 120,050, )

where o is the scale parameter. The failure rate of a single parameter inverse Rayleigh
distribution is increasing for t<1.0694543c and decreasing for >1.0694543c as shown by
Mukherjee and Saran [14]. Given 0 < ¢ <1 the 100q™ percentile (or the q™ quantile) is given by:

¢ =o(-ng)"™. (3)

q

The ¢, is increases as q increases. Let 77 = (—lnq)_m. Then, Eq. (3) implies that

o=t /1. 4)

To develop acceptance sampling plans for the inverse Rayleigh percentiles, the scale parameter
o in the inverse Rayleigh cdf is replaced by Eq. (4) and the inverse Rayleigh cdf is rewritten as:

2
Foy=e\“. 450,
Lettingd =t/t, , F(t) can be rewritten emphasizing its dependence on ¢ as:
q
2
Ft;0)=e""; t50.

Taking partial derivative with respect to J , we have:

oF (1;0) _ 23 e—(l/né)z; /0.
40 no
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A common practice in life testing is to terminate the life test by a pre-determined time ¢, the
probability of rejecting a bad lot be at least p*, and the maximum number of allowable bad items

to accept the lot be c¢. The acceptance sampling plan for percentiles under a truncated life test is
to set up the minimum sample size n for this given acceptance number c¢ such that the

consumer’s risk, the probability of accepting a bad lot, does not exceed 1- p*. A bad lot means
that the true 100q™ percentile, 1, 18 below the specified percentile, t;). Thus, the probability p* is
a confidence level in the sense that the chance of rejecting a bad lot with 7, < tf; is at least equal

to p*. Therefore, for a given p”, the proposed acceptance sampling plan can be characterized by
the triplet (n,c,/10).

2.1  Minimum Sample Size
For a fixed p*our sampling plan is characterized by (n,c, t/ tg). Here we consider sufficiently

large sized lots so that the binomial distribution can be applied. The problem is to determine for
given values of p* (0 <p* <1), t;) and c, the smallest positive integer, n required to assert that

t, > tf; must satisfy:

C

() p (1= p)7 1= 0, )
where p =F(t;0,)is the probability of a failure during the time ¢ given a specified 100q™
percentile of lifetime 7, and depends only ond, = t/ 1, , since 9F(1;8)/30 >0, F(t;)is a non-

decreasing function of § . Accordingly, we have:
F(t,0)<F(t,0,)<0=0,
Or equivalently,

F(t,0) sF (1, 6)<t,=t,.

The smallest sample size n satisfying the inequality (5) can be obtained for any given g, t/ t;) ,

p". Whereas, the smallest sample size n calculation in Rosaiah and Kantam [20] only needs
input values for ¢/, and p'. Hence, the proposed process to find the smallest sample size in this
case is the same as the procedure provided by Rosaiah and Kantam [20] for the inverse Rayleigh
model except in place of ¢/, replace by t/ tZ at g. To save space, only the results of small
sample sizes for ¢g=0.1, t/t2=0.7, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5; p"=0.75, 0.90, 0.95, 0.99; ¢ =
0,1,2,3,4,5,6,7,8,9, 10 are reported in Table 1.
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Table 1. Minimum sample sizes necessary to assert the 10" percentile to exceed a given values, tg‘l, with

probability p* and the corresponding acceptance number, c, for the inverse Rayleigh distribution using the
binomial approximation.

