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Abstract: This paper proposes a maximum entropy (ME) – based method for modeling economic 
aggregates and estimating their sub-group (sub-area) decomposition when no individual or sub-
group data are available. This method also offers a tractable framework for modeling the 
underlying variation in sub-group indicators. A basic ecological inference problem which allows 
for spatial heterogeneity is presented with the aim of estimating the model at the aggregate level 
and then employing the estimated coefficients to obtain the sub-group level indicators. 
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1. Introduction  
 
This paper proposes a maximum entropy (ME) – based method for modeling economic aggregates 
and estimating their sub-group (sub-area) decomposition when no individual or sub-group data are 
available. This method also offers a tractable framework for modeling the underlying variation in 
sub-group indicators. A basic ecological inference problem which allows for spatial heterogeneity is 
presented with the aim of estimating the model at the aggregate level and then employing the 
estimated coefficients to obtain the sub-group level indicators. The latent sub-group indicators are 
treated as random coefficients in a regression model in which the observed aggregates are regressed 
on the explanatory variables both at the group and sub-group level by taking as a point of departure 
the approach presented in Bernardini Papalia 2008. 
Our approach uses an estimation criterion based on an entropy measure of information and provides 
an effective and flexible procedure for reconciling micro and macro data. The maximum entropy 
procedures (Golan, Judge and Miller, 1996) give also the possibility to take into account out-of-
sample information which can be introduced as additional constraints in the optimization program 
or by specifying particular priors for parameters and errors. A unique optimum solution can be 
achieved also if there are more parameters to be estimated than available moment conditions and 
the problem is ill-posed. If there exists additional non-sample information from theory and/or 
empirical evidence, over that contained in the consistency and adding-up constraints, for the 
unknown probabilities, it may be introduced in the form of known probabilities, by means of the 
cross-entropy formalism (Kullback, 1959).   
 
2. Ecological inference assuming heterogeneity and dependence across space 
 
 2.1 The ecological inference problem 
Ecological inference is the process of drawing conclusions about individual  (or subgroup) level 
behaviour from aggregate (or group level) data, when no individual (or subgroup) data are 
available. The problem is that many different possible relationships at the individual (or subgroup) 
level can generate the same observations at the aggregate (or group) level (King 1997). In the 
absence of  individual (or subgroup) level measurement (in the form of survey data), such 
information need to be inferred. The traditional approach to ecological inference is based the spatial 
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homogeneity across space hypothesis which assumes constancy of parameters across the 
disaggregate spatial units. This assumption is rarely tenable, since the aggregation process usually 
generates macro-level observations across which the parameters describing individuals may vary 
(Cho 2001). 
 
2.2 Models with heterogeneity across space 
 In developing an alternative approach to ecological inference which assumes heterogeneity across 
space, as a point of departure we deal with the problem of decomposing aggregate indicators for 
various sub groups of a population by introducing unknown individual-specific effects into the 
model specification. This approach allows to test possible determinants of the variation in the 
underlying subgroup indicators. The basic idea is to treat the latent sub-group values as random 
coefficients in a regression model in which the observed aggregates are regressed on the population 
distribution by sub-groups. We define the aggregate indicator for group i, yi, as a weighted 

geometric mean of the latent sub-group indicator  in group i: ijy ( )∏
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where  is the indicator of the jth sub-group/sub-region in region i, ijy ijθ is the weight (as 

population/employees share) of sub-group/sub-region j in i, with , and where i=1,..,N 

denotes the regions and j=1,..,J

∑
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i denotes the number of sub-group/sub-regions in i. The sub-regional 
indicators are not observed, but the ’s and iy ijθ ’s are. In addition, by introducing an observed 
vector of explanatory variables for group i, xi, and an observed vector of explanatory variables for 
sub-group/sub-region j in region i, zij, the latent sub-group indicators (values) are specified in a 
multiplicative form, which is consistent with a Cobb-Douglas type production function as: 
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where zij,k (k=1,   K) are the covariates observed at the level of sub-group/sub-region j within the 
region i, and xi,h (h=1,..H) are the covariates observed only at the level of region i. 
By substituting Eq. (2) into Eq. (1), we can obtain the following model: 
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where  is a “composite” error term, which is heteroskedastic. This model implies some 

