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Abstract

In this paper we analyse the dynamics of �ows of losses and of �ows
of liquidity in �nancial networks, using an approach based on the theory
of �ow networks. To this end, we represent �nancial networks as �ow
networks, i.e., directed and weighted graphs endowed with source nodes
and sink nodes. We then model the �domino e¤ect�, i.e., the di¤usion
of losses and defaults along the links of the network, and the transfer of
liquidity across interbank networks.

JEL classi�cation: C63, G10, G33.
Key words: contagion, �nancial networks, systemic risk, liquidity risk.

1 Financial �ow networks

In this paper we put forward a novel approach, based on the theory of �ow
networks,1 for the analysis of contagion in networks of agents connected among
themselves by �nancial obligations. Financial contagion is broadly de�ned as
the transmission of �nancial distress across agents, sectors or regions of the
economy.2 To analyse the mechanics of such a type of contagion, we represent a
�nancial network as a �ow network, i.e., a directed and weighted graph endowed
with source nodes and a sink node. Let 
 = f!ig ; i = 1:::n, be the a set of
�nancial operators. Let cij 2 R+; be the amount of debt, if any, that agent
i owes agent j; and let C = fcijg ; for i; j = 1:::n and i 6= j. Each agent in

 is characterized by its own balance sheet. Let ai 2 R+ be the value of the
external assets owned by !i�i.e., assets issued by agents that do not belong
to 
�and let ri 2 R+ be the sum of the loans granted by !i to other agents

1See Ahuja, K. R., Magnanti, T. L. and Orlin, J. B. (1993) Network Flows: theory, algo-
rithms and applications, Prentice Hall, New Jersey, for a reference book on the theory of �ows
and �ow network.

2The main theoretical contributions to the analysis of �nacial contagion are Allen, F.
and Gale, D. (1998) �Optimal Financial Crises�, Journal of Finance, 53, 1245-48. � (2000)
�Financial Contagion�, Journal of Political Economy, 108(1): 1-34, Freixas, X., Parigi, B.
and Rochet, J. C. (1999) �Systemic risk, interbank relations and liquidity provision by the
central bank�
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in 
; i.e., ri =
P

j cji: On the liability side of the balance sheet, let di 2 R+

be the sum of the loans granted to !i by other agents in 
; i.e., di =
P

j cij ;
and let ai + ri � di � vi 2 R be the net worth of the i-th agent. Finally, let
A = fakg; k = 1:::m, be a set of external assets such that each ak in A appears
in the balance sheet of at least one operator in 
; and let aki 2 R+ be the
amount of asset k held by agent i, if any.
We represent this �nancial system as a multisource network, i.e., a directed

and connected graph, with some sources and a sink, whose links are endowed
with non-negative capacities. More precisely, let N = f
; A; t;�; S; L;�g be a
multisource network where:
1. 
 = f!ig is the set of n nodes that represent the above de�ned agents;
2. A = fakg is the set of m source nodes, i.e., nodes with no incoming links,

that represent the external assets;
3. t is the sink, i.e., a terminal node with no outgoing links;
4. � � 
2 is a set of ordered pairs of nodes in 
; i.e., a set of directed links

flijg representing the liabilities in C; where lij starts from node !i and ends in
node !j ; and lij 2 � only if cij > 0:
5. S =

�
ski
	
is a set of directed links, with start nodes in A and end nodes in


, that connect the external assets to their owners, where ski 2 S only if aki > 0.
6. L =

�
lit
	
is a set of directed links, with start nodes in 
 and end node t,

that connect each node in 
 to the sink.
7. � : � ! R+; S ! R+; L ! R+ is a map, called capacity function, that

associates i) to each lij the value of the corresponding liability cij , ii) to each
ski the value of the corresponding asset a

k
i , and iii) to each l

i
t the net worth, vi;

of its start node !i.
We use the above de�ned network N to model the propagation of �nancial

losses among the agents in 
;originated by the default of one or more agents,
as a �ow across N .
The propagation of these losses through the network is governed by the rules

of limited liability, debt priority and pro-rata reimbursement of creditors. When
a node su¤ers a loss, this loss is �rst absorbed by the net worth of the node.
Only the residual loss, if any, is passed over to other nodes in 
. The losses that
are o¤set by the equity of the agents in 
 exit the �ow of losses that circulate
across the network N . The sink node is the virtual bucket where, for modelling
convenience, we direct such losses. For each node !i in 
, let

�i(�i) = min

�
�i
vi
; 1

�
(1)

be an activation function, where �i is the total loss born by the i-th node�
received from source nodes and/or from other nodes in 
. If a node !i receives
a positive �ow of losses, it is activated and sends to the sink an amount of its
own net worth equal to �ivi. If the losses su¤ered by !i are larger than its net
worth, then this node is insolvent and sends the residual loss, �i � vi, to its
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creditors, i.e., to its direct descendants in 
. For each node !i in 
, let

bi(�i) = max

�
0;
�i � vi
di

�
(2)

be an insolvency function. If the operator defaults, i.e. bi > 0; its assets are
liquidated and its creditors get a pro rata refund. We assume that this is done
without delays and without incurring bankruptcy costs.3 Thus the loss born by
an agent is