. t/ty,
p C
0.7 0.9 1.0 1.5 2.0 2.5 3.0 35

0.75 0 10 5 4 2 1 1 1 1
0.75 1 20 9 7 4 3 3 2 2
0.75 2 30 13 10 5 4 4 4 3
0.75 3 39 17 13 7 6 5 5 5
0.75 4 48 21 16 9 7 6 6 6
0.75 5 56 25 19 11 9 8 7 7
0.75 6 65 29 22 12 10 9 8 8
0.75 7 74 32 25 14 11 10 9 9
0.75 8 82 36 28 16 13 11 11 10
0.75 9 91 40 31 17 14 13 12 11
0.75 10 99 44 34 19 15 14 13 12
0.90 0 17 7 6 3 2 2 2 1
0.90 1 29 12 10 5 4 3 3 3
0.90 2 40 17 13 7 5 5 4 4
0.90 3 50 22 17 9 7 6 5 5
0.90 4 60 26 20 11 8 7 7 6
0.90 5 70 30 23 12 10 9 8 7
0.90 6 79 34 27 14 11 10 9 9
0.90 7 89 38 30 16 13 11 10 10
0.90 8 98 42 33 18 14 12 12 11
0.90 9 107 47 36 20 15 14 13 12
0.90 10 116 51 39 21 17 15 14 13
0.95 0 22 9 7 3 2 2 2 2
0.95 1 35 15 11 6 4 4 3 3
0.95 2 47 20 15 8 6 5 5 4
0.95 3 58 25 19 10 7 6 6 6
0.95 4 68 29 23 12 9 8 7 7
0.95 5 79 34 26 14 10 9 8 8
0.95 6 89 38 30 15 12 10 10 9
0.95 7 99 42 33 17 13 12 11 10
0.95 8 108 47 36 19 15 13 12 11
0.95 9 118 51 40 21 16 14 13 13
0.95 10 127 55 43 23 18 16 15 14
0.99 0 34 14 11 5 4 3 3 2
0.99 1 49 20 16 8 5 5 4 4
0.99 2 62 26 20 10 7 6 5 5
0.99 3 74 31 24 12 9 8 7 6
0.99 4 86 36 28 14 11 9 8 8
0.99 5 97 41 32 16 12 10 9 9
0.99 6 108 46 35 18 14 12 11 10
0.99 7 119 51 39 20 15 13 12 11
0.99 8 130 55 43 22 17 15 13 13
0.99 9 140 60 46 24 18 16 15 14
0.99 10 150 64 50 26 20 17 16 15
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Table 2. Minimum sample sizes necessary to assert the 10" percentile to exceed a given values, tg‘l, with

probability p* and the corresponding acceptance number, ¢, for the inverse Rayleigh distribution using the
Poisson approximation.

. . t/ty,

P 07 09 10 15 20 25 30 35
0751 0| 11 5 4 3 2 2 2 2
075 1] 18 8 7 4 3 3 3 3
075 | 2| 30 13 11 6 5 5 5 5
075| 3] 39 18 14 8 7 6 6 6
075| 4| 49 2 18 10 9 8 7 7
075| 5| 58 26 21 12 10 9 9 9
075| 6| 66 30 24 14 11 11 10 10
075| 7| 75 34 27 16 13 12 11 11
075| 8| 84 38 30 17 14 13 13 12
075 9| 92 41 33 19 16 14 14 13
0.75| 10| 100 45 36 21 17 16 15 15
090 0] 18 8 7 4 3 3 3 3
090 1| 28 13 10 6 5 5 5 4
09| 2| 4 19 15 9 7 7 6 6
090 3| 52 23 19 11 9 8 8 8
090| 4| 62 28 22 13 11 10 9 9
09| 5| 72 32 2 15 12 11 11 11
090 6| 82 37 20 17 14 13 12 12
090 7| 91 41 32 19 16 14 14 13
090| 8| 1001 45 36 21 17 16 15 15
090| 9| 110 49 39 23 19 17 16 16
090| 10| 119 53 42 25 20 19 18 17
095 | 0| 24 11 9 5 4 4 4 4
095| 1] 35 16 13 8 6 6 6 5
095| 2| 49 2 17 10 9 8 7 7
095| 3| 60 27 22 13 10 10 9 9
095| 4| 71 32 25 15 12 11 11 10
095| 5| 81 37 20 17 14 13 12 12
095| 6| 92 41 33 19 16 14 14 13
095| 7| 102 46 36 21 17 16 15 15
095| 8| 112 50 40 23 19 17 17 16
095| 9| 121 54 43 25 21 19 18 18
095| 10| 131 59 47 27 2 20 19 19
099 0] 36 16 13 38 6 6 6 5
099 1| 50 23 18 11 9 8 8 8
099 2| 65 20 23 14 11 10 10 10
099| 3| 78 35 28 16 13 12 12 11
099| 4| 90 40 32 19 15 14 13 13
099| 5| 100 46 36 21 17 16 15 15
099| 6| 113 51 40 23 19 18 17 16
099| 7| 124 55 44 25 21 19 18 18
099| 8| 134 60 48 28 23 21 20 19
099| 9| 145 65 52 30 25 23 21 21
099 | 10| 156 70 55 32 26 24 23 22
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If p=F(t;0,)1s small and n is large the binomial probability may be approximated by Poisson
probability with parameter A = np so that the left side of (5) can be written as:

