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Abstract: Discriminant Partial Least Squares for Compositional data (DPLS-CO) was recently 
proposed by Gallo (2008). The aim of this paper is to show that DPLS-CO is a better 
dimensionality reduction technique than the LogContrats Principal Component Analysis (LCPCA) 
for dimensional reduction aimed at discrimination when a compositional training dataset is 
available. 
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1. Introduction  
When discrimination is the goal and dimension reduction is needed Principal Component Analysis 
(PCA) is the most commonly used technique. Since PCA is only capable of identifying gross 
variability and is not capable of distinguishing between-groups and within-groups variability, as is 
the explicit goal of the simple Linear Discriminant Analysis (LDA). LDA has more  advantages 
from a theoretical point of view and   it is a  better technique to use for discrimination.  In Barker 
and Rayner (2003) it is shown, with a formal statistical explanation, the direct connection between 
Discriminant Partial Least Squares (DPLS) and LDA. This connection suggests that DPLS to be 
better dimensionality reduction techniques than PCA for dimensional reduction aimed at 
discrimination when a training set is available. 
 
In many disciplines, for instance, geology, biochemistry, economics, business administration and 
sociology, when the discrimination between more groups is the goal, often the observational data 
are compositional. In such a case, the components of the observational vectors of the data set 
represent ratios of a fixed total, and the data provide us only with relative and not absolute 
information. So only ratios between components are meaningful, and those ratios are independent 
from the arbitrary total. In mathematical terms, a vector ( )Jw~,,w~~ …1=w  is compositional if the 
elements 0≥jw~  (for J,,j …1= ) and 11 =++ Jw~w~ … .  
The adequate analysis and relative interpretation of results from this kind of data should be properly 
incorporated into statistical modeling    for discrimination which takes into account the constant-
sum constraint that each compositional vector presents. For this purpose, Linear Discriminant 
Analysis (LDA) for discriminating between two compositions was proposed by Aitchison (1986); 
more recently, Gallo (2008) proposed the Discriminant Partial Least Squares technique for 
Compositional data (DPLS-CO), where the connections between DPLS-CO and logcontrast LDA 
were fully showed.  

                                                 
1 The present paper is financially supported by the University of Naples – L’Orientale (Department of Social Science 
60% fund 2008). 
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The aim of this paper is to show than DPLS-CO is to be preferred to logcontrast PCA when 
discrimination between two compositions is the goal and dimension reduction is needed.  
 
2. Compositional data 
Let us denote  W ( )JN  ,  a compositional data matrix. In W, all elements are positive and each row 
is constrained to the unit-sum NJ

ˆˆ 11W =  where J1̂  and N1̂  are unit vectors   dimension J and N, 

respectively. Let [ ]t
NNN

ˆˆN 11IQ −=  be the product between N1 and the usual centering projector.  
then QWW t  is the covariance matrix of W  refereed to as crude covariance matrix.  
The unit-sum constraint for each row of W  implies four difficulties: 1) Negative bias, 2) 
Subcomposition, 3) Basis and  4) Null correlation. Each row and column of QWW t  has zero-sum, 
that is,  JJ

t ˆˆ 01QWW =  where J0̂  is a J dimensional zero vector. Therefore each variable has a 
covariance sum equivalent to a negative variance (the first difficulty). No-relationship exists 
between the crude covariance matrix and the crude subcomposition covariance one. Therefore the 
variation of subcomposition can substantially influence the covariance (the second difficulty). 
Likewise in the subcomposition, it is not easy to select a basis for the composition (which is the 
third difficulty). 
Similarly to the crude covariance matrix, each row and column of the crude correlation matrix of 
W  has also a zero-sum. Therefore the correlation between two variables is not free to range over 
the usual full interval [ ]1 1,− . The negative bias causes a radical difference from the standard 
interpretation of correlation between variables. Zero correlation between two ratios does not mean 
that there is no association (the latter difficulty). Moreover the no interpretability of the crude 
covariance structure is not the only problem of compositional data. Unfortunately, compositional 
data often exhibit curvature when standard multivariate methods are employed. 
Aitchison (1986) richly described the properties of compositional data and proposed an alternative 
form of logratio, where the more useful one is based upon a geometric mean.  It consists in 
replacing the natural non-negative condition by the following stronger assumption on strict positive 
quantities. He proposed to transform each element of W  ( ijw ) into the logratio ( )[ ]wgwlog ij  . 
This is because the relative matrix of centered logratio Z , with generic element ( )[ ]wgwlogz ijij =  
where  ( )wg  is a geometric mean of a J dimensional composition, is adequate for a low-
dimensional description of compositional variability. Moreover, a generalization of the logratios – 
called logcontrasts – have particular and researched proprieties in compositional data analysis. 
Logcontrast of w  is any loglinear combination JJ

t wlogcwlogclog ++= …11wc  with 
01 =++ Jcc … , where logcontrast with the geometric mean ( )wg  presents the following property: 

( )( )wwcwc gloglog tt = . 
 
