
Model Based Methods for Performing Multi-Way Non-Symmetric 
Correspondence Analysis 

 
 

Eric J. Beh 
University of Western Sydney, Australia 

E.Beh@uws.edu.au 
 

Rosaria Lombardo 
Second University of Naples, Capua, Italy 

Rosaria.lombardo@unina2.it 
 

Biagio Simonetti 
University of Sannio, Italy 

simonett@unisannio.it 
 
 
Abstract: Traditionally multiple correspondence analysis involves transforming a contingency 
table to its indicator or Burt matrix form then performing the classical two-way approach. 
Alternatively, one may also consider techniques that are more model based such as the partitions 
associated with the PARAFAC/CANDECOMP models or the Tucker3 model. Traditionally these 
procedures have proven to be of benefit in studies where the variables are nominally structured. 
This paper will demonstrate how they can be adapted for ordinal variables by incorporating 
orthogonal polynomials into the partitions and a graphical description of the association can be 
obtained by considering correspondence analysis. This paper will also consider the case where the 
variables of a three-way contingency table are asymmetrically associated. 
 
Keywords: Multi-way contingency tables, PARAFAC/CANDECOMP, Tucker3, Orthogonal 
Polynomials 
 
1 Introduction 
Correspondence analysis has proven to be a rich and abundant area of research for data analysts. 
The purpose of considering such an analytic tool is to understand the association structure between 
two or more categorical variables that form a contingency table. This is commonly achieved by 
applying singular value decomposition (SVD) to a transformation of the cells of the contingency 
table. For two-way contingency tables SVD is applied to the matrix of Pearson residuals, or 
alternatively Pearson ratio’s (depending on the scaling involved). For multiple categorical variables, 
a multi-way contingency table can be transformed into its indicator matrix form, or its Burt matrix 
form, both of which give a two-way matrix where the traditional approach to correspondence 
analysis can be performed.  
 An alternative strategy to performing multiple correspondence analysis, and one that is 
largely applicable for the analysis of three categorical variables, is to consider a more model based 
approach to categorical data analysis. For example, one may consider the partition of cell 
transformations based on the Tucker3 model, or the CANDECOMP/PARAFAC models. Such 
procedures have commonly been applied in cases where it is assumed that the variables being 
studied are symmetrically associated. For asymmetric variables, variations of these partitions need 
to be considered. This paper will discuss the role of some of these procedures for asymmetrically 
related variables, specifically focusing on its link with the Marcotorchino index (Marcotorchino, 
1985; Lombardo, Carlier, D’Ambra, 1996; Simonetti, Beh, D’Ambra, 2006). Such a procedure can 
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be modified by incorporating orthogonal polynomials that reflect the structure of ordinal categorical 
variables. 
 
2 Classical Correspondence Analysis 
Consider an I×J two-way contingency table, N, where the (i, j)’th cell entry is given by ijn  for i= 1, 
2, . . . , I and j= 1, 2, . .. , J. Let the grand total of N be n and the (i, j)’th cell of relative frequencies 
be denoted by n/np ijij = . Define the i.th row marginal proportion by ∑ =• =

J

1j iji pp  and define the 

j’th column marginal proportion as ∑=• =
I

1i ijj pp . Let jiijij ppp ••= /α  be the Pearson ratio of the 
(i, j)’th cell. Beh (2004) described that classical correspondence analysis can be performed by 
applying singular value decomposition to the Pearson ratio by 

∑
=

=
*

1

M

m
jmmimij ba λα      (1) 

where ( ) 1,min* −= JIM  is the maximum number of dimensions required to graphically depict the 
association between the responses of the two variables. Here, ma  is the m.th row singular vector 
associated with the I row categories while mb  is the m.th column singular vector associated with the 
J column categories, they are orthonormal with respect to the weighted metrics { }•= iI pD  and 

{ }jJ pD •= , respectively. The elements of ( )*M1m ,,,1 λλ=λ K  are the singular values arranged in 
descending order such that the Pearson chi-squared statistic can be partitioned so that 

∑
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3 Model Based Correspondence Analysis of Three-way Contingency Tables  
 One limitation of viewing correspondence analysis from the perspective given in section 2 is 
that, since SVD is used as the central tool for dimension reduction, this approach is limited in its 
ability to consider more than two categorical variables without some modification to the data 
(Greenacre, 1984).  
 To avoid this problem one may consider a three-way extension of the SVD given by (1). 
Suppose we consider performing a multiple correspondence analysis on a three-way contingency 
table where the first two variables are those defined in section 2, and the third variable, consisting 
of K tubes, is denoted in the notation with a subscript k, or a “• ” when considering the summation 
of a measure over this variable. Therefore, complete independence between the all three variables 
will occur when 

kjiijk pppp ••••••=  
where the three-way Pearson ratio is defined by ( )kjiijkijk ppp/p ••••••=α . Here we shall consider 
some decompositions of the three-way Pearson ratio (Carlier and Kroonenberg, 1996). 
 