~ et=l-p, (6)

0!

where A =n F(;6,).

2.2 Operating Characteristic of the Sampling Plan (n,c, t/ tf]))
The operating characteristic (OC) function of the sampling plan (n,c, t/ t(?) is the probability of

accepting a lot. It is given as:

L(p) = 2(?)19[(1 -p). (7)

where p = F(t;0). It should be noticed that F(#;0)can be represented as a function of & =¢/¢, .

Therefore, p=F (io di) where d_ =1, / t;’. Using Eq. (7), the OC values and OC curves can be
q9 9
obtained for any sampling plan (n,c, t/ tf]’). To save space, we present Table 3 to show the OC

values for the sampling plan (n,c=4,t/ t),). Figurel shows the OC curves for the sampling
plan (n,c,t/tg_l)with p =0.75 for §, =1, where ¢ =0,1,2,3,4,5,6,7,8,9,10.

Operating Curve

0.8 A

Power

0.6 1

04 1

02 1

0.0

Figure 1. OC curves for ¢ = 0,1,2,3,4,5,6,7,8,9,10, respectively under p*=0.90, 50 =1 based on the 10™

percentile, d = do_1 , of inverse Rayleigh distribution.
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Table 3. Operating characteristic values of the sampling plan (n,c =5,¢/ tg}l)for a given p*under inverse

Rayleigh distribution.

tO.l / tgl

p n t/ty, 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
0.75 | 56 0.70 | 0.2483 0.9726 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
075 | 25 0.90 | 0.2214 0.8554 0.9963 1.0000 1.0000 1.0000 1.0000 1.0000
075 | 19 1.00 | 0.2432 0.8083 0.9890 0.9998 1.0000 1.0000 1.0000 1.0000
075 | 11 1.50 | 0.1640 0.5018 0.8194 0.9614 0.9950 0.9996 1.0000 1.0000

0.75 9 2.00 | 0.1162 0.3254 0.5919 0.8099 0.9323 0.9814 0.9961 0.9993
0.75 8 2.50 | 0.1016 0.2515 0.4541 0.6577 0.8167 0.9163 0.9673 0.9891
0.75 7 3.00 | 0.1626 0.3097 0.4807 0.6455 0.7809 0.8775 0.9379 0.9715
0.75 7 3.50 | 0.0990 0.2006 0.3334 0.4807 0.6234 0.7461 0.8409 0.9073

