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Abstract. Non Symmetrical correspondence analysis (NSCA) is a variant of the classical 
Correspondence Analysis (CA) for analyze two-way contingency table with a structure of 
dependence between two variables. In order to overcome the influence due to the presence of 
outlier, in this paper, it is presented Taxicab Non Symmetrical Correspondence Analysis (TNSCA), 
based on the taxicab singular value decomposition. It will show that TNSCA it is more robust than 
the ordinary NSCA, because it gives uniform weights to all the points. The visual map constructed 
by TNSCA offers a clearer perspective than the map obtained by correspondence analysis. 
Examples are provided. 
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1. Introduction 
 

Non Symmetrical Correspondence Analysis (NSCA, D'Ambra, Lauro 1989) is a method for 
visualizing contingency tables, with an asymmetric relationship between two variables. For our 
purposes we consider it as a particular kind of reduced rank matrix approximation method derived 
from generalized singular value decomposition (SVD). 
Generalized SVD of a data set can be derived in a stepwise manner and is based on the Euclidean 
matrix norm. The aim of this paper is to use a particular SVD based on the taxicab norm, named 
taxicab singular value decomposition (TSVD). Choulakian (2006) presented taxicab 
correspondence analysis (TCA) based on TSVD, showing that TCA produced more interpretable 
results than the classical Correspondence analysis. In this paper we shall present a variant of NSCA 
based on TSVD of a contingency table and it will be named Taxicab Non Symmetrical 
Correspondence Analysis (TNSCA). 
The paper is organized as follows. In section 2, we present a technical review of NSCA; in section 3 
we, present TNSCA; in section 4, we present the analysis of two data sets by TNSCA, where we 
show that TNSCA is more robust than NSCA and provides more interpretable results than NSCA. 

 
 

2. Non Symmetrical Correspondence Analysis 
 
Consider a two-way contingency table N of dimension JI × according to I and J categories of 
variables Y (response) and X (predictor), respectively. 
Denote the matrix of joint relative frequencies by ( )ijp=P  so that ∑ ∑= =

=
I

i

J

j ijp
1 1

1. 
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Let ∑ =• =
J

iji pijp  and ∑=• =
I

iij pijp  be the ith marginal row proportion and the jth marginal 

column proportion respectively. 
Suppose that the relationship between these two variables is such that the J columns are predictor 
variables and are used to predict the outcome of the I rows response. 
 

categories. Furthermore, let ⎟
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πΠ  be the matrix of differences between the 

unconditional marginal prediction •ip  and the conditional prediction 
j

ij

p
p

•

. 

If, for all of the (i, j)th cells, there is a perfect lack of predictability of the rows given the column 
categories then 0=ijπ . This is equivalent to concluding that there is complete independence 
between the two variables. A more formal, and more global, measure of predictability can be made 
by calculating the tau index (Goodman and Kruskal, 1954; Light and Margolin, 1971): 
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Here the tau numerator, τN , is the overall measure of predictability of the rows given the columns, 
while the denominator measures the overall error in prediction, which does not depend on the 
predictor categories. When all distributions of the predictor variable are identical to the overall 
marginal distribution, there is no relative increase in predictability, and so τ  is zero. Therefore the 
NSCA of two-way contingency tables involves decomposing τN  to obtain optimal measures of 
dependence. This is achieved by applying singular value decomposition (SVD) on ijπ  so that: 

∑ =
=

S

s jsissij ba
1
λπ                           (2) 

where ( ) 1,min −= JIS . The SVD (2) involves obtaining the measure sλ which is the sth singular 
value of ijπ . Similarly, sa  and sb  are the orthonormal singular vectors in an unweighted and 
weighted metric, respectively: 
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Furthermore, it follows that τN  can be expressed in terms of the singular values such that 