kind of weighted regression, capturing “distributional effects” by using data on weights for each 
region. It is important to point out that we assume: (i) unit specific coefficients for the sub-
groups/sub-regions (parameter heterogeneity); (ii) a parametric specification of the unobserved 
spatial effects (spatial heterogeneity) through 
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ijε ’s, which can be positive or negative.  
Using the estimated coefficients in Eq (3) we can obtain estimates of the unobserved or latent sub-
regional indicators as follows: 
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2.3 Models with spatial dependence 
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In order to take into account the correlation between neighbouring areas (groups/regions) we 
introduce two alternative spatial model specifications: the spatial Lag and spatial error models.  
When the spatial autocorrelation is modeled by a SPATIAL LAG MODEL, SPATIAL 
AUTOREGRESSIVE MODEL – SAR MODEL, the previous model specification (3) can be 
generalized by introducing a spatial-lag term iwylnρ into the model. The resulting latent sub-group 
indicators (values) are specified in a multiplicative form as follows: 
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where ρ is a spatial lag coefficient (the parameter associated to the spatially lagged dependent 
variable, ), w is a proximity matrix of order N. This model assumes that all spatial dependence 
effects are captured by the lagged term by showing how the performance of the dependent variable 
impacts all the other (neighbor) regions through the spatial transformation. 

wyln

In alternative, by assuming a spatial dependence is the error structure (that is a first order spatial 
autoregressive process), the resulting SPATIAL ERROR MODEL (SEM) specification is derived: 
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where λ is a spatial autoregressive coefficient, w is a proximity matrix of order N, as previously 
defined. The Spatial Error Model leaves unchanged the systematic component and assumes 
spatially autocorrelated errors. In this respect, it is observed how a random shock in a region affects 
performances in that region and additionally impacts all the other regions through the spatial 
transformation but it measures the joint effect of misspecification, omitted variables, and spatial 
autocorrelation. 
 
3. An Information theoretic approach 
 
An entropy-based estimation approach (Golan, Judge, and Miller, 1996) is suggested as an adequate 
solution in the present context.  More specifically, the Generalized Cross-Entropy, GCE, and the 
Composite Generalized Cross-Entropy, CGCE, (Bernardini Papalia, 2008) methods present some 
useful advantages over classical estimation techniques (as Generalized Least Squares, GLS) that 
refer to the possibility to (i) reformulate “ill-posed” or “under-determined” problems into “well-
posed” problem, (ii) to allow for the estimation of each individual parameter directly; and (iii) to 
deal with the problem of collinearity and endogeneity arising in spatial models. The implementation 
of these methods require that the parameters and errors of model in Equations (5) and (6) are 
specified as linear combinations of some predetermined and discrete support values and unknown 
probabilities (weights). The estimation problem is converted into a constrained minimization 
problem, where the objective functions is specified through the Kullback-Leibler entropy criterion 
(Kullback, 1959). For the parameters: ,  assuming: 

, we choose the support vectors 
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with M,R≥2, respectively. In addition,  prior information is included through specifying the prior 
probability vectors: ijpijpijpijpijp ,

~,,
~,,

~,,
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~
εργβα reflecting subjective information or any other sample 

and pre-sample information. The GCE optimization problem for the ecological spatial model 
corresponding to Equation (5) can be reformulated by minimizing the following objective function 
H(.) as follows: 
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subject to:   
i) data consistency conditions: 
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ii) adding-up constraints for probabilities. 
The data consistency conditions corresponding to Equation (6), can be reformulated, as: 

( ) ( ) iij

J

j

H

h
hiij

K

k
kijijiji uxpszpspsy

i

+⎟
⎠

⎞
⎜
⎝

⎛
++= ∑ ∑∑

= ==

θγγββαα
1 1

,,
1

,,, ln'ln''ln                                                      

( ij

J

j
iji

i

psu θεε∑
=

=
1

,' ) .                                                                                                                             (9) 

The optimal solutions depend of the prior information, the data and a normalization factor. If the 
priors are specified such that each choice is equally likely to be selected (uniform distributions), 
then the GCE solution reduces to the GME one. As with the GME estimator, numerical optimization 
techniques should be used to obtain the GCE solution. 
 
4. Concluding remarks  
 
The disaggregation of economic data permits economic analysis at the most disaggregated level 
especially when high quality, more detailed data are lacking. In the present paper we present a ME-
based disaggregation method capable of yielding disaggregate data consistent with prior 
information, resulting from the data generation process, and with the aggregate data. Our method 
uses an estimation criterion based on an entropy measure of information and as such provides an 
effective, flexible way of reconciling micro and macro data. The maximum entropy method also 
takes into account out-of-sample information which may be introduced either as an additional 
constraint on the optimization problem or by specifying particular priors for parameters and errors. 
An unique optimum solution may also be obtained if there are more parameters to be estimated than 
available moment conditions and the problem is ill-posed. If additional non-sample information 
from theory and/or empirical evidence exists beyond that contained in the consistency and adding-
up constraints, with regard to the unknown probabilities, this information may be introduced in the 
form of known probabilities by means of cross-entropy formalism. 
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