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Abstract

Exams timetabling is a difficult task in many educational institutions. We can distinct
two major sets of constraints when defining exams timetabling problems, categorized in
soft and hard constraints. Guaranteing that any student as a non overlapping exams
schedule and that necessary requirements like rooms and teacher are available are consider
hard constraints. An evenly distributed schedule, a short duration of the overall exams
period can be regarded as soft constraints. To handle soft constraints under the hard
constraints verification we adopted a multiobjective optimization approach. This problem
is NP-hard for which we have developed an heuristic tabu search method to find a solution.
Tabu search comprises an iterative local search defined as a neighborhood inspection of a
certain point in the search space. To find an improved solution we have to evaluate points
in this neighborhood which can be considered a multiple attribute decision problem. In
this context we have used multicriteria methods in order to rank the solutions.

1 Introduction

Problems related to timetabling are present in daily life. Solving timetabling problems
is a crucial task and affects many institutions and services like hospital, transportation,
educational establishments, among many others. This problems have been an object of
increasingly interest in the four last decades. In particular, regarding exams timetabling
problems, the interests is absolutely justified by its importance and relevance in educa-
tional success. In general we can say that an exam timetabling problem consists of finding
a feasible schedule for each student in the sense that no two exams overlap and such that
other requirements such as rooms and staff are fulfill. But the quality of a schedule
depends also on other factors such as the spreading of exams, allowing for more time
between consecutive exams and the minimization of the examination period. Although
specifications of the problems can differ, essentially we have the following input data.

N = number of exams. (1)
cij = number of students enroled in course i and j (2)
K = number of courses (3)
P = number of slots (4)
M = number of students (5)

We encoded the solution using a vector of variables T = (ti), i = 1, . . . , N , such that ti
represents the timeslot assign to exam i, and a set of variables dti , i = 1, . . . , N which
represents the day where exam ti takes place. As in [2] we have consider the following
four objectives:
- The number of conflicts where students have exams in adjacent periods of the same day

N−1∑

i=1

N∑

j=i+1

cij .adjs(ti, tj) where adjs(ti, tj) =
{

1 if (|ti − tj | = 1) ∧ (dti = dtj )
0 otherwise (6)
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- The number of conflicts where students have two or more exams in the same day.

N−1∑

i=1

N∑

j=i+1

cij .sday(ti, tj) where sday(ti, tj) =
{

1 if dti = dtj

0 otherwise (7)

- The number of conflicts where students have exams in adjacent days.

N−1∑

i=1

N∑

j=i+1

cij .adjd(ti, tj) where adjd(ti, tj) =
{

1 if |dti − dtj | = 1
0 otherwise (8)

- The number of conflicts where students have exams in overnight adjacent periods

N−1∑

i=1

N∑

j=i+1

cij .ovnt(ti, tj) where ovnt(ti, tj) =
{

1 if (|ti − tj | = 1) ∧ (|dti − dtj | = 1)
0 otherwise (9)

We consider a single set of hard constaints, to guarantee that no student has the same
exam in the same slot:
N−1∑

i=1

N∑

j=i+1

cij .clash(ti, tj) = 0 where clash(ti, tj) =
{

1 if ti = tj
0 otherwise (10)

This problem is known to be NP-hard and we have implemented a Tabu Search (TS)
to obtain good feasible solutions.

2 Tabu search

Tabu search [3], [4] is a meta-heuristic that has successfully been applied to find good
feasible solutions for hard optimization problems. In general it can be described as a
neighborhood search method incorporating techniques for escaping local optima and avoid
cycling. A fist level Tabu Search (TS) comprises the following concepts in each iteration:

• Current starting solution - Start search point.
• Search Neighborhood - Points that will be inspected from the current solution.
• Move - A basic operation in the definition of the neighborhood.
• Evaluation - A procedure to evaluate the points in the neighborhood.
• Tabu list - The tabu moves that are not allowed in the current iteration
• Aspiration criteria - Enables to override the tabu.

