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Abstract. Multicollinearity is a linear dependency between two or more 
explanatory variables in the regression models which can seriously distort the 
least squares estimates. The variance of the Ordinary Least Squares Estimates 
would be inflated and the regression coefficients often indetermined in the 
presence of multicollinearity. Therefore, biased estimators are suggested as 
alternatives to the Ordinary Least Squares Estimator. In this study, a new method 
of solving multicollinearity problem through perturbation of eigenvalues is 
proposed. The  performance of this estimator  is evaluated by comparing it with 
some existing estimators (i.e. Ridge regression and the Principal Component 
regression) in terms of mean squared error. The comparisons show that these 
new method appears to be superior to other estimators in terms of a reduction in 
the mean squared error when certain conditions (loss of information in the 
number of variables) are satisfied. Hence, the accuracy of the parameter estimate 
increases. 
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1. Introduction 
 
Multiple regression models are widely used in applied statistical techniques to quantify the 
relationship between a response variable Y and multiple predictor variables Xi, (i = 1, 2, ...,p) 
where p is the number of regressors, and we utilize the relationship to predict the value of the 
response variable from a known level of predictor variables, and to the statistical hypotheses. 
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In estimating the parameters of the linear regression model using the Ordinary least squares 
method, one assumption made is that the independent variables Xi are not linearly (perfectly) 
correlated. In other words, the design matrix X is of full rank ( e.g.  rank (X) = x) . However, this 
is not usually so in practice – Hence, there is some degree of intercorrelation among the 
explanatory variables due largely to the interdependence of much economic magnitude over 
time. When this assumption is violated, and there is intercorrelation in the explanatory variables, 
we say there exist collinearly or multicollinearty between the explanatory variables [1]. The 
problem of multicollinearity is being able to separate the effects of two (or more) variables on an 
outcome variable. If two variables are significantly related, it becomes impossible to determine 
which of the variables accounts for variance in the dependent variable. As a rule of thumb, the 
problem occurs when explanatory variables are more highly correlated with each other than they 
are with the dependent variable. Mathematically, the problem is that the X matrix is not full rank. 
When this occurs, the X matrix (and hence the X’X matrix) has determinant zero and can not be 
inverted.  High interpredictor correlations will lead to less stable estimate of regression weights. 
When using multiple regression, occasionally we experience an apparent contradiction of 
intuition or theory when one or more of the regression coefficients seem to have the wrong sign. 
This makes a serious interpretative problem, as it is really difficult to explain a negative estimate 
(say) of a parameter to the model user when that user believes that the coefficient should be 
positive [6]. The relationship can be problematic if the parameter estimates obscure some 
functional relationship of interest to a researcher. It becomes very difficult to identify the 
separate effect of the variables involved precisely. Collinearity therefore makes it more difficult 
to achieve significance of the collinear parameters. In fact, since the regression coefficients are 
interpreted as the effect of change in their corresponding  variables, all other things held 
constant, our ability to interpret the coefficients declines the more persistent and severe the 
collinearly. The lack of precision is manifested by the existence of potentially large sampling 
variance for estimators of the unknown parameters and high correlation between affected 
estimators.  
In this paper, we propose a new method to handle the problem of multicollinearity via 
perturbation of eigenvalues. 
 