�i =
X
k

bka
k
i +

X
j

bjcji:

We show that the iterated application of (1) and (2), following a shock,
yields a �ow (of losses) de�ned in a �ow network N . We then use the proper-
ties of network �ows to investigate the relation between some characteristics of
a �nancial networks and its resiliency towards default contagion. The results
we obtained show the existence of a relation between the threshold of default
contagion, i.e., the magnitude of the smallest shock capable of causing further
defaults, and the scope of contagion, i.e., the number of defaulting agents. The
network structure that ensures the most uniform distribution of losses among
the agents is the complete network, where everybody lends to everybody else.
This structure has the highest contagion threshold and scope, in the sense that
it is resilient to default contagion for small-medium size shocks while, in case of a
large enough shock, the contagion is maximal: the entire network defaults. The
star-shaped money centre structure displays similar features. Conversely, an
incomplete network structure, where each agent is connected to a limited num-
ber of other agents, has contagion threshold and scope lower than the ones of a
complete structure: small shocks can cause default contagion involving a limited
number of agents. Thus regulators face a trade-o¤ in designing optimal �nan-
cial structures: the choice between structures exposed to low probability-high
impact events, such as the complete and star-shaped networks, and structures
exposed to high probability-low impact events, such as the incomplete networks.

1.1 Interbank liquidity networks

We apply the present �ow network approach also to the analysis of liquidity
transfers in interbank networks. We suppose that the network is in a balanced
initial state, where no bank experiences a liquidity shortage or surplus. We
then perturb the system by a liquidity shock that consists of a reallocation
of customer deposits across banks, with no aggregate liquidity shortage (for
the time being). Formally, a liquidity shock is an ordered vector of scalars
� = [�1; �2; :::; �n]; where

P

b
�i = 0:

We model the transfer of liquidity from surplus nodes to de�cit nodes as
a �ow across Nb; a �ow driven by deposit withdrawals. The liquidity need

3Bankruptcy costs can be introduced in the model by adding extra sources of losses that
get activated in case of defaults. These extra losses would make the system more prone to
widespread crisis without substantially altering the results presented below.
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of a bank !i is the sum of its customers� withdrawals, �i; and of the with-
drawals of interbank deposits undertaken by its direct descendants in Nb. Let
G1(!i) = f!j jlij 2 �bg be the set of children nodes of !i, i.e., the set of its
direct descendants. Let �ij 2 (0; cij) measure the interbank deposits withdrawn
by node !jfrom its parent node !i . The liquidity shortage faced by a bank is

�i = �i +
X

G1(!i)
�ij :

When �i takes on a positive value, node !i faces a liquidity shortage and it �rst
withdraws part or all of its deposits from its parent nodes. Then, if �i > ri;
!i resorts to the liquidation of external (possibly illiquid) assets ai to cover
the residual liquidity need. We assume that banks in liquidity de�cit withdraw
interbank deposits in a pro rata fashion. Formally, we assume: �ji = �icji;
where �ji is the amount of money withdrawn by !i from !j and

�i (�i) = min

�
max

�
�i
ri
; 0

�
; 1

�
(3)

is the withdrawal function that associates the quota �i 2 (0; 1) of the propor-
tional deposit withdrawal undertaken by node !i, to its own liquidity shortage,
�i. If �i > ri; the short-term interbank exposures of node !i are insu¢ cient to
satisfy its de�cit and it must liquidate part or all of its external assets. Let

�i (�i) = max

�
0;
�i � ri
ai

�
(4)

be the liquidation function that yields the portion �i of external assets ai to be
liquidated.
When the initial liquidity shock occurs, the nodes in de�cit withdraw their

interbank deposits according to (3) and, if necessary, liquidate external assets
according to (4). By withdrawing their deposits, the banks in de�cit transfer
their liquidity shortage (or part of it, if asset liquidation is needed) to their
parent nodes which, in turn, do the same to their own parent nodes, and so
forth until all nodes in the network have achieved a balanced liquid position.
We show that the iterated application of (3) and (4), following a liquidity shock,
generates a �ow (of liquidity) de�ned in a �ow networkNl. We then compare the
transfer capacity of complete, incomplete and star-shaped interbank networks.
We show that a) cycle �ows in interbank transfers cause a waste of the transfer
capacity of a network, therefore they reduce the resiliency of a network towards
liquidity shocks; b) larger interbank exposures, on one hand, render the network
more exposed to default contagion and, on the other hand, render the banking
system more resilient to liquidity shocks. Finally, we compare the transfer
capacity of complete, incomplete and star-shaped interbank networks, we show
that star-shaped networks are the most e¤ective in reallocating liquidity across
banks.
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