3.1 The CANDECOMP/PARAFAC & Tucker3 Models 
 One way to extend the idea of what singular value decomposition does for allowing the 
researcher to reduce the number of dimensions required to visualise multivariate associations is to 
consider the two most common three-way SVD. The first one is the CANDECOMP (CANonical 
DECOMPosition) model of Harshman (1970) or the mathematically equivalent PARAFAC 
(PARAllel FACtor analysis) model of Carroll and Chang (1970). These models allow for the three-
way Pearson ratio to be decomposed such that 

∑
=••••••
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where mmmλ is the three-way analogues of the singular value mλ ; ( ) 1,,min* −= KJIM , the row 
scores{ }ima , the column scores { }jmb  and the tube scores { }kmc  are assumed to have unit lengths, 
where orthonormality is defined with respect to diagonal metrics whose general elements are given 
by marginal proportions { }••ip , { }•• jp  and { }kp •• , respectively. 
 Note that (2) is an extension of SVD (1) for the case where the association between three 
categorical variables is of interested. Thus, the decomposition (2) has been referred to as a 
“generalised three-way singular value decomposition” (Carlier and Kroonenberg, 1996). 
 The second alternative approach to performing correspondence analysis on a three-way 
contingency table is to consider the partition considered by psychometrician Ledyard R. Tucker in 
1963. For the three-way Pearson ratio, the Tucker3 approach consists in decomposing the ratio as 
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where the { }uvwλ  are another generalization of the singular values, known as elements of the core 
matrix (Kroonenberg, 1989). As in the PARAFAC model, the row scores{ }ima , the column scores 
{ }jmb  and the tube scores { }kmc  are subject to the weighted orthonormality constraints. For three 
orthogonal models it can be shown that the Pearson chi-squared statistic of the three-way 

contingency table may be so partitioned so that ∑
=

=
*

1

22
M

m
mmmnX λ  for the PARAFAC model and 

∑=
uvw

uvwnX 22 λ  for the Tucker3 model. 

 
4 Ordered Categorical Variables and Asymmetry 
 In many studies, categorical variables will consist of ordered responses (eg. income or age 
bracket, measurements on a Likert scale). However such a structure is not taken into consideration 
using the above methods. One may consider instead using orthogonal polynomials (Emerson, 1968) 
which are generated using scores to reflect the ordinal structure of the variable. When the row, 
column and tube variables are ordered, Beh and Davy (1998; 1999) showed that measures 
analogous to ijkα  can be partitioned using the polynomials. Suppose that our three-way contingency 
table, N, consists of ordered column categories and this ordinal structure is reflected by the set of 
column scores s(j): j=1,…,J. 
 Setting b*

(-1)(v)=0 and b*
(0)(v)=1, and using the natural set of scores, the column orthogonal 

polynomials of generic degree v (for v=1,…,J-1) are calculated using the following general 
recurrence formula 
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These Emerson polynomials are orthogonal with respect to the marginal proportion 

∑ ∑= =•• =
I

i ijk
K

kj pp
1

. When the row and tube variables are ordinal, we can compute the 
polynomials a*

i(u)  of order u (for u=1,…,I-1) and c*
k(w) (for w=1,…,K-1) in a similar manner. 

 In this context, the Tucker3 partition, (3), can be generalised by considering the case where 
the categorical variables are asymmetrically associated – that is, where one set of categories for a 
response variable is dependent on two predictor category sets. Rather than considering the Pearson 
chi-squared statistic, such an asymmetric structure can be measured using the Marcotorchino index 
(Marcotorchino, 1985; Lombardo, Carlier, D’Ambra, 1996; Simonetti, D’Ambra and Beh, 2006) 
that is based on the differences 

••
••••

−= i
kj

ijk
ijk p

pp
p

α  

While Beh, Simonetti and D’Ambra (2007) considered the partition of the Marcotorchino index for 
ordinal categorical variables using orthogonal polynomials, in this paper we will explore the use of 
orthogonal polynomials with the Tucker3 decomposition in order to depict the asymmetric 
association between three categorical variables. It will also demonstrate how correspondence 
analysis can be adapted to provide a graphical interpretation of this asymmetric measure. 
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