 
2. Some Solutions to Multicollinearity 
 
One suggestion that has been frequently made in trying to overcome the problem of 
multicollinearity is to collect new data [8]. Sometimes, the problem of multicollinearity occurs 
due to inadequate or erroneous data. Unfortunately, this is not always possible since some 
analysis must be based on the available data. Furthermore, this solution is not possible when the 
presence of multicollinearity is the result of internal constraints of the system being studied [7]. 
Dropping of variables that duplicate the role of other ‘more’ important variables has also been 
proposed as a natural solution to the multicollinearity problem. However, for models that strictly 
adhere to some theoretical framework, this is equivalent to massive loss of information. 
Two other most popular methods are; the Ridge Regression and the Principal Component 
Analysis. Unfortunately, the ridge estimator is not generally accepted as a vital alternative to the 
Ordinary Least Squares (OLS) estimator because it depends on unknown parameters. In any 
specific application of ridge regression, there is no guarantee that the sample estimate is a 
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member of the class of more accurate estimates. The efficiency of ridge estimation therefore 
depends upon the estimate of prior information the researcher has regarding the population 
model. 
The principal component regression is also proposed, hoping that the linear combination of the 
X’s as a regressor will be able to keep all the variables into the model. Depending on the 
structure of the relationship among the regressors, component loadings may affect parameter 
estimates, e.g., loadings are similar, resulting in regression coefficients that are similar for all 
regressors. This will cause problem in interpretation because the relative importance of 
predictors is being masked by the way the linear combination is formed. Furthermore, the 
problem of choosing an optimum subset of predictors in a principal component analysis persists. 
A possible strategy is to keep only a few of the first components, but the components are chosen 
to explain the explanatory variables rather than the dependent variable, and so nothing 
guarantees that the principal components which ‘explain’ the regressors are relevant for the 
dependent variable. Also, the method uses less of information contained in the sample since the 
number of components retained is smaller than the number of the regressors. For this reason, the 
principal component regression is considered inappropriate as a solution to multicollinearity [5]. 
The literature on linear models with special focus on multicollinearity spans several decades 
already. However, no optimal solution has been achieved so far, so that there is still a continuing 
active interest on the problem. 
 
 
3. Proposed Solution to Multicollinearity Problem 
 
We will follow a line similar to [3] via the eigenvalue perturbation to identify points of 
influential eigenvalues to individual estimators of interest η , say. Since it has been found from 
literatures that multicolinearity exists whenever at least one of the eigenvalues of X’X is small 
[4]. To study how a perturbation of eigenvalue can have influence on model: 
 

εXβY +=            (1) 
 
 where ),0(~ 2Iε δN  we write the perturbed distribution of ε in the form of ),0(~ 2 1Aε −δN , 
where A is a diagonal matrix with diagonal elements ii alS +=1  (for i=1,2,…..,n) with 

).....,,.........( 1 nll=l  and a are the direction and the magnitude of perturbation respectively. 
Let '

1 )..,.........( nSS=S , the perturbation caused by the variation of a through alS += 1  spans a 
surface of ))(( aSη  in an )1( +η  dimensional space. 
Now from the ridge regression estimation proposed by Hoerl and Kennard (1970). The ridge 
regression estimation is really a family of estimators given by: 
 

YXIXXβ '' )()(ˆ κκ += 	   	   	   	   	   	   	   	   	   (2) 
 
Where 0>κ  is a constant, often called the shrinkage or biasing parameter. In our case, we 
extend the above estimator by introducing the eigenvalues thereby having 

Y]XpI)(λ[p(β '11 −+= ττ)ˆ where λ= diagonal eigenvalues and p= corresponding  eigenvectors. 
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Motivated by the relationship between the singular values ( si 'δ ) of the design matrix X and 
eigenvalues of X’X in the above equation,, which the cross-product matrix X’X is a component 
of the variance-covariance matrix (i.e. 12 )( −XX'δ  ) of β , it is easy to see the role that 
eigenvalues play in collinearity.  
From the least squares estimator YXX)(Xβ '1' −=ˆ of β , and introducing the eigenvalue 
decomposition of X’X we have that: 
 

∑ −−− == '
ii

1
i

'1' ppλppλXX 1)(         (3) 
 
and so with perturbation of the eigenvalues, we can write: 
 

∑∑ −− +=+= '
ii

'' pcIYpXpIβ 11 )()()(ˆ τλτλτ ii 	   	   	   	   	   	   (4) 
 
where YXpc '

i i= . ip  is an eigenvector. If we now consider the variance–covariance matrix 
ofβ , we have: 
 

∑ −− +=+= '
iippIpI)pβ 12'12 )(()ˆ( τλδτλδ iV       (5) 

 
So we can rewrite the variance as: 
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Thus perturbing the eigenvalues of the original predictor variable cross-products matrix to 
“push” them away from zero, thereby reducing the amount of collinearity of the variables. 
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In order to generate multivariate normal vectors to be used, the following procedure was 
adopted: 
 

1. For fixed sample size n (n = 30, 100 and 200) we generate 5 replicates, each of size n, 
from the regression: εββββ +++++= 5522110 ........................ xxxY . 