090 | 70 0.70 | 0.0941 0.9313 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.90 | 30 0.90 | 0.0928 0.7360 0.9906 0.9999 1.0000 1.0000 1.0000 1.0000
090 | 23 1.00 | 0.0973 0.6521 0.9715 0.9995 1.0000 1.0000 1.0000 1.0000
090 | 12 1.50 | 0.0955 0.3890 0.7463 0.9392 0.9915 0.9993 1.0000 1.0000
090 | 10 2.00 | 0.0489 0.1932 0.4442 0.7055 0.8824 0.9646 0.9919 0.9986
0.90 9 2.50 | 0.0323 0.1162 0.2757 0.4856 0.6895 0.8420 0.9323 0.9755
0.90 8 3.00 | 0.0434 0.1215 0.2515 0.4188 0.5931 0.7445 0.8563 0.9276
0.90 7 3.50 | 0.0990 0.2006 0.3334 0.4807 0.6234 0.7461 0.8409 0.9073
0951 79 0.70 | 0.0464 0.8924 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
095 | 34 0.90 | 0.0425 0.6277 0.9828 0.9999 1.0000 1.0000 1.0000 1.0000
095 | 26 1.00 | 0.0446 0.5286 0.9504 0.9989 1.0000 1.0000 1.0000 1.0000
095 | 14 1.50 | 0.0288 0.2134 0.5858 0.8768 0.9796 0.9981 0.9999 1.0000
095 10 2.00 | 0.0489 0.1932 0.4442 0.7055 0.8824 0.9646 0.9919 0.9986
0.95 9 2.50 | 0.0323 0.1162 0.2757 0.4856 0.6895 0.8420 0.9323 0.9755
0.95 8 3.00 | 0.0434 0.1215 0.2515 0.4188 0.5931 0.7445 0.8563 0.9276
0.95 8 3.50 | 0.0200 0.0605 0.1370 0.2515 0.3936 0.5445 0.6838 0.7976
099 | 97 0.70 | 0.0098 0.7887 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000
0.99 | 41 0.90 | 0.0094 0.4404 0.9601 0.9997 1.0000 1.0000 1.0000 1.0000
099 | 32 1.00 | 0.0079 0.3115 0.8856 0.9967 1.0000 1.0000 1.0000 1.0000
099 | 16 1.50 | 0.0077 0.1060 0.4300 0.7931 0.9598 0.9957 0.9997 1.0000
099 | 12 2.00 | 0.0071 0.0570 0.2169 0.4843 0.7463 0.9085 0.9757 0.9952
099 | 10 2.50 | 0.0093 0.0489 0.1543 0.3356 0.5543 0.7493 0.8824 0.9540
0.99 9 3.00 | 0.0100 0.0415 0.1162 0.2443 0.4133 0.5919 0.7474 0.8612
0.99 9 3.50 | 0.0034 0.0157 0.0491 0.1162 0.2230 0.3625 0.5165 0.6628

2.3 Producer’s Risk
The producer’s risk is defined as the probability of rejecting the lot whenz, > tf;. For a given

value of the producer’s risk, say &, we are interested in knowing the value of d_ to ensure the
producer’s risk is less than or equal to « if a sampling plan (n,c,t/ tf])) is developed at a
specified confidence level p®. Thus, one needs to find the smallest value d, according to Eq. (7)

as:
c

2(?)Pi(1 -p) z1-a, (8)

i=
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t 1 0

where p =F(t—0d—),dq =tq/tq :
q 7q

Table 4. - Minimum ratio of true do_1 for the acceptability of a lot for the inverse Rayleigh distribution and

producer’s risk of 0.05.