∑ =
==

S

s sN
1

22 λτ Π . 
For the graphical representation of the asymmetric dependence between the variables, define the 
coordinates of the ith response category (row) and jth predictor category (column) for the sth 
dimension of a correspondence plot by 

sisis af λ=     sisis bg λ=  
Therefore, a predictor profile coordinate, isg  that is situated close to the origin indicates that the jth 
predictor category does not contribute to the predictability of the response variables. Similarly a 
predictor coordinate that lies at a distance from the origin will indicate that that category is 
important for predicting the row categories. For more details on the theory and application of the 
classical technique of NSCA, refer to D'Ambra and Lauro(1989) and Kroonenberg and Lombardo 
(1999). 
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3. Taxicab Non Symmetrical Correspondence Analysis 
 

The Taxicab Singular Values Decomposition (TSV D, Choulakian 2006) is a particular orthogonal 
decomposition based on L1-norm distance, called also Manhattan or City-Block or more colorfully 
taxicab norm, because it is the distance a car would drive in a city laid out in square blocks (if there 
are no one-way streets). 
Taxicab geometry, is essentially the study of an ideal city with all roads running horizontal or 
vertical. The roads must be used to get from point A to point B; thus, the normal Euclidean distance 
function in the plane needs to beJ modified. The shortest distance from the origin to the point (1,1) 
is 
now 2 rather than 2 . So, taxicab geometry is the study of the geometry consisting of Euclidean 
points, lines, and angles in 2ℜ  with the taxicab metric: ( ) ( )[ ] 12122211 ,,, yyxxyxyxd −+−= . 
A nice discussion of the properties of this geometry is given by Krause(1986) and Kay (2001). 
We shall apply TSVD to the matrix Π  containing the differences between the unconditional 

marginal prediction •ip  and the conditional prediction 
j

ij

p
p

•

, as defined before. Let be the rank of 

k=Π . 
Denoting by ( )'

1 ,, Ivvv …=  an I-dimensional vector, than the quantity Πv the projection of the I 
row points of Π  on v. Let JT  be the collection of all vector of length J with coordinates 1± . 
The first principal axis 1v of the row points of Π  is an element of JT  such that the taxicab norm of 
Πv  is maximized:  

111
max ΠvΠv =
∈ JTv

 

The first row factor score is  
11 Πv=f                               (3) 

to which is related the first taxicab measure of dispersion 
111 Πv=λ  

Following the same procedure, it be obtain the first column scores 
1

'
1 uΠg =                              (4) 

defining with ( ) ITfu ∈= 11 sgn  where ( )⋅sgn  is the coordinateswise sign function that assigns 1 if 
( ) 0>⋅  and -1 if ( ) 0≤⋅  and IT  is the collection of all vector of length I with coordinates 1± . 
The relationship between 1v  and 1u  allow to express the measure of dispersion 1λ  in the following 
way: 

111111
'

1111111 gvgvΠfufΠv ======λ  

To compute the second axis, a sequential procedure may be applied considering the residual data 
set: 

( )
1

'
11

1 λgfΠΠ −=  
where 1

'
11 λgf  is the rank 1 reconstruction of Π  matrix on the first principal axis. 

The described procedure can be applied for k times in order to compute the k principal axes. 
Can be shown that after k iterations, the residual data matrix ( )kΠ  becomes zero. 
To quantify the robustness of TNSCA and NSCA, will used Benzécri et al. measure of influence as 
adapted and previously used by Choulakian (2006). 
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4. Examples 
 
In this section, we present the analysis of two data sets. The first data set that does not contain any 
outliers, that cross-classifies the daily consumption of wine with the attained level of education for 
liver patients. 
The data are based on the findings of a 2003 survey of 826 patients suffering from liver sickness 
which was conducted by the Department of Clinic Medicine and Infectious Disease, Second 
University of Naples. 
The second data set contains some influential points or outliers and is found in Bradley, Katti and 
Coons (1962) concerning a sample of 210 individuals that were asked to reflect their impression of 
five foods on a five point scale. 
It will be seen that for these two data sets TNSCA produces more interpretable results than the 
ordinary NSCA. 
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