2. Initial (Guess) values were assigned to β ’s. These are ,10 =β  
,21 =β ,32 =β 43 =β , 54 =β and 65 =β . 

3. We then calculated the p x p correlation matrix for this simulated data and extract the p 
eigenvalues and order them from largest (position 1) to smallest (position p). 

4. The number of variables in the multi-normal distributions to be generated is to be 
predetermined. The SAS V9 package  will be used for this analysis. 

  
We shall use these steps in performing the Monte Carlo experiment using statistical software 
package (SAS) to access the performance of the eigenvalue in the presence of multicollinearity at 
different sample sizes. 
 
 
4. Simulated Data and Result 
 
In order to evaluate the performance of eigenvalues in identifying the true model, when we have 
multi-collinear predictors, the following simulation  study was conducted : we have sample sizes 
n= 30,  100 and 200, with fixed model size (m= number of explanatory variables in the 
regression model εXβY +=  to five variables). The (true) coefficient vectors 

)6,5,4,3,2,1( 543210 ====== ββββββ  and the disturbance vectorε , is normally distributed 

with 0=µ  and 1)( =εσ . 
Multicollinear X (30, 100, 200 : 5) matrices yielding X’X with different condition index have 
been generated by the procedure laid down as stated above. We shall test with multicollinear 
correlation coefficients of 0.999, 0.55 and 0.19. This will enable us to have an in-depth 
knowledge of the study. The author wrote his program (in SAS) for computation needed in this 
work. 
Tables 1 to 3 present the average of the estimates at different sample sizes n= 30, 100 and 200. In 
order to capture the true behavior of the eigenvalues in the presence of multicollinearity, the 
variables were tested at different levels of collinearity using multicollinear correlation coefficient 
(m.c.e). As stated above, we classify as follows: perfect collinearity= 0.999, medium= 0.55 and 
low= 0.19. 
Table 1 summarizes the parameter estimates from different methods as well as the root mean 
squared error (RMSE) assessing the predictive ability of the model. For principal component 
regression, only two components were used in the model since it already accounts for 80% of the 
total variation in the five independent variables. 
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Table 1. Performance evaluation of estimators using average of parameter estimates for n = 30. 
  X1 X2 X3 X4 X5 RMSE 
 
Simulated 
Parameters 

High 2 3 4 5 6  
Medium 2 3 4 5 6  

Low 2 3 4 5 6  
 
    OLS 

Cor coeff =0.99 -3.79 -4.31 4.06 1.08 3.35 0.97 
Cor.coeff.= 0.55 -0.07 -0.48 0.45 0.12 0.37 0.97 
Cor.coeff.= 0.19 0.16 -0.24 0.23 0.06 0.19 0.97 

 
Ridge 
Estimator 

High -0.06 -0.67 0.82 -0.17 0.50 1.15 
Medium -0.01 -0.41 0.40 0.08 0.33 0.98 

Low 0.16 -0.23 0.22 0.06 0.18 0.97 
Perturbed 
Eigenvalue 
Estimator 

High -0.09 -0.79 0.94 -0.20 0.56 1.14 
Medium -0.01 -0.42 0.41 0.08 0.34 0.98 

Low 0.16 -0.23 0.22 0.06 0.18 0.97 
Principal  
Component 
Regression 

High 0.17 2.97 3.55 3.45 3.82 0.97 
Medium 0.19 -0.01 0.99 -0.66 0.47 0.97 

Low 0.20 -0.01 0.69 -0.37 0.14 0.97 
 
Table 2. Performance evaluation of estimators using average of parameter estimates for n = 100. 
  X1 X2 X3 X4 X5 RMSE 
 