tlty,
P e :
0.7 0.9 1.0 1.5 2.0 25 3.0 3.5

075 | 0 | 25031 27631 28761 3.4621 43273 5.1953 6.0613 69247
075 | 1 | 1.6095 17126 2291  2.8337 35398 3.6832 4.2918 49188
075 | 2 | 14859 15625 19391 23624 29533 35398 3.4990  4.0080
075 | 3 | 14164 14786 1.8335 22852 25913 3.1153  3.6245 4.1545
075 | 4 | 13695 14231 17658 2.0764 23381 28074 3.2723  3.7439
075 | 5 | 13373 13841 17159 20670 23935 25767 3.0021  3.4329
075 | 6 | 13141 13552 1.6124 19350 22346 23935 27988  3.1918
075 | 7 | 1.2844 13314 15926 18262 21053 22512 2.6212  3.0021
075 | 8 | 12700 13122 15733  1.8447 19944 23935 24783  2.8337
075 | 9 | 12577 12972 15081 17658 20670 22795 23563  2.6991
075 | 10 | 1.2473 12825 15006 1.6935 19814 2.1810 22512  2.5767
090 | 0 | 25231 26541 3.0295 3.8361 47952 57544 6.0613 69247
090 | 1 | 1.6841 18188 24062 3.0525 3.5398 42517 49727 56883
090 | 2 | 15598 1.6504 2.1501 2.5840 32258 35398 41356 4.7393
0.90 | 3 | 14908 15733 2.0032 24450 28604 3.1153 3.6245 4.1545
090 | 4 | 14343 15056 1.9066 22292 25988 3.1153 3.2723  3.7439
090 | 5 | 1.3947 14573 17797 2.1863 25840 28785 3.0021  3.4329
090 | 6 | 13633 14343 17322 20530 24190 26831 3.1368 3.5817
090 | 7 | 13392 14033 1.6966 2.0392 22795 25265 29438 33693
090 | 8 | 13198 13778 1.6686 19433 21654 25988 2.7902  3.1918
090 | 9 | 13103 13572 1.6415 1.8598 22075 24851 2.6596  3.0423
090 | 10 | 12972 13392 1.5843 18636 21151 23810 2.5478 29061
095 | 0 | 25631 238521 3.0295 3.8361 47952 5.7544 67150 7.6728
095 | 1 | 17388  1.8447 24988 3.0525 3.8226 42517 49727 56883
095 | 2 | 1.6038 1.6935 22237 27397 32258 38715 41356 4.7393
095 | 3 | 15258 1.6095 2.0670 24450 28604 3.4329 4.0080 4.5725
095 | 4 | 14667 15545 19643 23563 27902 3.1153  3.6390  4.1545
095 | 5 | 14320 15006 1.8868 2.1863 25840 2.8785 3.3568  3.8388
095 | 6 | 13990 14715 17832 2.1501 24190 29061 3.1368  3.5817
095 | 7 | 13716 143838 1.7422 20392 24254 27397 29438 33693
095 | 8 | 13552 14098 17094 2.0255 23084 25988 2.7902  3.1918
095 | 9 | 13373 13968 1.6810 19391 22075 24851 2.8969  3.3080
095 | 10 | 13217 13778 1.6565 19391 22292 25407 2.7732  3.1696
099 | 0 | 25431 29531 32125 41782 50482 6.0613 67150 7.6728
099 | 1 | 1.8044 19474 26288 32144 40258 45956 53533  6.1087
099 | 2 | 16686 1.7797 23441 2.8694 34329 38715 45269 5.1706
0.99 | 3 | 15843 1.6841 2.1758 2.6752 32144 3.6684 4.0080 4.5725
099 | 4 | 15284 16181 20576 2.5407 29438 33445 3.9047  4.4603
099 | 5 | 14859 15706 1.9728 23747 27315 3.1046 3.6245  4.1356
099 | 6 | 14550 15258 1.9066 23143 26911 3.0836 3.3818 38715
099 | 7 | 14298 14981 1.8560 2.1968 25478 29155 3.1918  3.6536
099 | 8 | 14033 14762 18116 21654 25336 27732 3.2373  3.6982
099 | 9 | 13862 14480 1.7762 2.0764 24254 27902  3.0941  3.5261
0.99 | 10 | 13674 14343 17455 20623 23321 26752 2.9630  3.3944
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To save space, based on sampling plans (n,c, t/ tf]’) established in Tables 1 the minimum ratios of

d,, for the acceptability of a lot at the producer’s risk of & =0.05 are presented in Table 4.