3. DPLS-CO 
Modeling the relation between two blocks of variables is a common practice in many fields 
especially in chemistry and chemical engineering. The objective is usually to extract the 
information in the descriptor matrix X ( )JN  ,  and in the response matrix Y ( )GN  , , where the 
members of the Y can be expressed as a function of the members of the X. Traditionally, the 
modeling of Y by means of X is done through multiple linear regression, which works well as long 
as the X-variables are fairly few and weakly uncorrelated. When  handling numerous and collinear 
X-variables as well as  in applications involving  many variables with  few observations, PLS 
allows us to investigate more complex problems than before, and  to also  analyze  the available 
data in a more realistic way.  
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Let Y ( )GN  ,  be a "dummy matrix" that expresses the G classes of the training data set with gn  
( )G,,g …1=  observations on each class. When the goal of analysis is to find a model that separates 
classes of observations on the basis of the values of their X-variables, it is well known that PLS 
(maximizing covariance) is related to CCA (maximizing correlation) 

( ) ( ) ( ) ( )YbYbXaXaYbXa varcorvarcov 22 ,, =                              (3.1) 
where a principal component analysis in the X-space and a principal component analysis in Y-space 
provide the penalties. The equation (3.1) can be rewritten as 

( ) ( ) ( )
( )Yb

YbXaYbXaXa
var

covcorvar
2

2 ,, = ,                             (3.2) 

provided that, var(Yb) is not zero. 
Suppose  [ ]k,, aaA …1=  is the first k coefficient vector and [ ]t

NNN
ˆˆN 11IQ −=  is the product 

between N1 and the usual centering projector, then QXX t  is the covariance matrix of X .  Barker 
and Rayens (2003) propose to solve  

( )
( ) ( ) { }11

2

  ; var
cov

++

=
ℜ∈ℜ∈

=
⎭
⎬
⎫

⎩
⎨
⎧

kkt

ˆ

,,maxarg
tt

GJ
ba

Ybaa
YbXa

0QXAXa
ba

                            (3.3)  

where 1+ka   is the eigenvector corresponding to the largest eigenvalue 1+kλ  of the matrix 

( ) ( ) QXYQYYQYXPI tttX
kJ

1−
−  with ( )( )QXXAQXAQXXXAQXAXP ttttttX

k
1−

= , and 

( ) 1
1

1 +

−

+ = k
tt

k QXaYQYYb . Of course, when classification is the goal, only 1+ka  is of interest. 
Similarly, the aim of PLS for discrimination on compositional data (DPLS-CO) is to maximize 

( ) ( )YbYbZa varcov2 ,  subject to the usual constraints of PLS for discrimination plus the additional 
constraint that each coefficient vector has zero-sum: 0=J

t 1̂a . Since 0=J
t 1̂a  can be viewed as an 

orthogonality constraint with respect to a redefined inner product, Gallo (2008) showed that PLS for 
discrimination solutions always satisfy the additional constraint 0=J

t 1̂a  of compositional data: 
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Hence, to implement DPLS-CO, one just needs to replace the original compositional data by their 
corresponding logcontrast ones and employ the PLS discrimination algorithms.  
 
 
4. DPLS-Co versus LCPCA in discrimination  
Each composition w  is a 1−J  dimensional additive logistic normal distribution with mean vector 
μ  and covariance matrix Σ  where w  is the one-to-one transformation to z  defined by a 1−J  
dimensional normal distribution with mean vector λ  and covariance matrix QWW t   and density 
function  

      ( ) ( ) ( ) ( ) 2111
1

2121 ˆ12)(
−−−−−− −−= J

t
J

J JwwJz 1QWW…πφ                              

                  ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−−−

−
− λz1QWWλz

11 ˆ
2
1exp J

tt J                                       (3.5) 

with J1̂  is a JxJ   matrix of units (Aitchison, 1982).  Thus, to illustrate that DPLS-CO is to be 
preferred to LCPCA, we generated 100 observations on each of two groups, with means (10,10,10) 
and (15,10,10) for first and second group, respectively.  The chosen dispersion matrix is  
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where 2σ  was varied from one to eight.  To compare the classification performance of DPLS-CO 
and LCPCA, the misclassification rate was considered. 
For each 2σ  configuration, we have summarized. in Figure 1, the percentage of misclassification 
obtained with DPLS-CO and LCPCA. 
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It is has been   observed that as 2σ  increases, the misclassification rate for DPLS-CO remains  
approximately constant while for LCPCA  this  rate increases noticeable.     
 
 
5. Summary and conclusion  
LCPCA is the best approach when the goal is to identify the maximum gross variability and the data 
are compositional, but it is not particularly reliable when it comes to distinguish among-group and 
within-group variability. In this case, LDA is to be preferred to any other methods when it is  use is 
possible; however, often LDA cannot be performed when the number of variables is very large 
relative to the number of observations. Therefore, dimension reduction is necessary and LCPCA 
and DPLS-CO is  the more appropriate method in such situations. 
DPLS-CO will outperform LCPCA when discrimination is the goal and within-groups variability 
dominates the among-groups variability. This is because DPLS-CO is directly connected to LDA. 
  
Bibliography 
Aitchison J. (1982), The Statistical Analysis of Compositional Data (with discussion). Journal of 

the Royal Statistical Society, Series B (Statistical Methodology), 44 (2), 139–177. 
Aitchison J. (1986), The Statistical Analysis of Compositional Data. London, UK: Chapman and 

Hall. 
Barker M., Rayens W. (2003), Partial least squares for discrimination. Journal of Chemometrics, 

17, 166–173. 
Barceló-Vidal C., Martín-Fernández J.A., Pawlowsky-Glahn V. (2001), Mathematical foundations 

of compositional data analysis. In Ross G. ed. Proceedings of IAMG’01 – The sixth annual 
conference of the International Association for Mathematical Geology. Electronic publication. 

Gallo M. (2003), Partial Least Squares for Compositional Data: An Approach based on the splines. 
Italian Journal of Applied Statistics, 15, 349–358. 

Gallo M (2008), Discriminant Partial Least Squares analysis on compositional data. Statistical 
Modeling (In Press). 

MTISD 2008 – Methods, Models and Information Technologies for Decision Support Systems 
Università del Salento, Lecce, 18­20 September 2008   

 
 

___________________________________________________________________________________________________________ 
© 2008 University of Salento - SIBA http://siba2.unile.it/ese                                                                                                                48