Simulated 
Parameters 

High 2 3 4 5 6  
Medium 2 3 4 5 6  

Low 2 3 4 5 6  
 
    OLS 

Cor coeff =0.99 -2.65 -0.49 2.19 0.46 0.62 1.02 
Cor.coeff.= 0.55 -0.19 -0.05 0.24 0.05 0.07 1.02 
Cor.coeff.= 0.19 -0.03 -0.03 0.12 0.03 0.03 1.02 

 
Ridge 
Estimator 

High -0.07 -0.13 0.28 0.01 0.05 1.04 
Medium -0.12 -0.05 0.21 0.04 0.06 1.02 

Low -0.03 -0.03 0.12 0.03 0.03 1.02 
Perturbed 
Eigenvalue 
Estimator 

High -0.09 -0.15 0.32 0.01 0.05 1.03 
Medium -0.12 -0.06 0.21 0.04 0.06 1.02 

Low -0.03 -0.03 0.12 0.03 0.03 1.02 
Principal  
Component 
Regression 

High 0.05 0.29 1.83 -0.43 2.69 1.02 
Medium 0.07 0.07 -0.32 -0.17 0.39 1.02 

Low 0.12 0.07 -0.11 -0.17 0.11 1.02 
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Table 3. Performance evaluation of estimators using average of parameter estimates for n = 200. 
  X1 X2 X3 X4 X5 RMSE 
 
Simulated 
Parameters 

High 2 3 4 5 6  
Medium 2 3 4 5 6  

Low 2 3 4 5 6  
 
    OLS 

Cor coeff =0.99 -2.33 -0.28 1.36 0.75 0.60 1.05 
Cor.coeff.= 0.55 -0.18 -0.03 0.15 0.08 0.07 1.05 
Cor.coeff.= 0.19 -0.04 -0.02 0.08 0.04 0.03 1.05 

 
Ridge 
Estimator 

High -0.05 -0.07 0.14 0.06 0.03 1.07 
Medium -0.11 -0.03 0.12 0.07 0.05 1.05 

Low -0.04 -0.02 0.07 0.04 0.03 1.05 
Perturbed 
Eigenvalue 
Estimator 

High -0.07 -0.09 0.16 0.06 0.04 1.06 
Medium -0.12 -0.03 0.13 0.07 0.05 1.04 

Low -0.04 -0.02 0.07 0.04 0.03 1.05 
Principal  
Component 
Regression 

High 0.04 0.06 0.36 1.12 2.56 1.06 
Medium 0.06 0.02 -0.50 0.22 0.38 1.05 

Low 0.09 0.01 -0.03 0.13 0.11 1.05 
 
A critical look at the above tables reveal that the new method performed better than the ridge 
regression method using the RMSE which is specifically what we set out to minimize; so we 
present the results demonstrating that the RMSE is reduced through the use of this new method 
especially under severe collinearity. Among the three methods studied, the new method most 
consistently performed best for all sample sizes (i.e. 30, 100 and 200) especially under severe 
collinearity. 
 
 
5. Conclusion 
 
Perturbation model can produce superior prediction or at least comparable predictive ability to 
the usual solution to the problem of multicollinearity like Principal Component Regression and 
Ridge Estimation  
This new model estimated through perturbation of eigenvalues can accurately estimate the more 
important variables estimated early in the iterative process. The comparisons show that these 
new method appears to be superior to other estimators in terms of a reduction in the mean 
squared error when certain conditions are satisfied. Hence, the accuracy of the parameter 
estimate increases. Indirectly, the impact of multicollinearity is reduced. Therefore, this new 
method via perturbation of eigenvalues can be considered in the linear regression model in order 
to obtain a better regression equation. An important strength of this new method also, is that it 
indicates clearly in which directions solutions should be sought, unlike the  Ridge Regression 
which does not provide insight about the subspace of  that explains the response well, as pointed 
out by Frank and Fredman, (1993). Furthermore, the new method also exhibited some 
advantages over the principal component regression which uses less of information contained in 
the sample since the number of components retained is smaller than the number of the regressors 
and as such is considered inappropriate as a solution to multicollinearity.  
(Koutsoyannis, 1977). 
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Regardless of model fit, the capability of the perturbation model in estimating the contributions 
of the more important variables holds. 
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