3. Ilustrative Examples

In this section, two examples with real data sets are given to illustrate the proposed acceptance
sampling plans. The first data set is of the data given arisen in tests on endurance of deep groove
ball bearings (Lawless [11], p.228). The data are the number of million revolutions before failure
for each of the 23 ball bearings in life test and they are: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12,
105.84, 127.92, 128.04 and 173.40. The second data set is obtained from Proschan [15] and
represents times between successive failures of air conditioning (AC) equipment in a Boeing 720
airplane and they are as follows: 12, 21, 26, 27, 29, 29, 48, 57, 59, 70, 74, 153, 326, 386 and
502.

As the confidence level is assured by this acceptance sampling plan only if the lifetimes are from
the inverse Rayleigh distribution. Then, we should check if it is reasonable to admit that the
given sample comes from the Inverse Rayleigh distribution by the goodness of fit test and model
selection criteria. The first data set was used by Sultan [23] to demonstrate the goodness of fit for
generalized exponential distribution and Gupta and Kundu [8] fitted for extended exponential
distribution. However, the acceptance sampling plans under the truncated life test based on the
Inverse Rayleigh distribution for percentiles has not yet been developed. We fit the inverse
Rayleigh distribution to the two data sets separately. We used the Kolmogorov-Smirnov (K-S)
tests for each data set to the fit the inverse Rayleigh model. It is observed that for Data Sets I and
I, the K-S distances are 0.12091 and 0.21378 with the corresponding p values are 0.85028 and
0.43879 respectively. For data sets I and II, the chi-square values are 0.3052 and 2.6383
respectively. Therefore, it is clear that inverse Rayleigh model fits quite well to both the data
sets.

3.1  Example 1
Assume that the lifetime distribution is inverse Rayleigh distribution and that the experimenter is
interested to establish the true unknown 10™ percentile lifetime for the ball bearings to be at least

30 million revolutions with confidence p*=0.90 and the life test would be ended at 30 million
revolutions, which should have led to the ratio t/ ty, = 1.0. Thus, for an acceptance number ¢ =5

and the confidence level p“=0.90, the required sample size n found from Table 1 should be at
least 23. Therefore, in this case, the acceptance sampling plan from truncated life tests for the
inverse Rayleigh distribution 10th percentile should be (n,c, t/ t(?) = (23, 5, 1.0). Based on the ball

bearings data, the experimenter must have decided whether to accept or reject the lot. The lot
should be accepted only if the number of items of which lifetimes were less than or equal to the
scheduled test lifetime, 30 million revolutions, was at most 5 among the first 23 observations.
Since there were 2 items with a failure time less than or equal to 30 million revolutions in the
given sample of n =23 observations, the experimenter would accept the lot, assuming the 10th

percentile lifetime 7, , of at least 30 million revolutions with a confidence level of p*=0.90. The
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OC values for the acceptance sampling plan (n,c,t/t2)= (23,5,1.0) and confidence level

p"=0.90 under inverse Rayleigh distribution from Table 3 is as follows:

f, /10, | 1.00 | 125 | 150 | 175 | 2.00 | 225 | 250 | 275
OC ] 0.0973 | 0.6521 | 0.9715 | 0.9995 | 1.0000 | 1.0000 | 1.0000 | 1.0000

This shows that if the true 10™ percentile is equal to the required 10™ percentile (t,, / ty,= 1.00)

the producer’s risk is approximately 0.9027 (=1- 0.0973). The producer’s risk is almost equal to
zero when the true 10" percentile is greater than or equal to 2.00 times the specified 10™
percentile.