A general, very basic, iteration of TS will consist in finding a set of points in the neigh-
borhood of the current point. Evaluated these points and chose the one that has the best
evaluation, as long as the move associated to this point is not tabu. If it is tabu we can
apply the aspiration criteria or not. We add the move (or solution) that generated the
best evaluated point to the tabu list. We proceed to the next iteration from this current
point. There are many interesting additional refinements that can greatly increase the
performance of TS. In the application of TS to the exams timetabling problem we used a
graph coloring heuristic, known as ”saturation degree” [1] to find a starting solution. Two
different neighborhoods were defined. A classical an elementary one that corresponds,
for a given timetable T0, to all timetabling Ti differing from T0 in the assignment of one
exam alone. The second neighborhood used is based on Kemp chains. We define a neigh-
borhood of timetable T0, as the set of all the timetables differing from T0 only in the
assignment of two groups of exams in two time slots. Also a Inference Rule Based (IRB)
system was developed to manage the size of the tabu list, to increase the automatization
of this procedure. For the evaluation of the solutions we use some strategies borrowed
from multiple criteria decision making.
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3 Using weight aggregation for evaluation and selec-
tion

Once a set of points where generated, as a neighborhood of a current solution, it was
necessary to evaluate the candidates in order to find an eligible solution. In a problem with
only one objective, the value of the objective function is often used to rank the solutions. In
this case we had a multiobjective problem and we have chosen to maintain the problem as
such, instead of transforming it in a single objective problem using functions aggregation.
The reason to do so was based on an attempt to do not prematurely condition the problem,
allowing for a broader inspection of solutions in a sort of diversification strategy.
So for a given set of points, T1, T2, . . . , Tr we have a set of their corresponding values for the
above mentioned objectives functions f1, f2, f3, f4. Identifying the points as alternatives
and the value of the objective functions as attributes that characterize the alternatives,
we are facing a multiple attribute decision making (MADM) problem.
We performed a normalization of the data in order to be able to compare the attributes,
defined by a matrix X = (xij), where 0 ≤ xij ≤ 1. The ranking of the points Ti was done
using a Compromise Ratio (CR) methodology [5]. The compromise ratio is developed
based on the concept that the best alternative should be as close s possible to the ideal
solution a+ and as far as possible to the negative-ideal solution a−, which in this case
are consider to be a four dimension vector of ones and zeros respectively. Since the
attributes may have different degrees of importance for the decision maker a component
wise weighting of matrix X = (xij) was performed,

vij = xij × wij . (11)

For each point Ti we need to compute the distances to the ideal and negative-ideal point,
respectively

D+
p (Ti) = p

√√√√
m∑

j=1

(a+
j − vij)p , ∀i = 1, ..., n

D−
p (Ti) = p

√√√√
m∑

j=1

(vij − a−j )p ,∀i = 1, ..., n.

Given these distances we can use the following parameterized ratio

ξp(Ti) = θ × Dp−(T+)−D+
p (Ti)

Dp−(T+)−Dp+(T+)
+ (1− θ)× D−

p (Ti)−Dp−(T−)
Dp+(T−)−Dp−(T−)

where 



Dp−(T+) = max
i∈{1,...,n}

{D+
p (Ti)}

Dp+(T+) = min
i∈{1,...,n}

{D+
p (Ti)}




Dp+(T−) = max
i∈{1,...,n}

{D−
p (Ti)}

Dp−(T−) = min
i∈{1,...,n}

{D−
p (Ti)}

in order to rank the alternatives. However we have modified the above mention procedure
by using in (11) weight generating functions gj instead of constant weights, yielding

Wij(xi) =
gj(xij)

m∑
t=1

gt(xit)

.
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The gain is that we can better model preferences as well as the behavior of the decision
maker than if we simply use constant weights. For instance, consider the classical situation
of buying a car. For that purpose, we are evaluating the car regarding its price and
comfort. If the car is expensive it is expected to be also very comfortable. However, if
the car is not expensive there is no such expectation. In this situation the weight of each
criteria is related with the criteria satisfaction. Using a weighting function it is possible
to model this situation.

Mixture operators, in the context of aggregation operators where introduced in [8] and
[9]. In [6], [7] we can find some interesting applications. We know that the operator we
use is not monotonic for all weighting functions. In order to guarantee the monotonicity
of the operator ξp we obtained a condition similar to those presented in [8], [9] and [10].

We used the following weight generating function:

gj(xij) = (aj − dj)× xp
ij + dj

Where aj represents the importance (weight) of attribute j when the attribute satisfaction
is maximum and it value belongs to the unit interval, and dj represent the importance
(weight) of attribute j when the attribute satisfaction is minimum. However dj belongs to
the interval [lower bound, a]. The lower bound value is derived from the same condition
referred above.
We performed some computational experiments on a test set of real problems available on
an online repository of exams timetabling problems. The numerical results proved that
this approach successfully enhances the features of the Tabu Search.
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