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Abstract: Moving Average process is a representation of a time series written as a finite
linear combination of uncorrelated random variables. Our main interest is to compare a
classical estimation method,; namely Exact Maximum Likelihood Estimation (EMLE) with
the Generalized Maximum Entropy (GME) approach for estimating the parameters of the
second order moving average processes. In this paper, in applying EMLE we have to find
the exact likelihood function through deriving the probability density function of the
series. Differentiating the function with respect to the parameters, we can obtain the
exact maximum likelihood estimates. On the other hand, the idea of GME is to write the
unknown parameters and error terms as the expected value of some proper probability
distributions defined over some supports. We carry a simulation study to compare
between the presented estimation techniques.
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1. Introduction

In time series literature, many books and numerous articles have discussed all aspects of
time series applications, a time series maybe expressed in two representations;
Autoregressive or Moving Average representations.

A moving average process of order g; MA(g) may be written as a linear combination of
uncorrelated random errors as follows (Wei, 1990);

Yt=at—(91at,1—(92at,2— e qat,qZQ(B)at (1)
As in our interest the second order moving average process. MA(2) is given as follows:
Y,=a,— Oia, - 0ra, =(1—0,B— 60,8 ;. )

The moving average process is always a stationary process, for invertibility the roots of

1 — 6,B — 68> = 0 must lie outside the unit circle. Al-Talib et al. (2007) compared two
classical estimation methods with GME approach for estimating the parameters of some
moving average processes. Al-Rawwash et al. (2008) estimated the parameters of MA(1)
using EMEL, MOM and GME approach.

2. Parameter Estimation

An important step in statistical analysis is to estimate the parameters of the model of
interest. Different estimation methods have been discussed in the literature to estimate the
parameters of time series models. In this paper, we are interested in estimating the
parameters of the second order moving average process. To carry out this mission, we

© 2008 University of Salento - SIBA http://siba2.unile.it/ese 345



MTISD 2008 - Methods, Models and Information Technologies for Decision Support Systems AT

Universita del Salento, Lecce, 18-20 September 2008 [,

apply the Exact Maximum Likelihood Estimation Method (EMLE) and the GME
approach.

2.1 Exact Maximum Likelihood Estimates
Box et al. (1994) stated the exact likelihood function formula for MA(q):

— 3 Eq,|Y)

L(0,0,1Y)=Q2rnc? )" D" exp|——4— 4
20,
Where D=1, + F'L'L)F .
This leads to the exact likelihood function of MA(2):
— 3 E*q,]Y)
L (61,05, 0, V)=Q2no, )™ D[ exp —— (5)
g

a

Therefore the exact maximum likelihood estimates of #,, 6, are obtained by
differentiating (5) with respect to 8, and 6, as follows;
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. and 91 can be found by equating (6) and(7) to zero and solving those equations.

2.2 Generalized Maximum Entropy
Recalling the model of MA (2);
Ve =a; — ‘91az—1 - Hzaz—z
In order to apply GME approach, we need to reparametrize each of the unknown
parameter 6, and 6, , as well as the error terms a, (Golan et al. 1996).

Consistent with GME specification, each unknown parameter and error term should be
written as a convex combination presented as the expected value of some proper discrete
probability distribution over [0, 1] by a set of equally distanced discrete points with
corresponding probabilities.

The reparameterization of 6,6, and a, are given as follows;

0 =A4%%", 0,=4%¢"” and a, =V'W".
Our objective is to recover the unknown parameters 6, and 6,. The GME solution is to
selectw’,¢" and ¢'” that maximizes Shannon's entropy subject to the data (Al-Nasser,
2003), that’s to say, to maximize
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Subject to
1. Normalization constrains

qu_l Zq@)_l .iw;zl, t=1,..,n.
k=1

2. Data constralns
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3. The additional constrams required for the invertibility conditions
R R R
o> AP - A(l) Dol oY AV +3 4P <1

The estimates will be as follows;
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Equations (9), (10) and (11) can be used to form a point estimate of the unknown

parameter 6, = AVg", 6, = AP¢® and the unknown error @, =Vw.in other words,

R K
g g = @z o= " -
9 E A , 0, = E A7q,” and a, —kE vw, ,t=12,...,n
r=1 =1

3 Simulation Study

A Monte Carlo experiment was conducted in order to study the performance of the
presented methods; EMLE and GME. The simulation study is planed under the following
assumption:

We set initial values for the unknown parameters 6, =-0.1,0.7and @, =0.1,-0.7, the
error term a, is generated from standard normal. We generate 50 correlated samples with

MA (2) pattern, each of size = 10, 30, 50,100.
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3.1 Comparison between EMLE and GME

The comparison of EMLE and GME is illustrated by the following points:

e The GME is better than EMLE as a method for estimating the parameters of MA (2)
with initial values (-0.1, 0.1) despite the high value of GME at n=50 in estimating 6, .

e The EMLE is better than GME as a method for estimating the parameters of MA (2)
with initial values (-0.1, -0.7). Although GME is better at small sample size in
estimating 6, .

e The EMLE is better than GME as a method for estimating 8, . On the other hand GME
is better than EMLE for estimating &, at initial values (0.7, 0.1).

e The EMLE is better than GME as a method for estimating the parameters of MA (2)
with initial values ( 0.7, -0.7) despite the low value of GME at n=100 in estimating 6, .
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