From Table 4, the experimenter could get the values of d, for different choices of ¢ and

t/ t,in order to assert that the producer’s risk was less than 0.05. In this example, the value of

d,, should be 1.7797 for ¢ = 5, ¢/t0,=1.0 and p*=0.90. This means the product can have a 10"

percentile life of 1.7797 times the required 10™ percentile lifetime in order that under the above
acceptance sampling plan the product is accepted with probability of at least 0.95.
Alternatively, assume that products have an inverse Rayleigh distribution and consumers wish to

reject a bad lot with probability of p*=0.75. What should the true 10™ percentile life of products
be so that the producer’s risk is 0.05 if the acceptance sampling plan is based on an acceptance
number ¢ =5 and t/ tg_l =0.7? From Table 4, we can find that the entry for p*=0.75, ¢ =5, and

t/ ts,=0.7 is d,,= 1.3373. Thus, the manufacturer’s product should have a 10™ percentile life at

least 1.3373 times the specified 10™ percentile life in order for the products to be accepted with
probability 0.75 under the above acceptance sampling plan. Table 1 indicates that the number of

products required to be tested is n = 56 so that the sampling plan is (n, c,t/ ty,)=(56,5,0.7).

3.2  Example 2

Suppose an experimenter would like to establish the true unknown 10™ percentile lifetime for the
data set regarding the failure of air conditioning (AC) equipment in a Boeing 720 airplane
mentioned above to be at least 20 and the life test would be ended at 20, which should have led

to the ratio t/ ty,= 1.00. The goodness of fit test for these 15 observations were verified and
showed that inverse Rayleigh model as a reasonable goodness of fit for these 15 observations.
Thus, with ¢ =2 and p*=0.95, the experimenter should find from Table 1 the sample size n must
be at least 15 and the sampling plan to be (n,c,t/tg_1)= (15, 2, 1.00). Since there is a one item
with a failure time less than 20 in the given sample of n = 15 observations, the experimenter
would accept the lot, assuming the 10" percentile lifetime t,, of at least 20 with a confidence

level of p*=0.95.

174



Rao, G.S., Kantam, R.R.L., Rosaiah, K., Reddy, J.P. (2012). Electron. J. App. Stat. Anal., Vol. 5, Issue 2, 164 — 177.

4. Future Work

Construction of these sample plans with reference to population percentiles is in progress by the
authors in other ramifications also such as double, sequential, two-stage and interval censored
group samples.

5. Discussion and Conclusions

The sampling plans based on the inverse Rayleigh population mean developed by Rosaiah and
Kantam [20] to the inverse Rayleigh models. It shows that the minimum sample sizes are smaller
than those reported in Tables 1 and 2 of this article for the 10" percentile for both binomial and

Poisson approximation. Here, o, =t/ t), for the sampling plans based on 10" percentile is
replaced by J, =1¢/u, with g, as a specific population mean for the acceptance plans based on

the inverse Rayleigh population mean. Therefore, the acceptance sampling plans based on the
inverse Rayleigh population mean could have less chance to report a failure than the acceptance
sampling plans based on 10" percentile. The acceptance sampling plans based on population
mean could accept the lot of bad quality of the 10" percentiles. The minimum sample sizes are
reported in Table 1 of this article for the 10™ percentiles are compared with the minimum sample
sizes are reported in Table 1 of Lio et al. [12]. It shows that the minimum sample sizes using
inverse Rayleigh population are smaller than those reported in Tables 1 of Lio et al. [12] for
Birnbaum-Saunders population for the 10" percentile when &, <1.0 whereas, the minimum

sample sizes using inverse Rayleigh population are larger than those reported in Tables 1 of Lio
et al. [12] for Birnbaum-Saunders population for the 10™ percentile when 0, >1.0.

This article has derived the acceptance sampling plans based on the inverse Rayleigh percentiles
when the life test is truncated at a pre-fixed time. The procedure is provided to construct the
proposed sampling plans for the percentiles of the inverse Rayleigh distribution. To ensure that
the life quality of products exceeds a specified one in terms of the life percentile, the acceptance
sampling plans based on percentiles should be used. Some useful tables are provided and applied
to establish acceptance sampling plans for two examples.
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